1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
12 static struct legic_frame
{
23 static crc_t legic_crc
;
24 static int legic_read_count
;
25 static uint32_t legic_prng_bc
;
26 static uint32_t legic_prng_iv
;
28 static int legic_phase_drift
;
29 static int legic_frame_drift
;
30 static int legic_reqresp_drift
;
36 static void setup_timer(void) {
37 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
38 // this it won't be terribly accurate but should be good enough.
40 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
41 timer = AT91C_BASE_TC1;
42 timer->TC_CCR = AT91C_TC_CLKDIS;
43 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
44 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
47 // Set up Timer 2 to use for measuring time between frames in
48 // tag simulation mode. Runs 4x faster as Timer 1
50 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
51 prng_timer = AT91C_BASE_TC2;
52 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
53 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
54 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
57 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
58 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
61 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
62 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
63 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
64 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
65 AT91C_BASE_TC0->TC_RA = 1;
66 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
70 // At TIMER_CLOCK3 (MCK/32)
71 // testing calculating in (us) microseconds.
72 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
73 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
74 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
75 #define TAG_BIT_PERIOD 143 // 100us == 100 * 1.5 == 150ticks
76 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
78 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
80 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
81 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
83 #define OFFSET_LOG 1024
85 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
88 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
91 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
94 uint32_t sendFrameStop
= 0;
96 // Pause pulse, off in 20us / 30ticks,
97 // ONE / ZERO bit pulse,
98 // one == 80us / 120ticks
99 // zero == 40us / 60ticks
101 # define COIL_PULSE(x) \
104 WaitTicks( (RWD_TIME_PAUSE) ); \
110 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
111 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
112 #define LEGIC_CARD_MEMSIZE 1024
113 static uint8_t* cardmem
;
115 static void frame_append_bit(struct legic_frame
* const f
, uint8_t bit
) {
116 // Overflow, won't happen
117 if (f
->bits
>= 31) return;
119 f
->data
|= (bit
<< f
->bits
);
123 static void frame_clean(struct legic_frame
* const f
) {
128 // Prng works when waiting in 99.1us cycles.
129 // and while sending/receiving in bit frames (100, 60)
130 /*static void CalibratePrng( uint32_t time){
131 // Calculate Cycles based on timer 100us
132 uint32_t i = (time - sendFrameStop) / 100 ;
134 // substract cycles of finished frames
135 int k = i - legic_prng_count()+1;
137 // substract current frame length, rewind to beginning
139 legic_prng_forward(k);
143 /* Generate Keystream */
144 uint32_t get_key_stream(int skip
, int count
) {
148 // Use int to enlarge timer tc to 32bit
149 legic_prng_bc
+= prng_timer
->TC_CV
;
151 // reset the prng timer.
152 ResetTimer(prng_timer
);
154 /* If skip == -1, forward prng time based */
156 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
157 i
-= legic_prng_count(); /* substract cycles of finished frames */
158 i
-= count
; /* substract current frame length, rewind to beginning */
159 legic_prng_forward(i
);
161 legic_prng_forward(skip
);
164 i
= (count
== 6) ? -1 : legic_read_count
;
166 /* Write Time Data into LOG */
167 // uint8_t *BigBuf = BigBuf_get_addr();
168 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
169 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
170 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
171 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
172 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
173 // BigBuf[OFFSET_LOG+384+i] = count;
175 /* Generate KeyStream */
176 for(i
=0; i
<count
; i
++) {
177 key
|= legic_prng_get_bit() << i
;
178 legic_prng_forward(1);
183 /* Send a frame in tag mode, the FPGA must have been set up by
186 void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) {
187 /* Bitbang the response */
189 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
190 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
192 /* Use time to crypt frame */
194 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
195 response
^= legic_prng_get_bits(bits
);
198 /* Wait for the frame start */
199 WaitUS( TAG_FRAME_WAIT
);
202 for(int i
= 0; i
< bits
; i
++) {
217 /* Send a frame in reader mode, the FPGA must have been set up by
220 void frame_sendAsReader(uint32_t data
, uint8_t bits
){
222 uint32_t starttime
= GET_TICKS
, send
= 0;
224 uint8_t prngstart
= legic_prng_count() ;
226 // xor lsfr onto data.
227 send
= data
^ legic_prng_get_bits(bits
);
229 for (; mask
< BITMASK(bits
); mask
<<= 1) {
231 COIL_PULSE(RWD_TIME_1
);
233 COIL_PULSE(RWD_TIME_0
);
237 // Final pause to mark the end of the frame
240 sendFrameStop
= GET_TICKS
;
241 uint8_t cmdbytes
[] = {
250 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, sendFrameStop
, NULL
, TRUE
);
253 /* Receive a frame from the card in reader emulation mode, the FPGA and
254 * timer must have been set up by LegicRfReader and frame_sendAsReader.
256 * The LEGIC RF protocol from card to reader does not include explicit
257 * frame start/stop information or length information. The reader must
258 * know beforehand how many bits it wants to receive. (Notably: a card
259 * sending a stream of 0-bits is indistinguishable from no card present.)
261 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
262 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
263 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
264 * for edges. Count the edges in each bit interval. If they are approximately
265 * 0 this was a 0-bit, if they are approximately equal to the number of edges
266 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
267 * timer that's still running from frame_sendAsReader in order to get a synchronization
268 * with the frame that we just sent.
270 * FIXME: Because we're relying on the hysteresis to just do the right thing
271 * the range is severely reduced (and you'll probably also need a good antenna).
272 * So this should be fixed some time in the future for a proper receiver.
274 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
277 if ( bits
> 32 ) return;
279 uint8_t i
= bits
, edges
= 0;
281 uint32_t the_bit
= 1, next_bit_at
= 0, data
= 0;
283 int old_level
= 0, level
= 0;
285 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
286 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
288 // calibrate the prng.
289 legic_prng_forward(2);
290 uint8_t prngstart
= legic_prng_count() ;
291 data
= lsfr
= legic_prng_get_bits(bits
);
293 //FIXED time between sending frame and now listening frame. 330us
294 // 387 = 0x19 0001 1001
295 uint32_t starttime
= GET_TICKS
;
296 //uint16_t mywait = TAG_FRAME_WAIT - (starttime - sendFrameStop);
297 //uint16_t mywait = 495 - (starttime - sendFrameStop);
299 //WaitTicks( 495 - 9 - 9 );
302 //Dbprintf("x WAIT %d", mywait );
303 //WaitTicks( mywait );
307 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
311 while ( GET_TICKS
< next_bit_at
) {
313 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
315 if (level
!= old_level
)
321 next_bit_at
+= TAG_BIT_PERIOD
;
323 // We expect 42 edges == ONE
324 //if (edges > 20 && edges < 64)
335 uint8_t cmdbytes
[] = {
339 BYTEx(data
, 0) ^ BYTEx(lsfr
, 0),
340 BYTEx(data
, 1) ^ BYTEx(lsfr
, 1),
344 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, FALSE
);
347 // Setup pm3 as a Legic Reader
348 static uint32_t setup_phase_reader(uint8_t iv
) {
350 // Switch on carrier and let the tag charge for 1ms
360 frame_sendAsReader(iv
, 7);
362 // Now both tag and reader has same IV. Prng can start.
365 frame_receiveAsReader(¤t_frame
, 6);
367 // 292us (438t) - fixed delay before sending ack.
368 // minus log and stuff 100tick?
370 legic_prng_forward(3);
372 // Send obsfuscated acknowledgment frame.
373 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
374 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
375 switch ( current_frame
.data
) {
376 case 0x0D: frame_sendAsReader(0x19, 6); break;
378 case 0x3D: frame_sendAsReader(0x39, 6); break;
382 legic_prng_forward(2);
383 return current_frame
.data
;
386 static void LegicCommonInit(void) {
388 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
389 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
390 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
392 /* Bitbang the transmitter */
394 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
395 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
397 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
398 cardmem
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
);
399 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
403 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
408 // Switch off carrier, make sure tag is reset
409 static void switch_off_tag_rwd(void) {
415 // calculate crc4 for a legic READ command
416 // 5,8,10 address size.
417 static uint32_t legic4Crc(uint8_t legicCmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
418 crc_clear(&legic_crc
);
419 //uint32_t temp = (value << cmd_sz) | (byte_index << 1) | legicCmd;
420 //crc_update(&legic_crc, temp, cmd_sz + 8 );
421 crc_update(&legic_crc
, 1, 1); /* CMD_READ */
422 crc_update(&legic_crc
, byte_index
, cmd_sz
-1);
423 crc_update(&legic_crc
, value
, 8);
424 return crc_finish(&legic_crc
);
427 int legic_read_byte(int byte_index
, int cmd_sz
) {
429 uint8_t byte
= 0, crc
= 0, calcCrc
= 0;
430 uint32_t cmd
= (byte_index
<< 1) | LEGIC_READ
;
438 frame_sendAsReader(cmd
, cmd_sz
);
439 frame_receiveAsReader(¤t_frame
, 12);
441 byte
= BYTEx(current_frame
.data
, 0);
443 calcCrc
= legic4Crc(LEGIC_READ
, byte_index
, byte
, cmd_sz
);
444 crc
= BYTEx(current_frame
.data
, 1);
446 if( calcCrc
!= crc
) {
447 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
451 legic_prng_forward(4);
457 * - assemble a write_cmd_frame with crc and send it
458 * - wait until the tag sends back an ACK ('1' bit unencrypted)
459 * - forward the prng based on the timing
461 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
462 int legic_write_byte(uint8_t byte
, uint16_t addr
, uint8_t addr_sz
) {
464 //do not write UID, CRC at offset 0-4.
465 if (addr
<= 4) return 0;
468 crc_clear(&legic_crc
);
469 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
470 crc_update(&legic_crc
, addr
, addr_sz
);
471 crc_update(&legic_crc
, byte
, 8);
472 uint32_t crc
= crc_finish(&legic_crc
);
474 uint32_t crc2
= legic4Crc(LEGIC_WRITE
, addr
, byte
, addr_sz
+1);
476 Dbprintf("crc is missmatch");
478 // send write command
479 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
480 |(byte
<<(addr_sz
+1)) //Data
481 |(addr
<<1) //Address
482 | LEGIC_WRITE
); //CMD = Write
484 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
486 legic_prng_forward(2); /* we wait anyways */
488 WaitUS(TAG_FRAME_WAIT
);
490 frame_sendAsReader(cmd
, cmd_sz
);
492 // wllm-rbnt doesnt have these
493 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
494 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
497 int t
, old_level
= 0, edges
= 0;
500 WaitUS(TAG_FRAME_WAIT
);
502 for( t
= 0; t
< 80; ++t
) {
504 next_bit_at
+= TAG_BIT_PERIOD
;
505 while(timer
->TC_CV
< next_bit_at
) {
506 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
507 if(level
!= old_level
)
512 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
513 int t
= timer
->TC_CV
;
514 int c
= t
/ TAG_BIT_PERIOD
;
517 legic_prng_forward(c
);
526 int LegicRfReader(int offset
, int bytes
, int iv
) {
528 uint16_t byte_index
= 0;
529 uint8_t cmd_sz
= 0, isOK
= 1;
534 uint32_t tag_type
= setup_phase_reader(iv
);
536 switch_off_tag_rwd();
540 if ( MF_DBGLEVEL
>= 2) DbpString("MIM22 card found, reading card");
545 if ( MF_DBGLEVEL
>= 2) DbpString("MIM256 card found, reading card");
550 if ( MF_DBGLEVEL
>= 2) DbpString("MIM1024 card found, reading card");
555 if ( MF_DBGLEVEL
>= 1) Dbprintf("Unknown card format: %x", tag_type
);
563 if (bytes
+ offset
>= card_sz
)
564 bytes
= card_sz
- offset
;
566 // Start setup and read bytes.
567 setup_phase_reader(iv
);
570 while (byte_index
< bytes
) {
571 int r
= legic_read_byte(byte_index
+ offset
, cmd_sz
);
573 if (r
== -1 || BUTTON_PRESS()) {
574 if ( MF_DBGLEVEL
>= 3) DbpString("operation aborted");
578 cardmem
[++byte_index
] = r
;
584 switch_off_tag_rwd();
586 uint8_t len
= (bytes
& 0x3FF);
587 cmd_send(CMD_ACK
,isOK
,len
,0,cardmem
,len
);
591 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
595 setup_phase_reader(iv);
596 //legic_prng_forward(2);
597 while(byte_index < bytes) {
600 //check if the DCF should be changed
601 if ( (offset == 0x05) && (bytes == 0x02) ) {
602 //write DCF in reverse order (addr 0x06 before 0x05)
603 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
604 //legic_prng_forward(1);
607 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
609 //legic_prng_forward(1);
612 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
614 if((r != 0) || BUTTON_PRESS()) {
615 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
616 switch_off_tag_rwd();
624 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
628 DbpString("write successful");
632 void LegicRfWriter(int offset
, int bytes
, int iv
) {
634 int byte_index
= 0, addr_sz
= 0;
638 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
640 uint32_t tag_type
= setup_phase_reader(iv
);
642 switch_off_tag_rwd();
646 if(offset
+bytes
> 22) {
647 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+ bytes
);
651 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
654 if(offset
+bytes
> 0x100) {
655 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+ bytes
);
659 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
662 if(offset
+bytes
> 0x400) {
663 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+ bytes
);
667 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+ bytes
);
670 Dbprintf("No or unknown card found, aborting");
675 setup_phase_reader(iv
);
677 while(byte_index
< bytes
) {
679 //check if the DCF should be changed
680 if ( ((byte_index
+offset
) == 0x05) && (bytes
>= 0x02) ) {
681 //write DCF in reverse order (addr 0x06 before 0x05)
682 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
684 // write second byte on success...
687 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
691 r
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
);
694 if ((r
!= 0) || BUTTON_PRESS()) {
695 Dbprintf("operation aborted @ 0x%03.3x", byte_index
);
696 switch_off_tag_rwd();
705 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
708 void LegicRfRawWriter(int address
, int byte
, int iv
) {
710 int byte_index
= 0, addr_sz
= 0;
714 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
716 uint32_t tag_type
= setup_phase_reader(iv
);
718 switch_off_tag_rwd();
723 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
);
727 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
730 if(address
> 0x100) {
731 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
);
735 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
738 if(address
> 0x400) {
739 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
);
743 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
);
746 Dbprintf("No or unknown card found, aborting");
750 Dbprintf("integer value: %d address: %d addr_sz: %d", byte
, address
, addr_sz
);
753 setup_phase_reader(iv
);
755 int r
= legic_write_byte(byte
, address
, addr_sz
);
757 if((r
!= 0) || BUTTON_PRESS()) {
758 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
);
759 switch_off_tag_rwd();
765 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
768 void LegicRfInfo(void){
771 uint32_t tag_type
= setup_phase_reader(0x1);
773 uint16_t card_sz
= 0;
789 cmd_send(CMD_ACK
,0,0,0,0,0);
794 uint8_t uid
[] = {0,0,0,0};
795 for ( uint8_t i
= 0; i
< sizeof(uid
); ++i
) {
796 int r
= legic_read_byte(i
, cmd_sz
);
798 cmd_send(CMD_ACK
,0,0,0,0,0);
804 cmd_send(CMD_ACK
,1,card_sz
,0,uid
,sizeof(uid
));
806 switch_off_tag_rwd();
811 /* Handle (whether to respond) a frame in tag mode
812 * Only called when simulating a tag.
814 static void frame_handle_tag(struct legic_frame
const * const f
)
816 uint8_t *BigBuf
= BigBuf_get_addr();
818 /* First Part of Handshake (IV) */
824 ResetTimer(prng_timer
);
826 legic_prng_init(f
->data
);
827 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
828 legic_state
= STATE_IV
;
829 legic_read_count
= 0;
831 legic_prng_iv
= f
->data
;
840 if(legic_state
== STATE_IV
) {
841 int local_key
= get_key_stream(3, 6);
842 int xored
= 0x39 ^ local_key
;
843 if((f
->bits
== 6) && (f
->data
== xored
)) {
844 legic_state
= STATE_CON
;
851 legic_state
= STATE_DISCON
;
853 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
860 if(legic_state
== STATE_CON
) {
861 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
862 int addr
= f
->data
^ key
; addr
= addr
>> 1;
863 int data
= BigBuf
[addr
];
864 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
865 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
868 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
869 legic_prng_forward(legic_reqresp_drift
);
871 frame_send_tag(hash
| data
, 12, 1);
874 legic_prng_forward(2);
882 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
883 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
884 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
887 legic_state
= STATE_DISCON
;
889 Dbprintf("write - addr: %x, data: %x", addr
, data
);
893 if(legic_state
!= STATE_DISCON
) {
894 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
896 Dbprintf("IV: %03.3x", legic_prng_iv
);
897 for(i
= 0; i
<legic_read_count
; i
++) {
898 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
901 for(i
= -1; i
<legic_read_count
; i
++) {
903 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
904 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
905 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
906 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
908 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
909 BigBuf
[OFFSET_LOG
+128+i
],
910 BigBuf
[OFFSET_LOG
+384+i
],
914 legic_state
= STATE_DISCON
;
915 legic_read_count
= 0;
921 /* Read bit by bit untill full frame is received
922 * Call to process frame end answer
924 static void emit(int bit
) {
928 frame_append_bit(¤t_frame
, 1);
931 frame_append_bit(¤t_frame
, 0);
934 if(current_frame
.bits
<= 4) {
935 frame_clean(¤t_frame
);
937 frame_handle_tag(¤t_frame
);
938 frame_clean(¤t_frame
);
945 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
947 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
948 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
949 * envelope waveform on DIN and should send our response on DOUT.
951 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
952 * measure the time between two rising edges on DIN, and no encoding on the
953 * subcarrier from card to reader, so we'll just shift out our verbatim data
954 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
955 * seems to be 300us-ish.
958 legic_phase_drift
= phase
;
959 legic_frame_drift
= frame
;
960 legic_reqresp_drift
= reqresp
;
962 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
963 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
965 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
967 /* Bitbang the receiver */
968 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
969 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
972 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
976 legic_state
= STATE_DISCON
;
979 DbpString("Starting Legic emulator, press button to end");
981 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
982 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
983 int time
= timer
->TC_CV
;
985 if(level
!= old_level
) {
987 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
989 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
994 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
1009 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
1015 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
1016 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
1022 if ( MF_DBGLEVEL
>= 1) DbpString("Stopped");
1026 //-----------------------------------------------------------------------------
1027 // Code up a string of octets at layer 2 (including CRC, we don't generate
1028 // that here) so that they can be transmitted to the reader. Doesn't transmit
1029 // them yet, just leaves them ready to send in ToSend[].
1030 //-----------------------------------------------------------------------------
1031 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
1037 // // Transmit a burst of ones, as the initial thing that lets the
1038 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1039 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1040 // // so I will too.
1041 // for(i = 0; i < 20; i++) {
1042 // ToSendStuffBit(1);
1043 // ToSendStuffBit(1);
1044 // ToSendStuffBit(1);
1045 // ToSendStuffBit(1);
1049 // for(i = 0; i < 10; i++) {
1050 // ToSendStuffBit(0);
1051 // ToSendStuffBit(0);
1052 // ToSendStuffBit(0);
1053 // ToSendStuffBit(0);
1055 // for(i = 0; i < 2; i++) {
1056 // ToSendStuffBit(1);
1057 // ToSendStuffBit(1);
1058 // ToSendStuffBit(1);
1059 // ToSendStuffBit(1);
1062 // for(i = 0; i < len; i++) {
1064 // uint8_t b = cmd[i];
1067 // ToSendStuffBit(0);
1068 // ToSendStuffBit(0);
1069 // ToSendStuffBit(0);
1070 // ToSendStuffBit(0);
1073 // for(j = 0; j < 8; j++) {
1075 // ToSendStuffBit(1);
1076 // ToSendStuffBit(1);
1077 // ToSendStuffBit(1);
1078 // ToSendStuffBit(1);
1080 // ToSendStuffBit(0);
1081 // ToSendStuffBit(0);
1082 // ToSendStuffBit(0);
1083 // ToSendStuffBit(0);
1089 // ToSendStuffBit(1);
1090 // ToSendStuffBit(1);
1091 // ToSendStuffBit(1);
1092 // ToSendStuffBit(1);
1096 // for(i = 0; i < 10; i++) {
1097 // ToSendStuffBit(0);
1098 // ToSendStuffBit(0);
1099 // ToSendStuffBit(0);
1100 // ToSendStuffBit(0);
1102 // for(i = 0; i < 2; i++) {
1103 // ToSendStuffBit(1);
1104 // ToSendStuffBit(1);
1105 // ToSendStuffBit(1);
1106 // ToSendStuffBit(1);
1109 // // Convert from last byte pos to length
1113 //-----------------------------------------------------------------------------
1114 // The software UART that receives commands from the reader, and its state
1116 //-----------------------------------------------------------------------------
1121 STATE_GOT_FALLING_EDGE_OF_SOF,
1122 STATE_AWAITING_START_BIT,
1123 STATE_RECEIVING_DATA
1133 /* Receive & handle a bit coming from the reader.
1135 * This function is called 4 times per bit (every 2 subcarrier cycles).
1136 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1139 * LED A -> ON once we have received the SOF and are expecting the rest.
1140 * LED A -> OFF once we have received EOF or are in error state or unsynced
1142 * Returns: true if we received a EOF
1143 * false if we are still waiting for some more
1145 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1147 // switch(Uart.state) {
1148 // case STATE_UNSYNCD:
1150 // // we went low, so this could be the beginning of an SOF
1151 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1157 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1159 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1161 // if(Uart.bitCnt > 9) {
1162 // // we've seen enough consecutive
1163 // // zeros that it's a valid SOF
1165 // Uart.byteCnt = 0;
1166 // Uart.state = STATE_AWAITING_START_BIT;
1167 // LED_A_ON(); // Indicate we got a valid SOF
1169 // // didn't stay down long enough
1170 // // before going high, error
1171 // Uart.state = STATE_UNSYNCD;
1174 // // do nothing, keep waiting
1178 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1179 // if(Uart.bitCnt > 12) {
1180 // // Give up if we see too many zeros without
1183 // Uart.state = STATE_UNSYNCD;
1187 // case STATE_AWAITING_START_BIT:
1190 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1191 // // stayed high for too long between
1192 // // characters, error
1193 // Uart.state = STATE_UNSYNCD;
1196 // // falling edge, this starts the data byte
1199 // Uart.shiftReg = 0;
1200 // Uart.state = STATE_RECEIVING_DATA;
1204 // case STATE_RECEIVING_DATA:
1206 // if(Uart.posCnt == 2) {
1207 // // time to sample a bit
1208 // Uart.shiftReg >>= 1;
1210 // Uart.shiftReg |= 0x200;
1214 // if(Uart.posCnt >= 4) {
1217 // if(Uart.bitCnt == 10) {
1218 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1220 // // this is a data byte, with correct
1221 // // start and stop bits
1222 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1225 // if(Uart.byteCnt >= Uart.byteCntMax) {
1226 // // Buffer overflowed, give up
1228 // Uart.state = STATE_UNSYNCD;
1230 // // so get the next byte now
1232 // Uart.state = STATE_AWAITING_START_BIT;
1234 // } else if (Uart.shiftReg == 0x000) {
1235 // // this is an EOF byte
1236 // LED_A_OFF(); // Finished receiving
1237 // Uart.state = STATE_UNSYNCD;
1238 // if (Uart.byteCnt != 0) {
1242 // // this is an error
1244 // Uart.state = STATE_UNSYNCD;
1251 // Uart.state = STATE_UNSYNCD;
1259 static void UartReset() {
1260 Uart.byteCntMax = 3;
1261 Uart.state = STATE_UNSYNCD;
1265 memset(Uart.output, 0x00, 3);
1268 // static void UartInit(uint8_t *data) {
1269 // Uart.output = data;
1273 //=============================================================================
1274 // An LEGIC reader. We take layer two commands, code them
1275 // appropriately, and then send them to the tag. We then listen for the
1276 // tag's response, which we leave in the buffer to be demodulated on the
1278 //=============================================================================
1283 DEMOD_PHASE_REF_TRAINING,
1284 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1285 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1286 DEMOD_AWAITING_START_BIT,
1287 DEMOD_RECEIVING_DATA
1300 * Handles reception of a bit from the tag
1302 * This function is called 2 times per bit (every 4 subcarrier cycles).
1303 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1306 * LED C -> ON once we have received the SOF and are expecting the rest.
1307 * LED C -> OFF once we have received EOF or are unsynced
1309 * Returns: true if we received a EOF
1310 * false if we are still waiting for some more
1315 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1320 int halfci = (ai >> 1);
1321 int halfcq = (aq >> 1);
1323 switch(Demod.state) {
1326 CHECK_FOR_SUBCARRIER()
1328 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1329 Demod.state = DEMOD_PHASE_REF_TRAINING;
1336 case DEMOD_PHASE_REF_TRAINING:
1337 if(Demod.posCount < 8) {
1339 CHECK_FOR_SUBCARRIER()
1341 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1342 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1343 // note: synchronization time > 80 1/fs
1349 Demod.state = DEMOD_UNSYNCD;
1352 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1356 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1358 MAKE_SOFT_DECISION()
1360 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1361 // logic '0' detected
1364 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1366 // start of SOF sequence
1369 // maximum length of TR1 = 200 1/fs
1370 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1375 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1378 MAKE_SOFT_DECISION()
1381 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1382 if(Demod.posCount < 10*2) {
1383 Demod.state = DEMOD_UNSYNCD;
1385 LED_C_ON(); // Got SOF
1386 Demod.state = DEMOD_AWAITING_START_BIT;
1391 // low phase of SOF too long (> 12 etu)
1392 if(Demod.posCount > 13*2) {
1393 Demod.state = DEMOD_UNSYNCD;
1399 case DEMOD_AWAITING_START_BIT:
1402 MAKE_SOFT_DECISION()
1405 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1406 if(Demod.posCount > 3*2) {
1407 Demod.state = DEMOD_UNSYNCD;
1411 // start bit detected
1413 Demod.posCount = 1; // this was the first half
1416 Demod.state = DEMOD_RECEIVING_DATA;
1420 case DEMOD_RECEIVING_DATA:
1422 MAKE_SOFT_DECISION()
1424 if(Demod.posCount == 0) {
1425 // first half of bit
1429 // second half of bit
1431 Demod.shiftReg >>= 1;
1433 if(Demod.thisBit > 0)
1434 Demod.shiftReg |= 0x200;
1438 if(Demod.bitCount == 10) {
1440 uint16_t s = Demod.shiftReg;
1442 if((s & 0x200) && !(s & 0x001)) {
1443 // stop bit == '1', start bit == '0'
1444 uint8_t b = (s >> 1);
1445 Demod.output[Demod.len] = b;
1447 Demod.state = DEMOD_AWAITING_START_BIT;
1449 Demod.state = DEMOD_UNSYNCD;
1453 // This is EOF (start, stop and all data bits == '0'
1463 Demod.state = DEMOD_UNSYNCD;
1471 // Clear out the state of the "UART" that receives from the tag.
1472 static void DemodReset() {
1474 Demod.state = DEMOD_UNSYNCD;
1481 memset(Demod.output, 0x00, 3);
1484 static void DemodInit(uint8_t *data) {
1485 Demod.output = data;
1491 * Demodulate the samples we received from the tag, also log to tracebuffer
1492 * quiet: set to 'TRUE' to disable debug output
1496 #define LEGIC_DMA_BUFFER_SIZE 256
1498 static void GetSamplesForLegicDemod(int n, bool quiet)
1501 bool gotFrame = FALSE;
1502 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1503 int ci, cq, samples = 0;
1507 // And put the FPGA in the appropriate mode
1508 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1510 // The response (tag -> reader) that we're receiving.
1511 // Set up the demodulator for tag -> reader responses.
1512 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1514 // The DMA buffer, used to stream samples from the FPGA
1515 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1516 int8_t *upTo = dmaBuf;
1518 // Setup and start DMA.
1519 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1520 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1524 // Signal field is ON with the appropriate LED:
1527 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1528 if(behindBy > max) max = behindBy;
1530 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1534 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1536 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1537 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1540 if(lastRxCounter <= 0)
1541 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1545 gotFrame = HandleLegicSamplesDemod(ci , cq );
1550 if(samples > n || gotFrame)
1554 FpgaDisableSscDma();
1556 if (!quiet && Demod.len == 0) {
1557 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1568 if (Demod.len > 0) {
1569 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1570 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1576 //-----------------------------------------------------------------------------
1577 // Transmit the command (to the tag) that was placed in ToSend[].
1578 //-----------------------------------------------------------------------------
1580 static void TransmitForLegic(void)
1586 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1587 AT91C_BASE_SSC->SSC_THR = 0xff;
1589 // Signal field is ON with the appropriate Red LED
1592 // Signal we are transmitting with the Green LED
1594 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1596 for(c = 0; c < 10;) {
1597 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1598 AT91C_BASE_SSC->SSC_THR = 0xff;
1601 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1602 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1610 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1611 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1612 legic_prng_forward(1); // forward the lfsr
1614 if(c >= ToSendMax) {
1618 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1619 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1628 //-----------------------------------------------------------------------------
1629 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1630 // so that it is ready to transmit to the tag using TransmitForLegic().
1631 //-----------------------------------------------------------------------------
1633 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1641 for(i = 0; i < 7; i++)
1645 for(i = 0; i < cmdlen; i++) {
1651 for(j = 0; j < bits; j++) {
1661 // Convert from last character reference to length
1666 Convenience function to encode, transmit and trace Legic comms
1669 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1671 CodeLegicBitsAsReader(cmd, cmdlen, bits);
1674 uint8_t parity[1] = {0x00};
1675 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
1680 // Set up LEGIC communication
1682 void ice_legic_setup() {
1685 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1686 BigBuf_free(); BigBuf_Clear_ext(false);
1692 // Set up the synchronous serial port
1695 // connect Demodulated Signal to ADC:
1696 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1698 // Signal field is on with the appropriate LED
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1703 //StartCountSspClk();
1706 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);