]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
d354486145b4accf72ff97debb6064a4fa3bebc8
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18
19 #include <stdarg.h>
20
21 #include "legicrf.h"
22
23 #ifdef WITH_LCD
24 # include "fonts.h"
25 # include "LCD.h"
26 #endif
27
28 #define abs(x) ( ((x)<0) ? -(x) : (x) )
29
30 //=============================================================================
31 // A buffer where we can queue things up to be sent through the FPGA, for
32 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
33 // is the order in which they go out on the wire.
34 //=============================================================================
35
36 uint8_t ToSend[512];
37 int ToSendMax;
38 static int ToSendBit;
39 struct common_area common_area __attribute__((section(".commonarea")));
40
41 void BufferClear(void)
42 {
43 memset(BigBuf,0,sizeof(BigBuf));
44 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
45 }
46
47 void ToSendReset(void)
48 {
49 ToSendMax = -1;
50 ToSendBit = 8;
51 }
52
53 void ToSendStuffBit(int b)
54 {
55 if(ToSendBit >= 8) {
56 ToSendMax++;
57 ToSend[ToSendMax] = 0;
58 ToSendBit = 0;
59 }
60
61 if(b) {
62 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
63 }
64
65 ToSendBit++;
66
67 if(ToSendBit >= sizeof(ToSend)) {
68 ToSendBit = 0;
69 DbpString("ToSendStuffBit overflowed!");
70 }
71 }
72
73 //=============================================================================
74 // Debug print functions, to go out over USB, to the usual PC-side client.
75 //=============================================================================
76
77 void DbpString(char *str)
78 {
79 /* this holds up stuff unless we're connected to usb */
80 if (!UsbConnected())
81 return;
82
83 UsbCommand c;
84 c.cmd = CMD_DEBUG_PRINT_STRING;
85 c.arg[0] = strlen(str);
86 if(c.arg[0] > sizeof(c.d.asBytes)) {
87 c.arg[0] = sizeof(c.d.asBytes);
88 }
89 memcpy(c.d.asBytes, str, c.arg[0]);
90
91 UsbSendPacket((uint8_t *)&c, sizeof(c));
92 // TODO fix USB so stupid things like this aren't req'd
93 SpinDelay(50);
94 }
95
96 #if 0
97 void DbpIntegers(int x1, int x2, int x3)
98 {
99 /* this holds up stuff unless we're connected to usb */
100 if (!UsbConnected())
101 return;
102
103 UsbCommand c;
104 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
105 c.arg[0] = x1;
106 c.arg[1] = x2;
107 c.arg[2] = x3;
108
109 UsbSendPacket((uint8_t *)&c, sizeof(c));
110 // XXX
111 SpinDelay(50);
112 }
113 #endif
114
115 void Dbprintf(const char *fmt, ...) {
116 // should probably limit size here; oh well, let's just use a big buffer
117 char output_string[128];
118 va_list ap;
119
120 va_start(ap, fmt);
121 kvsprintf(fmt, output_string, 10, ap);
122 va_end(ap);
123
124 DbpString(output_string);
125 }
126
127 // prints HEX & ASCII
128 void Dbhexdump(int len, uint8_t *d) {
129 int l=0,i;
130 char ascii[9];
131
132 while (len>0) {
133 if (len>8) l=8;
134 else l=len;
135
136 memcpy(ascii,d,l);
137 ascii[l]=0;
138
139 // filter safe ascii
140 for (i=0;i<l;i++)
141 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
142
143 Dbprintf("%-8s %*D",ascii,l,d," ");
144
145 len-=8;
146 d+=8;
147 }
148 }
149
150 //-----------------------------------------------------------------------------
151 // Read an ADC channel and block till it completes, then return the result
152 // in ADC units (0 to 1023). Also a routine to average 32 samples and
153 // return that.
154 //-----------------------------------------------------------------------------
155 static int ReadAdc(int ch)
156 {
157 uint32_t d;
158
159 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
160 AT91C_BASE_ADC->ADC_MR =
161 ADC_MODE_PRESCALE(32) |
162 ADC_MODE_STARTUP_TIME(16) |
163 ADC_MODE_SAMPLE_HOLD_TIME(8);
164 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
165
166 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
167 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
168 ;
169 d = AT91C_BASE_ADC->ADC_CDR[ch];
170
171 return d;
172 }
173
174 int AvgAdc(int ch) // was static - merlok
175 {
176 int i;
177 int a = 0;
178
179 for(i = 0; i < 32; i++) {
180 a += ReadAdc(ch);
181 }
182
183 return (a + 15) >> 5;
184 }
185
186 void MeasureAntennaTuning(void)
187 {
188 uint8_t *dest = (uint8_t *)BigBuf;
189 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
190 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
191
192 UsbCommand c;
193
194 DbpString("Measuring antenna characteristics, please wait.");
195 memset(BigBuf,0,sizeof(BigBuf));
196
197 /*
198 * Sweeps the useful LF range of the proxmark from
199 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
200 * read the voltage in the antenna, the result left
201 * in the buffer is a graph which should clearly show
202 * the resonating frequency of your LF antenna
203 * ( hopefully around 95 if it is tuned to 125kHz!)
204 */
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
206 for (i=255; i>19; i--) {
207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
208 SpinDelay(20);
209 // Vref = 3.3V, and a 10000:240 voltage divider on the input
210 // can measure voltages up to 137500 mV
211 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
212 if (i==95) vLf125 = adcval; // voltage at 125Khz
213 if (i==89) vLf134 = adcval; // voltage at 134Khz
214
215 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
216 if(dest[i] > peak) {
217 peakv = adcval;
218 peak = dest[i];
219 peakf = i;
220 //ptr = i;
221 }
222 }
223
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
226 SpinDelay(20);
227 // Vref = 3300mV, and an 10:1 voltage divider on the input
228 // can measure voltages up to 33000 mV
229 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
230
231 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
232 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
233 c.arg[1] = vHf;
234 c.arg[2] = peakf | (peakv << 16);
235 UsbSendPacket((uint8_t *)&c, sizeof(c));
236 }
237
238 void MeasureAntennaTuningHf(void)
239 {
240 int vHf = 0; // in mV
241
242 DbpString("Measuring HF antenna, press button to exit");
243
244 for (;;) {
245 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
247 SpinDelay(20);
248 // Vref = 3300mV, and an 10:1 voltage divider on the input
249 // can measure voltages up to 33000 mV
250 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
251
252 Dbprintf("%d mV",vHf);
253 if (BUTTON_PRESS()) break;
254 }
255 DbpString("cancelled");
256 }
257
258
259 void SimulateTagHfListen(void)
260 {
261 uint8_t *dest = (uint8_t *)BigBuf;
262 int n = sizeof(BigBuf);
263 uint8_t v = 0;
264 int i;
265 int p = 0;
266
267 // We're using this mode just so that I can test it out; the simulated
268 // tag mode would work just as well and be simpler.
269 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
270
271 // We need to listen to the high-frequency, peak-detected path.
272 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
273
274 FpgaSetupSsc();
275
276 i = 0;
277 for(;;) {
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
279 AT91C_BASE_SSC->SSC_THR = 0xff;
280 }
281 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
282 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
283
284 v <<= 1;
285 if(r & 1) {
286 v |= 1;
287 }
288 p++;
289
290 if(p >= 8) {
291 dest[i] = v;
292 v = 0;
293 p = 0;
294 i++;
295
296 if(i >= n) {
297 break;
298 }
299 }
300 }
301 }
302 DbpString("simulate tag (now type bitsamples)");
303 }
304
305 void ReadMem(int addr)
306 {
307 const uint8_t *data = ((uint8_t *)addr);
308
309 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
310 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
311 }
312
313 /* osimage version information is linked in */
314 extern struct version_information version_information;
315 /* bootrom version information is pointed to from _bootphase1_version_pointer */
316 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
317 void SendVersion(void)
318 {
319 char temp[48]; /* Limited data payload in USB packets */
320 DbpString("Prox/RFID mark3 RFID instrument");
321
322 /* Try to find the bootrom version information. Expect to find a pointer at
323 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
324 * pointer, then use it.
325 */
326 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
327 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
328 DbpString("bootrom version information appears invalid");
329 } else {
330 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
331 DbpString(temp);
332 }
333
334 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
335 DbpString(temp);
336
337 FpgaGatherVersion(temp, sizeof(temp));
338 DbpString(temp);
339 }
340
341 #ifdef WITH_LF
342 // samy's sniff and repeat routine
343 void SamyRun()
344 {
345 DbpString("Stand-alone mode! No PC necessary.");
346
347 // 3 possible options? no just 2 for now
348 #define OPTS 2
349
350 int high[OPTS], low[OPTS];
351
352 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_RED, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_GREEN, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362
363 int selected = 0;
364 int playing = 0;
365
366 // Turn on selected LED
367 LED(selected + 1, 0);
368
369 for (;;)
370 {
371 UsbPoll(FALSE);
372 WDT_HIT();
373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
379 if (button_pressed > 0)
380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
405 }
406
407 // Change where to record (or begin playing)
408 else if (button_pressed)
409 {
410 // Next option if we were previously playing
411 if (playing)
412 selected = (selected + 1) % OPTS;
413 playing = !playing;
414
415 LEDsoff();
416 LED(selected + 1, 0);
417
418 // Begin transmitting
419 if (playing)
420 {
421 LED(LED_GREEN, 0);
422 DbpString("Playing");
423 // wait for button to be released
424 while(BUTTON_PRESS())
425 WDT_HIT();
426 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
427 CmdHIDsimTAG(high[selected], low[selected], 0);
428 DbpString("Done playing");
429 if (BUTTON_HELD(1000) > 0)
430 {
431 DbpString("Exiting");
432 LEDsoff();
433 return;
434 }
435
436 /* We pressed a button so ignore it here with a delay */
437 SpinDelay(300);
438
439 // when done, we're done playing, move to next option
440 selected = (selected + 1) % OPTS;
441 playing = !playing;
442 LEDsoff();
443 LED(selected + 1, 0);
444 }
445 else
446 while(BUTTON_PRESS())
447 WDT_HIT();
448 }
449 }
450 }
451 #endif
452
453 /*
454 OBJECTIVE
455 Listen and detect an external reader. Determine the best location
456 for the antenna.
457
458 INSTRUCTIONS:
459 Inside the ListenReaderField() function, there is two mode.
460 By default, when you call the function, you will enter mode 1.
461 If you press the PM3 button one time, you will enter mode 2.
462 If you press the PM3 button a second time, you will exit the function.
463
464 DESCRIPTION OF MODE 1:
465 This mode just listens for an external reader field and lights up green
466 for HF and/or red for LF. This is the original mode of the detectreader
467 function.
468
469 DESCRIPTION OF MODE 2:
470 This mode will visually represent, using the LEDs, the actual strength of the
471 current compared to the maximum current detected. Basically, once you know
472 what kind of external reader is present, it will help you spot the best location to place
473 your antenna. You will probably not get some good results if there is a LF and a HF reader
474 at the same place! :-)
475
476 LIGHT SCHEME USED:
477 */
478 static const char LIGHT_SCHEME[] = {
479 0x0, /* ---- | No field detected */
480 0x1, /* X--- | 14% of maximum current detected */
481 0x2, /* -X-- | 29% of maximum current detected */
482 0x4, /* --X- | 43% of maximum current detected */
483 0x8, /* ---X | 57% of maximum current detected */
484 0xC, /* --XX | 71% of maximum current detected */
485 0xE, /* -XXX | 86% of maximum current detected */
486 0xF, /* XXXX | 100% of maximum current detected */
487 };
488 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
489
490 void ListenReaderField(int limit)
491 {
492 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
493 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
494 int mode=1, display_val, display_max, i;
495
496 #define LF_ONLY 1
497 #define HF_ONLY 2
498
499 LEDsoff();
500
501 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
502
503 if(limit != HF_ONLY) {
504 Dbprintf("LF 125/134 Baseline: %d", lf_av);
505 lf_baseline = lf_av;
506 }
507
508 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
509
510 if (limit != LF_ONLY) {
511 Dbprintf("HF 13.56 Baseline: %d", hf_av);
512 hf_baseline = hf_av;
513 }
514
515 for(;;) {
516 if (BUTTON_PRESS()) {
517 SpinDelay(500);
518 switch (mode) {
519 case 1:
520 mode=2;
521 DbpString("Signal Strength Mode");
522 break;
523 case 2:
524 default:
525 DbpString("Stopped");
526 LEDsoff();
527 return;
528 break;
529 }
530 }
531 WDT_HIT();
532
533 if (limit != HF_ONLY) {
534 if(mode==1) {
535 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
536 else LED_D_OFF();
537 }
538
539 ++lf_count;
540 lf_av_new= ReadAdc(ADC_CHAN_LF);
541 // see if there's a significant change
542 if(abs(lf_av - lf_av_new) > 10) {
543 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
544 lf_av = lf_av_new;
545 if (lf_av > lf_max)
546 lf_max = lf_av;
547 lf_count= 0;
548 }
549 }
550
551 if (limit != LF_ONLY) {
552 if (mode == 1){
553 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
554 else LED_B_OFF();
555 }
556
557 ++hf_count;
558 hf_av_new= ReadAdc(ADC_CHAN_HF);
559 // see if there's a significant change
560 if(abs(hf_av - hf_av_new) > 10) {
561 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
562 hf_av = hf_av_new;
563 if (hf_av > hf_max)
564 hf_max = hf_av;
565 hf_count= 0;
566 }
567 }
568
569 if(mode == 2) {
570 if (limit == LF_ONLY) {
571 display_val = lf_av;
572 display_max = lf_max;
573 } else if (limit == HF_ONLY) {
574 display_val = hf_av;
575 display_max = hf_max;
576 } else { /* Pick one at random */
577 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
578 display_val = hf_av;
579 display_max = hf_max;
580 } else {
581 display_val = lf_av;
582 display_max = lf_max;
583 }
584 }
585 for (i=0; i<LIGHT_LEN; i++) {
586 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
587 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
588 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
589 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
590 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
591 break;
592 }
593 }
594 }
595 }
596 }
597
598 void UsbPacketReceived(uint8_t *packet, int len)
599 {
600 UsbCommand *c = (UsbCommand *)packet;
601 UsbCommand ack;
602 ack.cmd = CMD_ACK;
603
604 switch(c->cmd) {
605 #ifdef WITH_LF
606 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
607 AcquireRawAdcSamples125k(c->arg[0]);
608 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
609 break;
610 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
611 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
612 break;
613 case CMD_HID_DEMOD_FSK:
614 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
615 break;
616 case CMD_HID_SIM_TAG:
617 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
618 break;
619 case CMD_HID_CLONE_TAG:
620 CopyHIDtoT55x7(c->arg[0], c->arg[1]); // Clone HID tag by ID to T55x7
621 break;
622 case CMD_EM410X_WRITE_TAG:
623 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
624 break;
625 case CMD_READ_TI_TYPE:
626 ReadTItag();
627 break;
628 case CMD_WRITE_TI_TYPE:
629 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
630 break;
631 case CMD_SIMULATE_TAG_125K:
632 LED_A_ON();
633 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
634 LED_A_OFF();
635 break;
636 case CMD_LF_SIMULATE_BIDIR:
637 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
638 break;
639 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
640 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
641 break;
642 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
643 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
644 break;
645 #endif
646
647 #ifdef WITH_ISO15693
648 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
649 AcquireRawAdcSamplesIso15693();
650 break;
651 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
652 RecordRawAdcSamplesIso15693();
653 break;
654
655 case CMD_ISO_15693_COMMAND:
656 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
657 break;
658
659 case CMD_ISO_15693_FIND_AFI:
660 BruteforceIso15693Afi(c->arg[0]);
661 break;
662
663 case CMD_ISO_15693_DEBUG:
664 SetDebugIso15693(c->arg[0]);
665 break;
666
667 case CMD_READER_ISO_15693:
668 ReaderIso15693(c->arg[0]);
669 break;
670 case CMD_SIMTAG_ISO_15693:
671 SimTagIso15693(c->arg[0]);
672 break;
673 #endif
674
675 #ifdef WITH_LEGICRF
676 case CMD_SIMULATE_TAG_LEGIC_RF:
677 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
678 break;
679
680 case CMD_WRITER_LEGIC_RF:
681 LegicRfWriter(c->arg[1], c->arg[0]);
682 break;
683
684 case CMD_READER_LEGIC_RF:
685 LegicRfReader(c->arg[0], c->arg[1]);
686 break;
687 #endif
688
689 #ifdef WITH_ISO14443b
690 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
691 AcquireRawAdcSamplesIso14443(c->arg[0]);
692 break;
693 case CMD_READ_SRI512_TAG:
694 ReadSRI512Iso14443(c->arg[0]);
695 break;
696 case CMD_READ_SRIX4K_TAG:
697 ReadSRIX4KIso14443(c->arg[0]);
698 break;
699 case CMD_SNOOP_ISO_14443:
700 SnoopIso14443();
701 break;
702 case CMD_SIMULATE_TAG_ISO_14443:
703 SimulateIso14443Tag();
704 break;
705 #endif
706
707 #ifdef WITH_ISO14443a
708 case CMD_SNOOP_ISO_14443a:
709 SnoopIso14443a(c->arg[0]);
710 break;
711 case CMD_READER_ISO_14443a:
712 ReaderIso14443a(c, &ack);
713 break;
714 case CMD_SIMULATE_TAG_ISO_14443a:
715 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID
716 break;
717 case CMD_EPA_PACE_COLLECT_NONCE:
718 EPA_PACE_Collect_Nonce(c, &ack);
719 break;
720
721 case CMD_READER_MIFARE:
722 ReaderMifare(c->arg[0]);
723 break;
724 case CMD_MIFARE_READBL:
725 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
726 break;
727 case CMD_MIFARE_READSC:
728 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
729 break;
730 case CMD_MIFARE_WRITEBL:
731 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
732 break;
733 case CMD_MIFARE_NESTED:
734 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
735 break;
736 case CMD_MIFARE_CHKKEYS:
737 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
738 break;
739 case CMD_SIMULATE_MIFARE_CARD:
740 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
741 break;
742
743 // emulator
744 case CMD_MIFARE_SET_DBGMODE:
745 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
746 break;
747 case CMD_MIFARE_EML_MEMCLR:
748 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
749 break;
750 case CMD_MIFARE_EML_MEMSET:
751 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
752 break;
753 case CMD_MIFARE_EML_MEMGET:
754 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
755 break;
756 case CMD_MIFARE_EML_CARDLOAD:
757 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
758 break;
759
760 // Work with "magic Chinese" card
761 case CMD_MIFARE_EML_CSETBLOCK:
762 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
763 break;
764 case CMD_MIFARE_EML_CGETBLOCK:
765 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
766 break;
767
768 // mifare sniffer
769 case CMD_MIFARE_SNIFFER:
770 SniffMifare(c->arg[0]);
771 break;
772 #endif
773
774 #ifdef WITH_ICLASS
775 // Makes use of ISO14443a FPGA Firmware
776 case CMD_SNOOP_ICLASS:
777 SnoopIClass();
778 break;
779 case CMD_SIMULATE_TAG_ICLASS:
780 SimulateIClass(c->arg[0], c->d.asBytes);
781 break;
782 case CMD_READER_ICLASS:
783 ReaderIClass(c->arg[0]);
784 break;
785 #endif
786
787 case CMD_SIMULATE_TAG_HF_LISTEN:
788 SimulateTagHfListen();
789 break;
790
791 case CMD_BUFF_CLEAR:
792 BufferClear();
793 break;
794
795 case CMD_MEASURE_ANTENNA_TUNING:
796 MeasureAntennaTuning();
797 break;
798
799 case CMD_MEASURE_ANTENNA_TUNING_HF:
800 MeasureAntennaTuningHf();
801 break;
802
803 case CMD_LISTEN_READER_FIELD:
804 ListenReaderField(c->arg[0]);
805 break;
806
807 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
808 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
809 SpinDelay(200);
810 LED_D_OFF(); // LED D indicates field ON or OFF
811 break;
812
813 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
814 UsbCommand n;
815 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
816 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
817 } else {
818 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
819 }
820 n.arg[0] = c->arg[0];
821 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t));
822 LED_B_ON();
823 UsbSendPacket((uint8_t *)&n, sizeof(n));
824 LED_B_OFF();
825 break;
826 }
827
828 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
829 uint8_t *b = (uint8_t *)BigBuf;
830 memcpy(b+c->arg[0], c->d.asBytes, 48);
831 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
832 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
833 break;
834 }
835
836 case CMD_READ_MEM:
837 ReadMem(c->arg[0]);
838 break;
839
840 case CMD_SET_LF_DIVISOR:
841 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
842 break;
843
844 case CMD_SET_ADC_MUX:
845 switch(c->arg[0]) {
846 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
847 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
848 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
849 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
850 }
851 break;
852
853 case CMD_VERSION:
854 SendVersion();
855 break;
856
857 #ifdef WITH_LF
858
859 #endif
860
861 #ifdef WITH_LCD
862 case CMD_LCD_RESET:
863 LCDReset();
864 break;
865 case CMD_LCD:
866 LCDSend(c->arg[0]);
867 break;
868 #endif
869 case CMD_SETUP_WRITE:
870 case CMD_FINISH_WRITE:
871 case CMD_HARDWARE_RESET:
872 USB_D_PLUS_PULLUP_OFF();
873 SpinDelay(1000);
874 SpinDelay(1000);
875 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
876 for(;;) {
877 // We're going to reset, and the bootrom will take control.
878 }
879 break;
880
881 case CMD_START_FLASH:
882 if(common_area.flags.bootrom_present) {
883 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
884 }
885 USB_D_PLUS_PULLUP_OFF();
886 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
887 for(;;);
888 break;
889
890 case CMD_DEVICE_INFO: {
891 UsbCommand c;
892 c.cmd = CMD_DEVICE_INFO;
893 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
894 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
895 UsbSendPacket((uint8_t*)&c, sizeof(c));
896 }
897 break;
898 default:
899 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
900 break;
901 }
902 }
903
904 void __attribute__((noreturn)) AppMain(void)
905 {
906 SpinDelay(100);
907
908 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
909 /* Initialize common area */
910 memset(&common_area, 0, sizeof(common_area));
911 common_area.magic = COMMON_AREA_MAGIC;
912 common_area.version = 1;
913 }
914 common_area.flags.osimage_present = 1;
915
916 LED_D_OFF();
917 LED_C_OFF();
918 LED_B_OFF();
919 LED_A_OFF();
920
921 UsbStart();
922
923 // The FPGA gets its clock from us from PCK0 output, so set that up.
924 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
925 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
926 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
927 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
928 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
929 AT91C_PMC_PRES_CLK_4;
930 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
931
932 // Reset SPI
933 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
934 // Reset SSC
935 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
936
937 // Load the FPGA image, which we have stored in our flash.
938 FpgaDownloadAndGo();
939
940 StartTickCount();
941
942 #ifdef WITH_LCD
943
944 LCDInit();
945
946 // test text on different colored backgrounds
947 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
948 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
949 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
950 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
951 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
952 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
953 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
954 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
955
956 // color bands
957 LCDFill(0, 1+8* 8, 132, 8, BLACK);
958 LCDFill(0, 1+8* 9, 132, 8, WHITE);
959 LCDFill(0, 1+8*10, 132, 8, RED);
960 LCDFill(0, 1+8*11, 132, 8, GREEN);
961 LCDFill(0, 1+8*12, 132, 8, BLUE);
962 LCDFill(0, 1+8*13, 132, 8, YELLOW);
963 LCDFill(0, 1+8*14, 132, 8, CYAN);
964 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
965
966 #endif
967
968 for(;;) {
969 UsbPoll(FALSE);
970 WDT_HIT();
971
972 #ifdef WITH_LF
973 if (BUTTON_HELD(1000) > 0)
974 SamyRun();
975 #endif
976 }
977 }
Impressum, Datenschutz