]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso15693.c
d8bec898dece7872be78157a3ea009cf6310be7b
[proxmark3-svn] / armsrc / iso15693.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 15693. This includes both the reader software and
11 // the `fake tag' modes, but at the moment I've implemented only the reader
12 // stuff, and that barely.
13 // Modified to perform modulation onboard in arm rather than on PC
14 // Also added additional reader commands (SELECT, READ etc.)
15 //-----------------------------------------------------------------------------
16 // The ISO 15693 describes two transmission modes from reader to tag, and 4
17 // transmission modes from tag to reader. As of Mar 2010 this code only
18 // supports one of each: "1of4" mode from reader to tag, and the highspeed
19 // variant with one subcarrier from card to reader.
20 // As long, as the card fully support ISO 15693 this is no problem, since the
21 // reader chooses both data rates, but some non-standard tags do not. Further for
22 // the simulation to work, we will need to support all data rates.
23 //
24 // VCD (reader) -> VICC (tag)
25 // 1 out of 256:
26 // data rate: 1,66 kbit/s (fc/8192)
27 // used for long range
28 // 1 out of 4:
29 // data rate: 26,48 kbit/s (fc/512)
30 // used for short range, high speed
31 //
32 // VICC (tag) -> VCD (reader)
33 // Modulation:
34 // ASK / one subcarrier (423,75 khz)
35 // FSK / two subcarriers (423,75 khz && 484,28 khz)
36 // Data Rates / Modes:
37 // low ASK: 6,62 kbit/s
38 // low FSK: 6.67 kbit/s
39 // high ASK: 26,48 kbit/s
40 // high FSK: 26,69 kbit/s
41 //-----------------------------------------------------------------------------
42 // added "1 out of 256" mode (for VCD->PICC) - atrox 20100911
43
44
45 // Random Remarks:
46 // *) UID is always used "transmission order" (LSB), which is reverse to display order
47
48 // TODO / BUGS / ISSUES:
49 // *) writing to tags takes longer: we miss the answer from the tag in most cases
50 // -> tweak the read-timeout times
51 // *) signal decoding from the card is still a bit shaky.
52 // *) signal decoding is unable to detect collissions.
53 // *) add anti-collission support for inventory-commands
54 // *) read security status of a block
55 // *) sniffing and simulation do only support one transmission mode. need to support
56 // all 8 transmission combinations
57 // *) remove or refactor code under "depricated"
58 // *) document all the functions
59
60
61 #include "../include/proxmark3.h"
62 #include "util.h"
63 #include "apps.h"
64 #include "string.h"
65 #include "../common/iso15693tools.h"
66 #include "../common/cmd.h"
67 #include "crapto1.h"
68 #include "mifareutil.h"
69
70 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
71
72 ///////////////////////////////////////////////////////////////////////
73 // ISO 15693 Part 2 - Air Interface
74 // This section basicly contains transmission and receiving of bits
75 ///////////////////////////////////////////////////////////////////////
76
77 #define FrameSOF Iso15693FrameSOF
78 #define Logic0 Iso15693Logic0
79 #define Logic1 Iso15693Logic1
80 #define FrameEOF Iso15693FrameEOF
81
82 #define Crc(data,datalen) Iso15693Crc(data,datalen)
83 #define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
84 #define sprintUID(target,uid) Iso15693sprintUID(target,uid)
85
86 int DEBUG=0;
87
88
89 // ---------------------------
90 // Signal Processing
91 // ---------------------------
92
93 // prepare data using "1 out of 4" code for later transmission
94 // resulting data rate is 26,48 kbit/s (fc/512)
95 // cmd ... data
96 // n ... length of data
97 static void CodeIso15693AsReader(uint8_t *cmd, int n)
98 {
99 int i, j;
100
101 ToSendReset();
102
103 // Give it a bit of slack at the beginning
104 for(i = 0; i < 24; i++) {
105 ToSendStuffBit(1);
106 }
107
108 // SOF for 1of4
109 ToSendStuffBit(0);
110 ToSendStuffBit(1);
111 ToSendStuffBit(1);
112 ToSendStuffBit(1);
113 ToSendStuffBit(1);
114 ToSendStuffBit(0);
115 ToSendStuffBit(1);
116 ToSendStuffBit(1);
117 for(i = 0; i < n; i++) {
118 for(j = 0; j < 8; j += 2) {
119 int these = (cmd[i] >> j) & 3;
120 switch(these) {
121 case 0:
122 ToSendStuffBit(1);
123 ToSendStuffBit(0);
124 ToSendStuffBit(1);
125 ToSendStuffBit(1);
126 ToSendStuffBit(1);
127 ToSendStuffBit(1);
128 ToSendStuffBit(1);
129 ToSendStuffBit(1);
130 break;
131 case 1:
132 ToSendStuffBit(1);
133 ToSendStuffBit(1);
134 ToSendStuffBit(1);
135 ToSendStuffBit(0);
136 ToSendStuffBit(1);
137 ToSendStuffBit(1);
138 ToSendStuffBit(1);
139 ToSendStuffBit(1);
140 break;
141 case 2:
142 ToSendStuffBit(1);
143 ToSendStuffBit(1);
144 ToSendStuffBit(1);
145 ToSendStuffBit(1);
146 ToSendStuffBit(1);
147 ToSendStuffBit(0);
148 ToSendStuffBit(1);
149 ToSendStuffBit(1);
150 break;
151 case 3:
152 ToSendStuffBit(1);
153 ToSendStuffBit(1);
154 ToSendStuffBit(1);
155 ToSendStuffBit(1);
156 ToSendStuffBit(1);
157 ToSendStuffBit(1);
158 ToSendStuffBit(1);
159 ToSendStuffBit(0);
160 break;
161 }
162 }
163 }
164 // EOF
165 ToSendStuffBit(1);
166 ToSendStuffBit(1);
167 ToSendStuffBit(0);
168 ToSendStuffBit(1);
169
170 // And slack at the end, too.
171 for(i = 0; i < 24; i++) {
172 ToSendStuffBit(1);
173 }
174 }
175
176 // encode data using "1 out of 256" sheme
177 // data rate is 1,66 kbit/s (fc/8192)
178 // is designed for more robust communication over longer distances
179 static void CodeIso15693AsReader256(uint8_t *cmd, int n)
180 {
181 int i, j;
182
183 ToSendReset();
184
185 // Give it a bit of slack at the beginning
186 for(i = 0; i < 24; i++) {
187 ToSendStuffBit(1);
188 }
189
190 // SOF for 1of256
191 ToSendStuffBit(0);
192 ToSendStuffBit(1);
193 ToSendStuffBit(1);
194 ToSendStuffBit(1);
195 ToSendStuffBit(1);
196 ToSendStuffBit(1);
197 ToSendStuffBit(1);
198 ToSendStuffBit(0);
199
200 for(i = 0; i < n; i++) {
201 for (j = 0; j<=255; j++) {
202 if (cmd[i]==j) {
203 ToSendStuffBit(1);
204 ToSendStuffBit(0);
205 } else {
206 ToSendStuffBit(1);
207 ToSendStuffBit(1);
208 }
209 }
210 }
211 // EOF
212 ToSendStuffBit(1);
213 ToSendStuffBit(1);
214 ToSendStuffBit(0);
215 ToSendStuffBit(1);
216
217 // And slack at the end, too.
218 for(i = 0; i < 24; i++) {
219 ToSendStuffBit(1);
220 }
221 }
222
223
224 // Transmit the command (to the tag) that was placed in ToSend[].
225 static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait)
226 {
227 int c;
228
229 // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
231 if(*wait < 10) { *wait = 10; }
232
233 // for(c = 0; c < *wait;) {
234 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
235 // AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
236 // c++;
237 // }
238 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
239 // volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
240 // (void)r;
241 // }
242 // WDT_HIT();
243 // }
244
245 c = 0;
246 for(;;) {
247 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
248 AT91C_BASE_SSC->SSC_THR = cmd[c];
249 c++;
250 if(c >= len) {
251 break;
252 }
253 }
254 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
255 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
256 (void)r;
257 }
258 WDT_HIT();
259 }
260 *samples = (c + *wait) << 3;
261 }
262
263 //-----------------------------------------------------------------------------
264 // Transmit the command (to the reader) that was placed in ToSend[].
265 //-----------------------------------------------------------------------------
266 static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait)
267 {
268 int c;
269
270 // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR); // No requirement to energise my coils
272 if(*wait < 10) { *wait = 10; }
273
274 c = 0;
275 for(;;) {
276 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
277 AT91C_BASE_SSC->SSC_THR = cmd[c];
278 c++;
279 if(c >= len) {
280 break;
281 }
282 }
283 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
284 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
285 (void)r;
286 }
287 WDT_HIT();
288 }
289 *samples = (c + *wait) << 3;
290 }
291
292
293 // Read from Tag
294 // Parameters:
295 // receivedResponse
296 // maxLen
297 // samples
298 // elapsed
299 // returns:
300 // number of decoded bytes
301 static int GetIso15693AnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
302 {
303 int c = 0;
304 uint8_t *dest = (uint8_t *)BigBuf;
305 int getNext = 0;
306
307 int8_t prev = 0;
308
309 // NOW READ RESPONSE
310 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
311 //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
312 c = 0;
313 getNext = FALSE;
314 for(;;) {
315 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
316 AT91C_BASE_SSC->SSC_THR = 0x43;
317 }
318 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
319 int8_t b;
320 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
321
322 // The samples are correlations against I and Q versions of the
323 // tone that the tag AM-modulates, so every other sample is I,
324 // every other is Q. We just want power, so abs(I) + abs(Q) is
325 // close to what we want.
326 if(getNext) {
327 int8_t r;
328
329 if(b < 0) {
330 r = -b;
331 } else {
332 r = b;
333 }
334 if(prev < 0) {
335 r -= prev;
336 } else {
337 r += prev;
338 }
339
340 dest[c++] = (uint8_t)r;
341
342 if(c >= 2000) {
343 break;
344 }
345 } else {
346 prev = b;
347 }
348
349 getNext = !getNext;
350 }
351 }
352
353 //////////////////////////////////////////
354 /////////// DEMODULATE ///////////////////
355 //////////////////////////////////////////
356
357 int i, j;
358 int max = 0, maxPos=0;
359
360 int skip = 4;
361
362 // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
363
364 // First, correlate for SOF
365 for(i = 0; i < 100; i++) {
366 int corr = 0;
367 for(j = 0; j < arraylen(FrameSOF); j += skip) {
368 corr += FrameSOF[j]*dest[i+(j/skip)];
369 }
370 if(corr > max) {
371 max = corr;
372 maxPos = i;
373 }
374 }
375 // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
376
377 int k = 0; // this will be our return value
378
379 // greg - If correlation is less than 1 then there's little point in continuing
380 if ((max/(arraylen(FrameSOF)/skip)) >= 1)
381 {
382
383 i = maxPos + arraylen(FrameSOF)/skip;
384
385 uint8_t outBuf[20];
386 memset(outBuf, 0, sizeof(outBuf));
387 uint8_t mask = 0x01;
388 for(;;) {
389 int corr0 = 0, corr1 = 0, corrEOF = 0;
390 for(j = 0; j < arraylen(Logic0); j += skip) {
391 corr0 += Logic0[j]*dest[i+(j/skip)];
392 }
393 for(j = 0; j < arraylen(Logic1); j += skip) {
394 corr1 += Logic1[j]*dest[i+(j/skip)];
395 }
396 for(j = 0; j < arraylen(FrameEOF); j += skip) {
397 corrEOF += FrameEOF[j]*dest[i+(j/skip)];
398 }
399 // Even things out by the length of the target waveform.
400 corr0 *= 4;
401 corr1 *= 4;
402
403 if(corrEOF > corr1 && corrEOF > corr0) {
404 // DbpString("EOF at %d", i);
405 break;
406 } else if(corr1 > corr0) {
407 i += arraylen(Logic1)/skip;
408 outBuf[k] |= mask;
409 } else {
410 i += arraylen(Logic0)/skip;
411 }
412 mask <<= 1;
413 if(mask == 0) {
414 k++;
415 mask = 0x01;
416 }
417 if((i+(int)arraylen(FrameEOF)) >= 2000) {
418 DbpString("ran off end!");
419 break;
420 }
421 }
422 if(mask != 0x01) { // this happens, when we miss the EOF
423 // TODO: for some reason this happens quite often
424 if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask=%02x", mask);
425 if (mask<0x08) k--; // discard the last uneven octet;
426 // 0x08 is an assumption - but works quite often
427 }
428 // uint8_t str1 [8];
429 // itoa(k,str1);
430 // strncat(str1," octets read",8);
431
432 // DbpString( str1); // DbpString("%d octets", k);
433
434 // for(i = 0; i < k; i+=3) {
435 // //DbpString("# %2d: %02x ", i, outBuf[i]);
436 // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
437 // }
438
439 for(i = 0; i < k; i++) {
440 receivedResponse[i] = outBuf[i];
441 }
442 } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
443 return k; // return the number of bytes demodulated
444
445 /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
446
447 }
448
449
450 // Now the GetISO15693 message from sniffing command
451 static int GetIso15693AnswerFromSniff(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
452 {
453 int c = 0;
454 uint8_t *dest = (uint8_t *)BigBuf;
455 int getNext = 0;
456
457 int8_t prev = 0;
458
459 // NOW READ RESPONSE
460 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
461 //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
462 c = 0;
463 getNext = FALSE;
464 for(;;) {
465 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
466 AT91C_BASE_SSC->SSC_THR = 0x43;
467 }
468 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
469 int8_t b;
470 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
471
472 // The samples are correlations against I and Q versions of the
473 // tone that the tag AM-modulates, so every other sample is I,
474 // every other is Q. We just want power, so abs(I) + abs(Q) is
475 // close to what we want.
476 if(getNext) {
477 int8_t r;
478
479 if(b < 0) {
480 r = -b;
481 } else {
482 r = b;
483 }
484 if(prev < 0) {
485 r -= prev;
486 } else {
487 r += prev;
488 }
489
490 dest[c++] = (uint8_t)r;
491
492 if(c >= 20000) {
493 break;
494 }
495 } else {
496 prev = b;
497 }
498
499 getNext = !getNext;
500 }
501 }
502
503 //////////////////////////////////////////
504 /////////// DEMODULATE ///////////////////
505 //////////////////////////////////////////
506
507 int i, j;
508 int max = 0, maxPos=0;
509
510 int skip = 4;
511
512 // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
513
514 // First, correlate for SOF
515 for(i = 0; i < 19000; i++) {
516 int corr = 0;
517 for(j = 0; j < arraylen(FrameSOF); j += skip) {
518 corr += FrameSOF[j]*dest[i+(j/skip)];
519 }
520 if(corr > max) {
521 max = corr;
522 maxPos = i;
523 }
524 }
525 // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
526
527 int k = 0; // this will be our return value
528
529 // greg - If correlation is less than 1 then there's little point in continuing
530 if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1
531 {
532
533 i = maxPos + arraylen(FrameSOF)/skip;
534
535 uint8_t outBuf[20];
536 memset(outBuf, 0, sizeof(outBuf));
537 uint8_t mask = 0x01;
538 for(;;) {
539 int corr0 = 0, corr1 = 0, corrEOF = 0;
540 for(j = 0; j < arraylen(Logic0); j += skip) {
541 corr0 += Logic0[j]*dest[i+(j/skip)];
542 }
543 for(j = 0; j < arraylen(Logic1); j += skip) {
544 corr1 += Logic1[j]*dest[i+(j/skip)];
545 }
546 for(j = 0; j < arraylen(FrameEOF); j += skip) {
547 corrEOF += FrameEOF[j]*dest[i+(j/skip)];
548 }
549 // Even things out by the length of the target waveform.
550 corr0 *= 4;
551 corr1 *= 4;
552
553 if(corrEOF > corr1 && corrEOF > corr0) {
554 // DbpString("EOF at %d", i);
555 break;
556 } else if(corr1 > corr0) {
557 i += arraylen(Logic1)/skip;
558 outBuf[k] |= mask;
559 } else {
560 i += arraylen(Logic0)/skip;
561 }
562 mask <<= 1;
563 if(mask == 0) {
564 k++;
565 mask = 0x01;
566 }
567 if((i+(int)arraylen(FrameEOF)) >= 2000) {
568 DbpString("ran off end!");
569 break;
570 }
571 }
572 if(mask != 0x01) {
573 DbpString("sniff: error, uneven octet! (discard extra bits!)");
574 /// DbpString(" mask=%02x", mask);
575 }
576 // uint8_t str1 [8];
577 // itoa(k,str1);
578 // strncat(str1," octets read",8);
579
580 // DbpString( str1); // DbpString("%d octets", k);
581
582 // for(i = 0; i < k; i+=3) {
583 // //DbpString("# %2d: %02x ", i, outBuf[i]);
584 // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
585 // }
586
587 for(i = 0; i < k; i++) {
588 receivedResponse[i] = outBuf[i];
589 }
590 } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
591 return k; // return the number of bytes demodulated
592
593 /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
594 }
595
596
597 static void BuildIdentifyRequest(void);
598 //-----------------------------------------------------------------------------
599 // Start to read an ISO 15693 tag. We send an identify request, then wait
600 // for the response. The response is not demodulated, just left in the buffer
601 // so that it can be downloaded to a PC and processed there.
602 //-----------------------------------------------------------------------------
603 void AcquireRawAdcSamplesIso15693(void)
604 {
605 uint8_t *dest = mifare_get_bigbufptr();
606
607 int c = 0;
608 int getNext = 0;
609 int8_t prev = 0;
610
611 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
612 BuildIdentifyRequest();
613
614 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
615
616 // Give the tags time to energize
617 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
618 SpinDelay(100);
619
620 // Now send the command
621 FpgaSetupSsc();
622 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
623
624 c = 0;
625 for(;;) {
626 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
627 AT91C_BASE_SSC->SSC_THR = ToSend[c];
628 c++;
629 if(c == ToSendMax+3) {
630 break;
631 }
632 }
633 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
634 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
635 (void)r;
636 }
637 WDT_HIT();
638 }
639
640 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
641
642 c = 0;
643 getNext = FALSE;
644 for(;;) {
645 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
646 AT91C_BASE_SSC->SSC_THR = 0x43;
647 }
648 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
649 int8_t b;
650 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
651
652 // The samples are correlations against I and Q versions of the
653 // tone that the tag AM-modulates, so every other sample is I,
654 // every other is Q. We just want power, so abs(I) + abs(Q) is
655 // close to what we want.
656 if(getNext) {
657 int8_t r;
658
659 if(b < 0) {
660 r = -b;
661 } else {
662 r = b;
663 }
664 if(prev < 0) {
665 r -= prev;
666 } else {
667 r += prev;
668 }
669
670 dest[c++] = (uint8_t)r;
671
672 if(c >= 2000) {
673 break;
674 }
675 } else {
676 prev = b;
677 }
678
679 getNext = !getNext;
680 }
681 }
682 }
683
684
685 void RecordRawAdcSamplesIso15693(void)
686 {
687 uint8_t *dest = mifare_get_bigbufptr();
688
689 int c = 0;
690 int getNext = 0;
691 int8_t prev = 0;
692
693 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
694 // Setup SSC
695 FpgaSetupSsc();
696
697 // Start from off (no field generated)
698 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
699 SpinDelay(200);
700
701 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
702
703 SpinDelay(100);
704
705 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
706
707 c = 0;
708 getNext = FALSE;
709 for(;;) {
710 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
711 AT91C_BASE_SSC->SSC_THR = 0x43;
712 }
713 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
714 int8_t b;
715 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
716
717 // The samples are correlations against I and Q versions of the
718 // tone that the tag AM-modulates, so every other sample is I,
719 // every other is Q. We just want power, so abs(I) + abs(Q) is
720 // close to what we want.
721 if(getNext) {
722 int8_t r;
723
724 if(b < 0) {
725 r = -b;
726 } else {
727 r = b;
728 }
729 if(prev < 0) {
730 r -= prev;
731 } else {
732 r += prev;
733 }
734
735 dest[c++] = (uint8_t)r;
736
737 if(c >= 7000) {
738 break;
739 }
740 } else {
741 prev = b;
742 }
743
744 getNext = !getNext;
745 WDT_HIT();
746 }
747 }
748 Dbprintf("fin record");
749 }
750
751
752 // Initialize the proxmark as iso15k reader
753 // (this might produces glitches that confuse some tags
754 void Iso15693InitReader() {
755 LED_A_ON();
756 LED_B_ON();
757 LED_C_OFF();
758 LED_D_OFF();
759
760 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
761 // Setup SSC
762 // FpgaSetupSsc();
763
764 // Start from off (no field generated)
765 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
766 SpinDelay(10);
767
768 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
769 FpgaSetupSsc();
770
771 // Give the tags time to energize
772 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
773 SpinDelay(250);
774
775 LED_A_ON();
776 LED_B_OFF();
777 LED_C_OFF();
778 LED_D_OFF();
779 }
780
781 ///////////////////////////////////////////////////////////////////////
782 // ISO 15693 Part 3 - Air Interface
783 // This section basicly contains transmission and receiving of bits
784 ///////////////////////////////////////////////////////////////////////
785
786 // Encode (into the ToSend buffers) an identify request, which is the first
787 // thing that you must send to a tag to get a response.
788 static void BuildIdentifyRequest(void)
789 {
790 uint8_t cmd[5];
791
792 uint16_t crc;
793 // one sub-carrier, inventory, 1 slot, fast rate
794 // AFI is at bit 5 (1<<4) when doing an INVENTORY
795 cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
796 // inventory command code
797 cmd[1] = 0x01;
798 // no mask
799 cmd[2] = 0x00;
800 //Now the CRC
801 crc = Crc(cmd, 3);
802 cmd[3] = crc & 0xff;
803 cmd[4] = crc >> 8;
804
805 CodeIso15693AsReader(cmd, sizeof(cmd));
806 }
807
808 // uid is in transmission order (which is reverse of display order)
809 static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
810 {
811 uint8_t cmd[13];
812
813 uint16_t crc;
814 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
815 // followed by teh block data
816 // one sub-carrier, inventory, 1 slot, fast rate
817 cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
818 // READ BLOCK command code
819 cmd[1] = 0x20;
820 // UID may be optionally specified here
821 // 64-bit UID
822 cmd[2] = uid[0];
823 cmd[3] = uid[1];
824 cmd[4] = uid[2];
825 cmd[5] = uid[3];
826 cmd[6] = uid[4];
827 cmd[7] = uid[5];
828 cmd[8] = uid[6];
829 cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
830 // Block number to read
831 cmd[10] = blockNumber;//0x00;
832 //Now the CRC
833 crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes
834 cmd[11] = crc & 0xff;
835 cmd[12] = crc >> 8;
836
837 CodeIso15693AsReader(cmd, sizeof(cmd));
838 }
839
840 // Now the VICC>VCD responses when we are simulating a tag
841 static void BuildInventoryResponse(void)
842 {
843 uint8_t cmd[12];
844
845 uint16_t crc;
846 // one sub-carrier, inventory, 1 slot, fast rate
847 // AFI is at bit 5 (1<<4) when doing an INVENTORY
848 cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1);
849 cmd[1] = 0;
850 // 64-bit UID
851 cmd[2] = 0x32;
852 cmd[3]= 0x4b;
853 cmd[4] = 0x03;
854 cmd[5] = 0x01;
855 cmd[6] = 0x00;
856 cmd[7] = 0x10;
857 cmd[8] = 0x05;
858 cmd[9]= 0xe0;
859 //Now the CRC
860 crc = Crc(cmd, 10);
861 cmd[10] = crc & 0xff;
862 cmd[11] = crc >> 8;
863
864 CodeIso15693AsReader(cmd, sizeof(cmd));
865 }
866
867 // Universal Method for sending to and recv bytes from a tag
868 // init ... should we initialize the reader?
869 // speed ... 0 low speed, 1 hi speed
870 // **recv will return you a pointer to the received data
871 // If you do not need the answer use NULL for *recv[]
872 // return: lenght of received data
873 int SendDataTag(uint8_t *send, int sendlen, int init, int speed, uint8_t **recv) {
874
875 int samples = 0;
876 int tsamples = 0;
877 int wait = 0;
878 int elapsed = 0;
879
880 LED_A_ON();
881 LED_B_ON();
882 LED_C_OFF();
883 LED_D_OFF();
884
885 int answerLen=0;
886 uint8_t *answer = (((uint8_t *)BigBuf) + 3660);
887 if (recv!=NULL) memset(BigBuf + 3660, 0, 100);
888
889 if (init) Iso15693InitReader();
890
891 if (!speed) {
892 // low speed (1 out of 256)
893 CodeIso15693AsReader256(send, sendlen);
894 } else {
895 // high speed (1 out of 4)
896 CodeIso15693AsReader(send, sendlen);
897 }
898
899 LED_A_ON();
900 LED_B_OFF();
901
902 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
903 // Now wait for a response
904 if (recv!=NULL) {
905 LED_A_OFF();
906 LED_B_ON();
907 answerLen = GetIso15693AnswerFromTag(answer, 100, &samples, &elapsed) ;
908 *recv=answer;
909 }
910
911 LED_A_OFF();
912 LED_B_OFF();
913 LED_C_OFF();
914 LED_D_OFF();
915
916 return answerLen;
917 }
918
919
920 // --------------------------------------------------------------------
921 // Debug Functions
922 // --------------------------------------------------------------------
923
924 // Decodes a message from a tag and displays its metadata and content
925 #define DBD15STATLEN 48
926 void DbdecodeIso15693Answer(int len, uint8_t *d) {
927 char status[DBD15STATLEN+1]={0};
928 uint16_t crc;
929
930 if (len>3) {
931 if (d[0]&(1<<3))
932 strncat(status,"ProtExt ",DBD15STATLEN);
933 if (d[0]&1) {
934 // error
935 strncat(status,"Error ",DBD15STATLEN);
936 switch (d[1]) {
937 case 0x01:
938 strncat(status,"01:notSupp",DBD15STATLEN);
939 break;
940 case 0x02:
941 strncat(status,"02:notRecog",DBD15STATLEN);
942 break;
943 case 0x03:
944 strncat(status,"03:optNotSupp",DBD15STATLEN);
945 break;
946 case 0x0f:
947 strncat(status,"0f:noInfo",DBD15STATLEN);
948 break;
949 case 0x10:
950 strncat(status,"10:dontExist",DBD15STATLEN);
951 break;
952 case 0x11:
953 strncat(status,"11:lockAgain",DBD15STATLEN);
954 break;
955 case 0x12:
956 strncat(status,"12:locked",DBD15STATLEN);
957 break;
958 case 0x13:
959 strncat(status,"13:progErr",DBD15STATLEN);
960 break;
961 case 0x14:
962 strncat(status,"14:lockErr",DBD15STATLEN);
963 break;
964 default:
965 strncat(status,"unknownErr",DBD15STATLEN);
966 }
967 strncat(status," ",DBD15STATLEN);
968 } else {
969 strncat(status,"NoErr ",DBD15STATLEN);
970 }
971
972 crc=Crc(d,len-2);
973 if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
974 strncat(status,"CrcOK",DBD15STATLEN);
975 else
976 strncat(status,"CrcFail!",DBD15STATLEN);
977
978 Dbprintf("%s",status);
979 }
980 }
981
982
983
984 ///////////////////////////////////////////////////////////////////////
985 // Functions called via USB/Client
986 ///////////////////////////////////////////////////////////////////////
987
988 void SetDebugIso15693(uint32_t debug) {
989 DEBUG=debug;
990 Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
991 return;
992 }
993
994
995
996 //-----------------------------------------------------------------------------
997 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
998 // all demodulation performed in arm rather than host. - greg
999 //-----------------------------------------------------------------------------
1000 void ReaderIso15693(uint32_t parameter)
1001 {
1002 LED_A_ON();
1003 LED_B_ON();
1004 LED_C_OFF();
1005 LED_D_OFF();
1006
1007 //DbpString(parameter);
1008
1009 //uint8_t *answer0 = (((uint8_t *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)
1010 uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); //
1011 uint8_t *answer2 = (((uint8_t *)BigBuf) + 3760);
1012 uint8_t *answer3 = (((uint8_t *)BigBuf) + 3860);
1013 //uint8_t *TagUID= (((uint8_t *)BigBuf) + 3960); // where we hold the uid for hi15reader
1014 // int answerLen0 = 0;
1015 int answerLen1 = 0;
1016 int answerLen2 = 0;
1017 int answerLen3 = 0;
1018 int i=0; // counter
1019
1020 // Blank arrays
1021 memset(BigBuf + 3660, 0, 300);
1022
1023 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1024 // Setup SSC
1025 FpgaSetupSsc();
1026
1027 // Start from off (no field generated)
1028 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1029 SpinDelay(200);
1030
1031 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1032 FpgaSetupSsc();
1033
1034 // Give the tags time to energize
1035 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
1036 SpinDelay(200);
1037
1038 LED_A_ON();
1039 LED_B_OFF();
1040 LED_C_OFF();
1041 LED_D_OFF();
1042
1043 int samples = 0;
1044 int tsamples = 0;
1045 int wait = 0;
1046 int elapsed = 0;
1047
1048 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1049 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1050 uint8_t TagUID[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // where we hold the uid for hi15reader
1051
1052 // BuildIdentifyRequest();
1053 // //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);
1054 // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
1055 // // Now wait for a response
1056 // responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ;
1057 // if (responseLen0 >=12) // we should do a better check than this
1058 // {
1059 // // really we should check it is a valid mesg
1060 // // but for now just grab what we think is the uid
1061 // TagUID[0] = receivedAnswer0[2];
1062 // TagUID[1] = receivedAnswer0[3];
1063 // TagUID[2] = receivedAnswer0[4];
1064 // TagUID[3] = receivedAnswer0[5];
1065 // TagUID[4] = receivedAnswer0[6];
1066 // TagUID[5] = receivedAnswer0[7];
1067 // TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code
1068 // DbpIntegers(TagUID[6],TagUID[5],TagUID[4]);
1069 //}
1070
1071 // Now send the IDENTIFY command
1072 BuildIdentifyRequest();
1073 //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);
1074 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
1075 // Now wait for a response
1076 answerLen1 = GetIso15693AnswerFromTag(answer1, 100, &samples, &elapsed) ;
1077
1078 if (answerLen1 >=12) // we should do a better check than this
1079 {
1080
1081 TagUID[0] = answer1[2];
1082 TagUID[1] = answer1[3];
1083 TagUID[2] = answer1[4];
1084 TagUID[3] = answer1[5];
1085 TagUID[4] = answer1[6];
1086 TagUID[5] = answer1[7];
1087 TagUID[6] = answer1[8]; // IC Manufacturer code
1088 TagUID[7] = answer1[9]; // always E0
1089
1090 // Now send the SELECT command
1091 // since the SELECT command is optional, we should not rely on it.
1092 //// BuildSelectRequest(TagUID);
1093 // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
1094 // Now wait for a response
1095 /// answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed);
1096
1097 // Now send the MULTI READ command
1098 // BuildArbitraryRequest(*TagUID,parameter);
1099 /// BuildArbitraryCustomRequest(TagUID,parameter);
1100 // BuildReadBlockRequest(*TagUID,parameter);
1101 // BuildSysInfoRequest(*TagUID);
1102 //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);
1103 /// TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
1104 // Now wait for a response
1105 /// answerLen3 = GetIso15693AnswerFromTag(answer3, 100, &samples, &elapsed) ;
1106
1107 }
1108
1109 Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
1110 DbdecodeIso15693Answer(answerLen1,answer1);
1111 Dbhexdump(answerLen1,answer1,true);
1112
1113 // UID is reverse
1114 if (answerLen1>=12)
1115 //Dbprintf("UID = %*D",8,TagUID," ");
1116 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",TagUID[7],TagUID[6],TagUID[5],
1117 TagUID[4],TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
1118
1119
1120 Dbprintf("%d octets read from SELECT request:", answerLen2);
1121 DbdecodeIso15693Answer(answerLen2,answer2);
1122 Dbhexdump(answerLen2,answer2,true);
1123
1124 Dbprintf("%d octets read from XXX request:", answerLen3);
1125 DbdecodeIso15693Answer(answerLen3,answer3);
1126 Dbhexdump(answerLen3,answer3,true);
1127
1128
1129 // read all pages
1130 if (answerLen1>=12 && DEBUG) {
1131 i=0;
1132 while (i<32) { // sanity check, assume max 32 pages
1133 BuildReadBlockRequest(TagUID,i);
1134 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
1135 answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed);
1136 if (answerLen2>0) {
1137 Dbprintf("READ SINGLE BLOCK %d returned %d octets:",i,answerLen2);
1138 DbdecodeIso15693Answer(answerLen2,answer2);
1139 Dbhexdump(answerLen2,answer2,true);
1140 if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
1141 }
1142 i++;
1143 }
1144 }
1145
1146 // str2[0]=0;
1147 // for(i = 0; i < responseLen3; i++) {
1148 // itoa(str1,receivedAnswer3[i]);
1149 // strncat(str2,str1,8);
1150 // }
1151 // DbpString(str2);
1152
1153 LED_A_OFF();
1154 LED_B_OFF();
1155 LED_C_OFF();
1156 LED_D_OFF();
1157 }
1158
1159 // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands
1160 // all demodulation performed in arm rather than host. - greg
1161 void SimTagIso15693(uint32_t parameter)
1162 {
1163 LED_A_ON();
1164 LED_B_ON();
1165 LED_C_OFF();
1166 LED_D_OFF();
1167
1168 uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); //
1169 int answerLen1 = 0;
1170
1171 // Blank arrays
1172 memset(answer1, 0, 100);
1173
1174 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1175 // Setup SSC
1176 FpgaSetupSsc();
1177
1178 // Start from off (no field generated)
1179 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1180 SpinDelay(200);
1181
1182 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1183 FpgaSetupSsc();
1184
1185 // Give the tags time to energize
1186 // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // NO GOOD FOR SIM TAG!!!!
1187 SpinDelay(200);
1188
1189 LED_A_OFF();
1190 LED_B_OFF();
1191 LED_C_ON();
1192 LED_D_OFF();
1193
1194 int samples = 0;
1195 int tsamples = 0;
1196 int wait = 0;
1197 int elapsed = 0;
1198
1199 answerLen1 = GetIso15693AnswerFromSniff(answer1, 100, &samples, &elapsed) ;
1200
1201 if (answerLen1 >=1) // we should do a better check than this
1202 {
1203 // Build a suitable reponse to the reader INVENTORY cocmmand
1204 BuildInventoryResponse();
1205 TransmitTo15693Reader(ToSend,ToSendMax, &tsamples, &wait);
1206 }
1207
1208 Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x %x", answerLen1,
1209 answer1[0], answer1[1], answer1[2],
1210 answer1[3], answer1[4], answer1[5],
1211 answer1[6], answer1[7], answer1[8]);
1212
1213 LED_A_OFF();
1214 LED_B_OFF();
1215 LED_C_OFF();
1216 LED_D_OFF();
1217 }
1218
1219
1220 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1221 // (some manufactures offer a way to read the AFI, though)
1222 void BruteforceIso15693Afi(uint32_t speed)
1223 {
1224 uint8_t data[20];
1225 uint8_t *recv=data;
1226 int datalen=0, recvlen=0;
1227
1228 Iso15693InitReader();
1229
1230 // first without AFI
1231 // Tags should respond wihtout AFI and with AFI=0 even when AFI is active
1232
1233 data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
1234 ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1;
1235 data[1]=ISO15_CMD_INVENTORY;
1236 data[2]=0; // mask length
1237 datalen=AddCrc(data,3);
1238 recvlen=SendDataTag(data,datalen,0,speed,&recv);
1239 WDT_HIT();
1240 if (recvlen>=12) {
1241 Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
1242 }
1243
1244 // now with AFI
1245
1246 data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
1247 ISO15_REQ_INVENTORY | ISO15_REQINV_AFI | ISO15_REQINV_SLOT1;
1248 data[1]=ISO15_CMD_INVENTORY;
1249 data[2]=0; // AFI
1250 data[3]=0; // mask length
1251
1252 for (int i=0;i<256;i++) {
1253 data[2]=i & 0xFF;
1254 datalen=AddCrc(data,4);
1255 recvlen=SendDataTag(data,datalen,0,speed,&recv);
1256 WDT_HIT();
1257 if (recvlen>=12) {
1258 Dbprintf("AFI=%i UID=%s",i,sprintUID(NULL,&recv[2]));
1259 }
1260 }
1261 Dbprintf("AFI Bruteforcing done.");
1262
1263 }
1264
1265 // Allows to directly send commands to the tag via the client
1266 void DirectTag15693Command(uint32_t datalen,uint32_t speed, uint32_t recv, uint8_t data[]) {
1267
1268 int recvlen=0;
1269 uint8_t *recvbuf=(uint8_t *)BigBuf;
1270 // UsbCommand n;
1271
1272 if (DEBUG) {
1273 Dbprintf("SEND");
1274 Dbhexdump(datalen,data,true);
1275 }
1276
1277 recvlen=SendDataTag(data,datalen,1,speed,(recv?&recvbuf:NULL));
1278
1279 if (recv) {
1280 LED_B_ON();
1281 cmd_send(CMD_ACK,recvlen>48?48:recvlen,0,0,recvbuf,48);
1282 LED_B_OFF();
1283
1284 if (DEBUG) {
1285 Dbprintf("RECV");
1286 DbdecodeIso15693Answer(recvlen,recvbuf);
1287 Dbhexdump(recvlen,recvbuf,true);
1288 }
1289 }
1290
1291 }
1292
1293
1294
1295
1296 // --------------------------------------------------------------------
1297 // -- Misc & deprecated functions
1298 // --------------------------------------------------------------------
1299
1300 /*
1301
1302 // do not use; has a fix UID
1303 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1304 {
1305 uint8_t cmd[12];
1306
1307 uint16_t crc;
1308 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1309 // followed by teh block data
1310 // one sub-carrier, inventory, 1 slot, fast rate
1311 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1312 // System Information command code
1313 cmd[1] = 0x2B;
1314 // UID may be optionally specified here
1315 // 64-bit UID
1316 cmd[2] = 0x32;
1317 cmd[3]= 0x4b;
1318 cmd[4] = 0x03;
1319 cmd[5] = 0x01;
1320 cmd[6] = 0x00;
1321 cmd[7] = 0x10;
1322 cmd[8] = 0x05;
1323 cmd[9]= 0xe0; // always e0 (not exactly unique)
1324 //Now the CRC
1325 crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1326 cmd[10] = crc & 0xff;
1327 cmd[11] = crc >> 8;
1328
1329 CodeIso15693AsReader(cmd, sizeof(cmd));
1330 }
1331
1332
1333 // do not use; has a fix UID
1334 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1335 {
1336 uint8_t cmd[14];
1337
1338 uint16_t crc;
1339 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1340 // followed by teh block data
1341 // one sub-carrier, inventory, 1 slot, fast rate
1342 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1343 // READ Multi BLOCK command code
1344 cmd[1] = 0x23;
1345 // UID may be optionally specified here
1346 // 64-bit UID
1347 cmd[2] = 0x32;
1348 cmd[3]= 0x4b;
1349 cmd[4] = 0x03;
1350 cmd[5] = 0x01;
1351 cmd[6] = 0x00;
1352 cmd[7] = 0x10;
1353 cmd[8] = 0x05;
1354 cmd[9]= 0xe0; // always e0 (not exactly unique)
1355 // First Block number to read
1356 cmd[10] = 0x00;
1357 // Number of Blocks to read
1358 cmd[11] = 0x2f; // read quite a few
1359 //Now the CRC
1360 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1361 cmd[12] = crc & 0xff;
1362 cmd[13] = crc >> 8;
1363
1364 CodeIso15693AsReader(cmd, sizeof(cmd));
1365 }
1366
1367 // do not use; has a fix UID
1368 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1369 {
1370 uint8_t cmd[14];
1371
1372 uint16_t crc;
1373 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1374 // followed by teh block data
1375 // one sub-carrier, inventory, 1 slot, fast rate
1376 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1377 // READ BLOCK command code
1378 cmd[1] = CmdCode;
1379 // UID may be optionally specified here
1380 // 64-bit UID
1381 cmd[2] = 0x32;
1382 cmd[3]= 0x4b;
1383 cmd[4] = 0x03;
1384 cmd[5] = 0x01;
1385 cmd[6] = 0x00;
1386 cmd[7] = 0x10;
1387 cmd[8] = 0x05;
1388 cmd[9]= 0xe0; // always e0 (not exactly unique)
1389 // Parameter
1390 cmd[10] = 0x00;
1391 cmd[11] = 0x0a;
1392
1393 // cmd[12] = 0x00;
1394 // cmd[13] = 0x00; //Now the CRC
1395 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1396 cmd[12] = crc & 0xff;
1397 cmd[13] = crc >> 8;
1398
1399 CodeIso15693AsReader(cmd, sizeof(cmd));
1400 }
1401
1402 // do not use; has a fix UID
1403 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1404 {
1405 uint8_t cmd[14];
1406
1407 uint16_t crc;
1408 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1409 // followed by teh block data
1410 // one sub-carrier, inventory, 1 slot, fast rate
1411 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1412 // READ BLOCK command code
1413 cmd[1] = CmdCode;
1414 // UID may be optionally specified here
1415 // 64-bit UID
1416 cmd[2] = 0x32;
1417 cmd[3]= 0x4b;
1418 cmd[4] = 0x03;
1419 cmd[5] = 0x01;
1420 cmd[6] = 0x00;
1421 cmd[7] = 0x10;
1422 cmd[8] = 0x05;
1423 cmd[9]= 0xe0; // always e0 (not exactly unique)
1424 // Parameter
1425 cmd[10] = 0x05; // for custom codes this must be manufcturer code
1426 cmd[11] = 0x00;
1427
1428 // cmd[12] = 0x00;
1429 // cmd[13] = 0x00; //Now the CRC
1430 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1431 cmd[12] = crc & 0xff;
1432 cmd[13] = crc >> 8;
1433
1434 CodeIso15693AsReader(cmd, sizeof(cmd));
1435 }
1436
1437
1438
1439
1440 */
1441
1442
Impressum, Datenschutz