1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 // split into two routines so we can avoid timing issues after sending commands //
19 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
21 uint8_t *dest
= (uint8_t *)BigBuf
;
22 int n
= sizeof(BigBuf
);
28 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
29 AT91C_BASE_SSC
->SSC_THR
= 0x43;
32 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
33 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
35 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
38 trigger_threshold
= -1;
44 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
45 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
49 void DoAcquisition125k(int trigger_threshold
)
51 DoAcquisition125k_internal(trigger_threshold
, false);
54 //void SetupToAcquireRawAdcSamples(int divisor)
55 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
57 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
58 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
59 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
60 else if (divisor
== 0)
61 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
63 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
67 // Connect the A/D to the peak-detected low-frequency path.
68 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
69 // Give it a bit of time for the resonant antenna to settle.
71 // Now set up the SSC to get the ADC samples that are now streaming at us.
75 void AcquireRawAdcSamples125k(int divisor
)
77 LFSetupFPGAForADC(divisor
, true);
78 // Now call the acquisition routine
79 DoAcquisition125k_internal(-1,false);
81 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
83 LFSetupFPGAForADC(divisor
, false);
84 DoAcquisition125k(trigger_threshold
, false);
90 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
94 /* Make sure the tag is reset */
95 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
96 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
99 // see if 'h' was specified
100 if (command
[strlen((char *) command
) - 1] == 'h')
106 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
110 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
112 // Give it a bit of time for the resonant antenna to settle.
114 // And a little more time for the tag to fully power up
117 // Now set up the SSC to get the ADC samples that are now streaming at us.
120 // now modulate the reader field
121 while(*command
!= '\0' && *command
!= ' ') {
122 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
124 SpinDelayUs(delay_off
);
126 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
128 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
130 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
132 if(*(command
++) == '0')
133 SpinDelayUs(period_0
);
135 SpinDelayUs(period_1
);
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
139 SpinDelayUs(delay_off
);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
143 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
145 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
148 DoAcquisition125k(-1);
151 /* blank r/w tag data stream
152 ...0000000000000000 01111111
153 1010101010101010101010101010101010101010101010101010101010101010
156 101010101010101[0]000...
158 [5555fe852c5555555555555555fe0000]
162 // some hardcoded initial params
163 // when we read a TI tag we sample the zerocross line at 2Mhz
164 // TI tags modulate a 1 as 16 cycles of 123.2Khz
165 // TI tags modulate a 0 as 16 cycles of 134.2Khz
166 #define FSAMPLE 2000000
167 #define FREQLO 123200
168 #define FREQHI 134200
170 signed char *dest
= (signed char *)BigBuf
;
171 int n
= sizeof(BigBuf
);
172 // int *dest = GraphBuffer;
173 // int n = GraphTraceLen;
175 // 128 bit shift register [shift3:shift2:shift1:shift0]
176 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
178 int i
, cycles
=0, samples
=0;
179 // how many sample points fit in 16 cycles of each frequency
180 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
181 // when to tell if we're close enough to one freq or another
182 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
184 // TI tags charge at 134.2Khz
185 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
186 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
188 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
189 // connects to SSP_DIN and the SSP_DOUT logic level controls
190 // whether we're modulating the antenna (high)
191 // or listening to the antenna (low)
192 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
194 // get TI tag data into the buffer
197 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
199 for (i
=0; i
<n
-1; i
++) {
200 // count cycles by looking for lo to hi zero crossings
201 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
203 // after 16 cycles, measure the frequency
206 samples
=i
-samples
; // number of samples in these 16 cycles
208 // TI bits are coming to us lsb first so shift them
209 // right through our 128 bit right shift register
210 shift0
= (shift0
>>1) | (shift1
<< 31);
211 shift1
= (shift1
>>1) | (shift2
<< 31);
212 shift2
= (shift2
>>1) | (shift3
<< 31);
215 // check if the cycles fall close to the number
216 // expected for either the low or high frequency
217 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
218 // low frequency represents a 1
220 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
221 // high frequency represents a 0
223 // probably detected a gay waveform or noise
224 // use this as gaydar or discard shift register and start again
225 shift3
= shift2
= shift1
= shift0
= 0;
229 // for each bit we receive, test if we've detected a valid tag
231 // if we see 17 zeroes followed by 6 ones, we might have a tag
232 // remember the bits are backwards
233 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
234 // if start and end bytes match, we have a tag so break out of the loop
235 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
236 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
244 // if flag is set we have a tag
246 DbpString("Info: No valid tag detected.");
248 // put 64 bit data into shift1 and shift0
249 shift0
= (shift0
>>24) | (shift1
<< 8);
250 shift1
= (shift1
>>24) | (shift2
<< 8);
252 // align 16 bit crc into lower half of shift2
253 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
255 // if r/w tag, check ident match
256 if ( shift3
&(1<<15) ) {
257 DbpString("Info: TI tag is rewriteable");
258 // only 15 bits compare, last bit of ident is not valid
259 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
260 DbpString("Error: Ident mismatch!");
262 DbpString("Info: TI tag ident is valid");
265 DbpString("Info: TI tag is readonly");
268 // WARNING the order of the bytes in which we calc crc below needs checking
269 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
270 // bytes in reverse or something
274 crc
= update_crc16(crc
, (shift0
)&0xff);
275 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
276 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
277 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
278 crc
= update_crc16(crc
, (shift1
)&0xff);
279 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
280 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
281 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
283 Dbprintf("Info: Tag data: %x%08x, crc=%x",
284 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
285 if (crc
!= (shift2
&0xffff)) {
286 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
288 DbpString("Info: CRC is good");
293 void WriteTIbyte(uint8_t b
)
297 // modulate 8 bits out to the antenna
301 // stop modulating antenna
308 // stop modulating antenna
318 void AcquireTiType(void)
321 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
322 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
323 #define TIBUFLEN 1250
326 memset(BigBuf
,0,sizeof(BigBuf
));
328 // Set up the synchronous serial port
329 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
330 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
332 // steal this pin from the SSP and use it to control the modulation
333 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
334 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
336 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
337 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
339 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
340 // 48/2 = 24 MHz clock must be divided by 12
341 AT91C_BASE_SSC
->SSC_CMR
= 12;
343 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
344 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
345 AT91C_BASE_SSC
->SSC_TCMR
= 0;
346 AT91C_BASE_SSC
->SSC_TFMR
= 0;
353 // Charge TI tag for 50ms.
356 // stop modulating antenna and listen
363 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
364 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
365 i
++; if(i
>= TIBUFLEN
) break;
370 // return stolen pin to SSP
371 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
372 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
374 char *dest
= (char *)BigBuf
;
377 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
378 for (j
=0; j
<32; j
++) {
379 if(BigBuf
[i
] & (1 << j
)) {
388 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
389 // if crc provided, it will be written with the data verbatim (even if bogus)
390 // if not provided a valid crc will be computed from the data and written.
391 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
393 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
395 crc
= update_crc16(crc
, (idlo
)&0xff);
396 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
397 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
398 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
399 crc
= update_crc16(crc
, (idhi
)&0xff);
400 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
401 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
402 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
404 Dbprintf("Writing to tag: %x%08x, crc=%x",
405 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
407 // TI tags charge at 134.2Khz
408 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
409 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
410 // connects to SSP_DIN and the SSP_DOUT logic level controls
411 // whether we're modulating the antenna (high)
412 // or listening to the antenna (low)
413 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
416 // steal this pin from the SSP and use it to control the modulation
417 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
418 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
420 // writing algorithm:
421 // a high bit consists of a field off for 1ms and field on for 1ms
422 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
423 // initiate a charge time of 50ms (field on) then immediately start writing bits
424 // start by writing 0xBB (keyword) and 0xEB (password)
425 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
426 // finally end with 0x0300 (write frame)
427 // all data is sent lsb firts
428 // finish with 15ms programming time
432 SpinDelay(50); // charge time
434 WriteTIbyte(0xbb); // keyword
435 WriteTIbyte(0xeb); // password
436 WriteTIbyte( (idlo
)&0xff );
437 WriteTIbyte( (idlo
>>8 )&0xff );
438 WriteTIbyte( (idlo
>>16)&0xff );
439 WriteTIbyte( (idlo
>>24)&0xff );
440 WriteTIbyte( (idhi
)&0xff );
441 WriteTIbyte( (idhi
>>8 )&0xff );
442 WriteTIbyte( (idhi
>>16)&0xff );
443 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
444 WriteTIbyte( (crc
)&0xff ); // crc lo
445 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
446 WriteTIbyte(0x00); // write frame lo
447 WriteTIbyte(0x03); // write frame hi
449 SpinDelay(50); // programming time
453 // get TI tag data into the buffer
456 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
457 DbpString("Now use tiread to check");
460 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
463 uint8_t *tab
= (uint8_t *)BigBuf
;
465 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
466 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
468 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
470 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
471 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
473 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
474 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
478 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
480 DbpString("Stopped");
497 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
499 DbpString("Stopped");
516 #define DEBUG_FRAME_CONTENTS 1
517 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
521 // compose fc/8 fc/10 waveform
522 static void fc(int c
, int *n
) {
523 uint8_t *dest
= (uint8_t *)BigBuf
;
526 // for when we want an fc8 pattern every 4 logical bits
537 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
539 for (idx
=0; idx
<6; idx
++) {
551 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
553 for (idx
=0; idx
<5; idx
++) {
568 // prepare a waveform pattern in the buffer based on the ID given then
569 // simulate a HID tag until the button is pressed
570 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
574 HID tag bitstream format
575 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
576 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
577 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
578 A fc8 is inserted before every 4 bits
579 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
580 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
584 DbpString("Tags can only have 44 bits.");
588 // special start of frame marker containing invalid bit sequences
589 fc(8, &n
); fc(8, &n
); // invalid
590 fc(8, &n
); fc(10, &n
); // logical 0
591 fc(10, &n
); fc(10, &n
); // invalid
592 fc(8, &n
); fc(10, &n
); // logical 0
595 // manchester encode bits 43 to 32
596 for (i
=11; i
>=0; i
--) {
597 if ((i
%4)==3) fc(0,&n
);
599 fc(10, &n
); fc(8, &n
); // low-high transition
601 fc(8, &n
); fc(10, &n
); // high-low transition
606 // manchester encode bits 31 to 0
607 for (i
=31; i
>=0; i
--) {
608 if ((i
%4)==3) fc(0,&n
);
610 fc(10, &n
); fc(8, &n
); // low-high transition
612 fc(8, &n
); fc(10, &n
); // high-low transition
618 SimulateTagLowFrequency(n
, 0, ledcontrol
);
624 size_t fsk_demod(uint8_t * dest
, size_t size
)
626 uint32_t last_transition
= 0;
629 // we don't care about actual value, only if it's more or less than a
630 // threshold essentially we capture zero crossings for later analysis
631 uint8_t threshold_value
= 127;
633 // sync to first lo-hi transition, and threshold
635 //Need to threshold first sample
636 if(dest
[0] < threshold_value
) dest
[0] = 0;
640 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
641 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
642 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
643 for(idx
= 1; idx
< size
; idx
++) {
644 // threshold current value
645 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
648 // Check for 0->1 transition
649 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
651 if (idx
-last_transition
< 9) {
656 last_transition
= idx
;
660 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
664 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits
)
666 uint8_t lastval
=dest
[0];
671 for( idx
=1; idx
< size
; idx
++) {
673 if (dest
[idx
]==lastval
) {
677 //if lastval was 1, we have a 1->0 crossing
679 n
=(n
+1) / h2l_crossing_value
;
680 } else {// 0->1 crossing
681 n
=(n
+1) / l2h_crossing_value
;
685 if(n
< maxConsequtiveBits
)
687 memset(dest
+numBits
, dest
[idx
-1] , n
);
697 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
698 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
700 uint8_t *dest
= (uint8_t *)BigBuf
;
702 size_t size
=0,idx
=0; //, found=0;
703 uint32_t hi2
=0, hi
=0, lo
=0;
706 while(!BUTTON_PRESS()) {
708 // Configure to go in 125Khz listen mode
709 LFSetupFPGAForADC(0, true)
712 if (ledcontrol
) LED_A_ON();
714 DoAcquisition125k_internal(true);
715 size
= sizeof(BigBuf
);
718 size
= fsk_demod(dest
, size
);
721 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
722 // 1->0 : fc/8 in sets of 6
723 // 0->1 : fc/10 in sets of 5
724 size
= aggregate_bits(dest
,size
, 6,5,5);
728 // final loop, go over previously decoded manchester data and decode into usable tag ID
729 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
730 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
733 while( idx
+ sizeof(frame_marker_mask
) < size
) {
734 // search for a start of frame marker
735 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
736 { // frame marker found
737 idx
+=sizeof(frame_marker_mask
);
739 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
740 { // Keep going until next frame marker (or error)
741 // Shift in a bit. Start by shifting high registers
742 hi2
= (hi2
<<1)|(hi
>>31);
743 hi
= (hi
<<1)|(lo
>>31);
744 //Then, shift in a 0 or one into low
745 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
753 //Dbprintf("Num shifts: %d ", numshifts);
754 // Hopefully, we read a tag and hit upon the next frame marker
755 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
758 Dbprintf("TAG ID: %x%08x%08x (%d)",
759 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
762 Dbprintf("TAG ID: %x%08x (%d)",
763 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
778 DbpString("Stopped");
779 if (ledcontrol
) LED_A_OFF();
782 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
785 for(int i
= 0 ; i
< numbits
; i
++)
787 num
= (num
<< 1) | (*src
);
794 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
796 uint8_t *dest
= (uint8_t *)BigBuf
;
798 size_t size
=0, idx
=0;
799 uint32_t code
=0, code2
=0;
802 while(!BUTTON_PRESS()) {
804 // Configure to go in 125Khz listen mode
805 LFSetupFPGAForADC(0, true);
808 if (ledcontrol
) LED_A_ON();
810 DoAcquisition125k_internal(true);
811 size
= sizeof(BigBuf
);
814 size
= fsk_demod(dest
, size
);
817 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
818 // 1->0 : fc/8 in sets of 7
819 // 0->1 : fc/10 in sets of 6
820 size
= aggregate_bits(dest
, size
, 7,6,13);
825 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
826 for( idx
=0; idx
< size
- 64; idx
++) {
828 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
)) ) continue;
830 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
831 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
832 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
833 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
834 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
835 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
836 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
837 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
839 code
= bytebits_to_byte(dest
+idx
,32);
840 code2
= bytebits_to_byte(dest
+idx
+32,32);
842 short version
= bytebits_to_byte(dest
+idx
+14,4);
843 char unknown
= bytebits_to_byte(dest
+idx
+19,8) ;
844 uint16_t number
= bytebits_to_byte(dest
+idx
+36,9);
846 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
847 if (ledcontrol
) LED_D_OFF();
849 // if we're only looking for one tag
857 DbpString("Stopped");
858 if (ledcontrol
) LED_A_OFF();
861 /*------------------------------
862 * T5555/T5557/T5567 routines
863 *------------------------------
866 /* T55x7 configuration register definitions */
867 #define T55x7_POR_DELAY 0x00000001
868 #define T55x7_ST_TERMINATOR 0x00000008
869 #define T55x7_PWD 0x00000010
870 #define T55x7_MAXBLOCK_SHIFT 5
871 #define T55x7_AOR 0x00000200
872 #define T55x7_PSKCF_RF_2 0
873 #define T55x7_PSKCF_RF_4 0x00000400
874 #define T55x7_PSKCF_RF_8 0x00000800
875 #define T55x7_MODULATION_DIRECT 0
876 #define T55x7_MODULATION_PSK1 0x00001000
877 #define T55x7_MODULATION_PSK2 0x00002000
878 #define T55x7_MODULATION_PSK3 0x00003000
879 #define T55x7_MODULATION_FSK1 0x00004000
880 #define T55x7_MODULATION_FSK2 0x00005000
881 #define T55x7_MODULATION_FSK1a 0x00006000
882 #define T55x7_MODULATION_FSK2a 0x00007000
883 #define T55x7_MODULATION_MANCHESTER 0x00008000
884 #define T55x7_MODULATION_BIPHASE 0x00010000
885 #define T55x7_BITRATE_RF_8 0
886 #define T55x7_BITRATE_RF_16 0x00040000
887 #define T55x7_BITRATE_RF_32 0x00080000
888 #define T55x7_BITRATE_RF_40 0x000C0000
889 #define T55x7_BITRATE_RF_50 0x00100000
890 #define T55x7_BITRATE_RF_64 0x00140000
891 #define T55x7_BITRATE_RF_100 0x00180000
892 #define T55x7_BITRATE_RF_128 0x001C0000
894 /* T5555 (Q5) configuration register definitions */
895 #define T5555_ST_TERMINATOR 0x00000001
896 #define T5555_MAXBLOCK_SHIFT 0x00000001
897 #define T5555_MODULATION_MANCHESTER 0
898 #define T5555_MODULATION_PSK1 0x00000010
899 #define T5555_MODULATION_PSK2 0x00000020
900 #define T5555_MODULATION_PSK3 0x00000030
901 #define T5555_MODULATION_FSK1 0x00000040
902 #define T5555_MODULATION_FSK2 0x00000050
903 #define T5555_MODULATION_BIPHASE 0x00000060
904 #define T5555_MODULATION_DIRECT 0x00000070
905 #define T5555_INVERT_OUTPUT 0x00000080
906 #define T5555_PSK_RF_2 0
907 #define T5555_PSK_RF_4 0x00000100
908 #define T5555_PSK_RF_8 0x00000200
909 #define T5555_USE_PWD 0x00000400
910 #define T5555_USE_AOR 0x00000800
911 #define T5555_BITRATE_SHIFT 12
912 #define T5555_FAST_WRITE 0x00004000
913 #define T5555_PAGE_SELECT 0x00008000
916 * Relevant times in microsecond
917 * To compensate antenna falling times shorten the write times
918 * and enlarge the gap ones.
920 #define START_GAP 250
921 #define WRITE_GAP 160
922 #define WRITE_0 144 // 192
923 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
925 // Write one bit to card
926 void T55xxWriteBit(int bit
)
928 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
929 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
930 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
932 SpinDelayUs(WRITE_0
);
934 SpinDelayUs(WRITE_1
);
935 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
936 SpinDelayUs(WRITE_GAP
);
939 // Write one card block in page 0, no lock
940 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
944 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
945 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
946 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
948 // Give it a bit of time for the resonant antenna to settle.
949 // And for the tag to fully power up
952 // Now start writting
953 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
954 SpinDelayUs(START_GAP
);
958 T55xxWriteBit(0); //Page 0
961 for (i
= 0x80000000; i
!= 0; i
>>= 1)
962 T55xxWriteBit(Pwd
& i
);
968 for (i
= 0x80000000; i
!= 0; i
>>= 1)
969 T55xxWriteBit(Data
& i
);
972 for (i
= 0x04; i
!= 0; i
>>= 1)
973 T55xxWriteBit(Block
& i
);
975 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
976 // so wait a little more)
977 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
978 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
980 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
983 // Read one card block in page 0
984 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
986 uint8_t *dest
= (uint8_t *)BigBuf
;
989 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
991 // Clear destination buffer before sending the command
992 memset(dest
, 128, m
);
993 // Connect the A/D to the peak-detected low-frequency path.
994 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
995 // Now set up the SSC to get the ADC samples that are now streaming at us.
999 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1000 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1002 // Give it a bit of time for the resonant antenna to settle.
1003 // And for the tag to fully power up
1006 // Now start writting
1007 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1008 SpinDelayUs(START_GAP
);
1012 T55xxWriteBit(0); //Page 0
1015 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1016 T55xxWriteBit(Pwd
& i
);
1021 for (i
= 0x04; i
!= 0; i
>>= 1)
1022 T55xxWriteBit(Block
& i
);
1024 // Turn field on to read the response
1025 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1026 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1028 // Now do the acquisition
1031 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1032 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1034 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1035 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1036 // we don't care about actual value, only if it's more or less than a
1037 // threshold essentially we capture zero crossings for later analysis
1038 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1049 // Read card traceability data (page 1)
1050 void T55xxReadTrace(void){
1051 uint8_t *dest
= (uint8_t *)BigBuf
;
1054 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1056 // Clear destination buffer before sending the command
1057 memset(dest
, 128, m
);
1058 // Connect the A/D to the peak-detected low-frequency path.
1059 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1060 // Now set up the SSC to get the ADC samples that are now streaming at us.
1064 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1065 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1067 // Give it a bit of time for the resonant antenna to settle.
1068 // And for the tag to fully power up
1071 // Now start writting
1072 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1073 SpinDelayUs(START_GAP
);
1077 T55xxWriteBit(1); //Page 1
1079 // Turn field on to read the response
1080 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1081 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1083 // Now do the acquisition
1086 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1087 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1089 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1090 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1096 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1101 /*-------------- Cloning routines -----------*/
1102 // Copy HID id to card and setup block 0 config
1103 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1105 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1109 // Ensure no more than 84 bits supplied
1111 DbpString("Tags can only have 84 bits.");
1114 // Build the 6 data blocks for supplied 84bit ID
1116 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1117 for (int i
=0;i
<4;i
++) {
1118 if (hi2
& (1<<(19-i
)))
1119 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1121 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1125 for (int i
=0;i
<16;i
++) {
1126 if (hi2
& (1<<(15-i
)))
1127 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1129 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1133 for (int i
=0;i
<16;i
++) {
1134 if (hi
& (1<<(31-i
)))
1135 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1137 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1141 for (int i
=0;i
<16;i
++) {
1142 if (hi
& (1<<(15-i
)))
1143 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1145 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1149 for (int i
=0;i
<16;i
++) {
1150 if (lo
& (1<<(31-i
)))
1151 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1153 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1157 for (int i
=0;i
<16;i
++) {
1158 if (lo
& (1<<(15-i
)))
1159 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1161 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1165 // Ensure no more than 44 bits supplied
1167 DbpString("Tags can only have 44 bits.");
1171 // Build the 3 data blocks for supplied 44bit ID
1174 data1
= 0x1D000000; // load preamble
1176 for (int i
=0;i
<12;i
++) {
1177 if (hi
& (1<<(11-i
)))
1178 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1180 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1184 for (int i
=0;i
<16;i
++) {
1185 if (lo
& (1<<(31-i
)))
1186 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1188 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1192 for (int i
=0;i
<16;i
++) {
1193 if (lo
& (1<<(15-i
)))
1194 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1196 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1201 // Program the data blocks for supplied ID
1202 // and the block 0 for HID format
1203 T55xxWriteBlock(data1
,1,0,0);
1204 T55xxWriteBlock(data2
,2,0,0);
1205 T55xxWriteBlock(data3
,3,0,0);
1207 if (longFMT
) { // if long format there are 6 blocks
1208 T55xxWriteBlock(data4
,4,0,0);
1209 T55xxWriteBlock(data5
,5,0,0);
1210 T55xxWriteBlock(data6
,6,0,0);
1213 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1214 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1215 T55x7_MODULATION_FSK2a
|
1216 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1224 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1226 int data1
=0, data2
=0; //up to six blocks for long format
1228 data1
= hi
; // load preamble
1232 // Program the data blocks for supplied ID
1233 // and the block 0 for HID format
1234 T55xxWriteBlock(data1
,1,0,0);
1235 T55xxWriteBlock(data2
,2,0,0);
1238 T55xxWriteBlock(0x00147040,0,0,0);
1244 // Define 9bit header for EM410x tags
1245 #define EM410X_HEADER 0x1FF
1246 #define EM410X_ID_LENGTH 40
1248 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1251 uint64_t id
= EM410X_HEADER
;
1252 uint64_t rev_id
= 0; // reversed ID
1253 int c_parity
[4]; // column parity
1254 int r_parity
= 0; // row parity
1257 // Reverse ID bits given as parameter (for simpler operations)
1258 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1260 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1263 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1268 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1269 id_bit
= rev_id
& 1;
1272 // Don't write row parity bit at start of parsing
1274 id
= (id
<< 1) | r_parity
;
1275 // Start counting parity for new row
1282 // First elements in column?
1284 // Fill out first elements
1285 c_parity
[i
] = id_bit
;
1287 // Count column parity
1288 c_parity
[i
% 4] ^= id_bit
;
1291 id
= (id
<< 1) | id_bit
;
1295 // Insert parity bit of last row
1296 id
= (id
<< 1) | r_parity
;
1298 // Fill out column parity at the end of tag
1299 for (i
= 0; i
< 4; ++i
)
1300 id
= (id
<< 1) | c_parity
[i
];
1305 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1309 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1310 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1312 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1314 // Clock rate is stored in bits 8-15 of the card value
1315 clock
= (card
& 0xFF00) >> 8;
1316 Dbprintf("Clock rate: %d", clock
);
1320 clock
= T55x7_BITRATE_RF_32
;
1323 clock
= T55x7_BITRATE_RF_16
;
1326 // A value of 0 is assumed to be 64 for backwards-compatibility
1329 clock
= T55x7_BITRATE_RF_64
;
1332 Dbprintf("Invalid clock rate: %d", clock
);
1336 // Writing configuration for T55x7 tag
1337 T55xxWriteBlock(clock
|
1338 T55x7_MODULATION_MANCHESTER
|
1339 2 << T55x7_MAXBLOCK_SHIFT
,
1343 // Writing configuration for T5555(Q5) tag
1344 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1345 T5555_MODULATION_MANCHESTER
|
1346 2 << T5555_MAXBLOCK_SHIFT
,
1350 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1351 (uint32_t)(id
>> 32), (uint32_t)id
);
1354 // Clone Indala 64-bit tag by UID to T55x7
1355 void CopyIndala64toT55x7(int hi
, int lo
)
1358 //Program the 2 data blocks for supplied 64bit UID
1359 // and the block 0 for Indala64 format
1360 T55xxWriteBlock(hi
,1,0,0);
1361 T55xxWriteBlock(lo
,2,0,0);
1362 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1363 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1364 T55x7_MODULATION_PSK1
|
1365 2 << T55x7_MAXBLOCK_SHIFT
,
1367 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1368 // T5567WriteBlock(0x603E1042,0);
1374 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1377 //Program the 7 data blocks for supplied 224bit UID
1378 // and the block 0 for Indala224 format
1379 T55xxWriteBlock(uid1
,1,0,0);
1380 T55xxWriteBlock(uid2
,2,0,0);
1381 T55xxWriteBlock(uid3
,3,0,0);
1382 T55xxWriteBlock(uid4
,4,0,0);
1383 T55xxWriteBlock(uid5
,5,0,0);
1384 T55xxWriteBlock(uid6
,6,0,0);
1385 T55xxWriteBlock(uid7
,7,0,0);
1386 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1387 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1388 T55x7_MODULATION_PSK1
|
1389 7 << T55x7_MAXBLOCK_SHIFT
,
1391 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1392 // T5567WriteBlock(0x603E10E2,0);
1399 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1400 #define max(x,y) ( x<y ? y:x)
1402 int DemodPCF7931(uint8_t **outBlocks
) {
1403 uint8_t BitStream
[256];
1404 uint8_t Blocks
[8][16];
1405 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1406 int GraphTraceLen
= sizeof(BigBuf
);
1407 int i
, j
, lastval
, bitidx
, half_switch
;
1409 int tolerance
= clock
/ 8;
1410 int pmc
, block_done
;
1411 int lc
, warnings
= 0;
1413 int lmin
=128, lmax
=128;
1416 AcquireRawAdcSamples125k(0);
1423 /* Find first local max/min */
1424 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1425 while(i
< GraphTraceLen
) {
1426 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1433 while(i
< GraphTraceLen
) {
1434 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1446 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1448 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1453 // Switch depending on lc length:
1454 // Tolerance is 1/8 of clock rate (arbitrary)
1455 if (abs(lc
-clock
/4) < tolerance
) {
1457 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1459 i
+= (128+127+16+32+33+16)-1;
1467 } else if (abs(lc
-clock
/2) < tolerance
) {
1469 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1471 i
+= (128+127+16+32+33)-1;
1476 else if(half_switch
== 1) {
1477 BitStream
[bitidx
++] = 0;
1482 } else if (abs(lc
-clock
) < tolerance
) {
1484 BitStream
[bitidx
++] = 1;
1490 Dbprintf("Error: too many detection errors, aborting.");
1495 if(block_done
== 1) {
1497 for(j
=0; j
<16; j
++) {
1498 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1499 64*BitStream
[j
*8+6]+
1500 32*BitStream
[j
*8+5]+
1501 16*BitStream
[j
*8+4]+
1513 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1519 if(num_blocks
== 4) break;
1521 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1525 int IsBlock0PCF7931(uint8_t *Block
) {
1526 // Assume RFU means 0 :)
1527 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1529 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1534 int IsBlock1PCF7931(uint8_t *Block
) {
1535 // Assume RFU means 0 :)
1536 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1537 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1545 void ReadPCF7931() {
1546 uint8_t Blocks
[8][17];
1547 uint8_t tmpBlocks
[4][16];
1548 int i
, j
, ind
, ind2
, n
;
1555 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1558 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1559 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1562 if(error
==10 && num_blocks
== 0) {
1563 Dbprintf("Error, no tag or bad tag");
1566 else if (tries
==20 || error
==10) {
1567 Dbprintf("Error reading the tag");
1568 Dbprintf("Here is the partial content");
1573 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1574 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1575 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1577 for(i
=0; i
<n
; i
++) {
1578 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1580 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1584 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1585 Blocks
[0][ALLOC
] = 1;
1586 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1587 Blocks
[1][ALLOC
] = 1;
1588 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1590 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1592 // Handle following blocks
1593 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1596 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1597 Blocks
[ind2
][ALLOC
] = 1;
1605 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1606 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1607 for(j
=0; j
<max_blocks
; j
++) {
1608 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1609 // Found an identical block
1610 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1613 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1614 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1615 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1616 Blocks
[ind2
][ALLOC
] = 1;
1618 if(num_blocks
== max_blocks
) goto end
;
1621 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1622 if(ind2
> max_blocks
)
1624 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1625 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1626 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1627 Blocks
[ind2
][ALLOC
] = 1;
1629 if(num_blocks
== max_blocks
) goto end
;
1638 if (BUTTON_PRESS()) return;
1639 } while (num_blocks
!= max_blocks
);
1641 Dbprintf("-----------------------------------------");
1642 Dbprintf("Memory content:");
1643 Dbprintf("-----------------------------------------");
1644 for(i
=0; i
<max_blocks
; i
++) {
1645 if(Blocks
[i
][ALLOC
]==1)
1646 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1647 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1648 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1650 Dbprintf("<missing block %d>", i
);
1652 Dbprintf("-----------------------------------------");
1658 //-----------------------------------
1659 // EM4469 / EM4305 routines
1660 //-----------------------------------
1661 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1662 #define FWD_CMD_WRITE 0xA
1663 #define FWD_CMD_READ 0x9
1664 #define FWD_CMD_DISABLE 0x5
1667 uint8_t forwardLink_data
[64]; //array of forwarded bits
1668 uint8_t * forward_ptr
; //ptr for forward message preparation
1669 uint8_t fwd_bit_sz
; //forwardlink bit counter
1670 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1672 //====================================================================
1673 // prepares command bits
1675 //====================================================================
1676 //--------------------------------------------------------------------
1677 uint8_t Prepare_Cmd( uint8_t cmd
) {
1678 //--------------------------------------------------------------------
1680 *forward_ptr
++ = 0; //start bit
1681 *forward_ptr
++ = 0; //second pause for 4050 code
1683 *forward_ptr
++ = cmd
;
1685 *forward_ptr
++ = cmd
;
1687 *forward_ptr
++ = cmd
;
1689 *forward_ptr
++ = cmd
;
1691 return 6; //return number of emited bits
1694 //====================================================================
1695 // prepares address bits
1697 //====================================================================
1699 //--------------------------------------------------------------------
1700 uint8_t Prepare_Addr( uint8_t addr
) {
1701 //--------------------------------------------------------------------
1703 register uint8_t line_parity
;
1708 *forward_ptr
++ = addr
;
1709 line_parity
^= addr
;
1713 *forward_ptr
++ = (line_parity
& 1);
1715 return 7; //return number of emited bits
1718 //====================================================================
1719 // prepares data bits intreleaved with parity bits
1721 //====================================================================
1723 //--------------------------------------------------------------------
1724 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1725 //--------------------------------------------------------------------
1727 register uint8_t line_parity
;
1728 register uint8_t column_parity
;
1729 register uint8_t i
, j
;
1730 register uint16_t data
;
1735 for(i
=0; i
<4; i
++) {
1737 for(j
=0; j
<8; j
++) {
1738 line_parity
^= data
;
1739 column_parity
^= (data
& 1) << j
;
1740 *forward_ptr
++ = data
;
1743 *forward_ptr
++ = line_parity
;
1748 for(j
=0; j
<8; j
++) {
1749 *forward_ptr
++ = column_parity
;
1750 column_parity
>>= 1;
1754 return 45; //return number of emited bits
1757 //====================================================================
1758 // Forward Link send function
1759 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1760 // fwd_bit_count set with number of bits to be sent
1761 //====================================================================
1762 void SendForward(uint8_t fwd_bit_count
) {
1764 fwd_write_ptr
= forwardLink_data
;
1765 fwd_bit_sz
= fwd_bit_count
;
1770 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1771 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1772 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1774 // Give it a bit of time for the resonant antenna to settle.
1775 // And for the tag to fully power up
1778 // force 1st mod pulse (start gap must be longer for 4305)
1779 fwd_bit_sz
--; //prepare next bit modulation
1781 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1782 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1783 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1784 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1785 SpinDelayUs(16*8); //16 cycles on (8us each)
1787 // now start writting
1788 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1789 if(((*fwd_write_ptr
++) & 1) == 1)
1790 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1792 //These timings work for 4469/4269/4305 (with the 55*8 above)
1793 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1794 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1795 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1796 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1797 SpinDelayUs(9*8); //16 cycles on (8us each)
1802 void EM4xLogin(uint32_t Password
) {
1804 uint8_t fwd_bit_count
;
1806 forward_ptr
= forwardLink_data
;
1807 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1808 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1810 SendForward(fwd_bit_count
);
1812 //Wait for command to complete
1817 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1819 uint8_t fwd_bit_count
;
1820 uint8_t *dest
= (uint8_t *)BigBuf
;
1823 //If password mode do login
1824 if (PwdMode
== 1) EM4xLogin(Pwd
);
1826 forward_ptr
= forwardLink_data
;
1827 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1828 fwd_bit_count
+= Prepare_Addr( Address
);
1831 // Clear destination buffer before sending the command
1832 memset(dest
, 128, m
);
1833 // Connect the A/D to the peak-detected low-frequency path.
1834 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1835 // Now set up the SSC to get the ADC samples that are now streaming at us.
1838 SendForward(fwd_bit_count
);
1840 // Now do the acquisition
1843 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1844 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1846 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1847 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1856 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1858 uint8_t fwd_bit_count
;
1860 //If password mode do login
1861 if (PwdMode
== 1) EM4xLogin(Pwd
);
1863 forward_ptr
= forwardLink_data
;
1864 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1865 fwd_bit_count
+= Prepare_Addr( Address
);
1866 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1868 SendForward(fwd_bit_count
);
1870 //Wait for write to complete
1872 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off