]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
d976febc612eb577e205bd1096247106fb60352c
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12 #include "usb_cdc.h"
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18 #include "legicrf.h"
19 #include "lfsampling.h"
20 #include "BigBuf.h"
21 #include "mifareutil.h"
22
23 #ifdef WITH_LCD
24 #include "LCD.h"
25 #endif
26
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
31 #endif
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax = 0;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void ToSendReset(void)
46 {
47 ToSendMax = -1;
48 ToSendBit = 8;
49 }
50
51 void ToSendStuffBit(int b) {
52 if(ToSendBit >= 8) {
53 ++ToSendMax;
54 ToSend[ToSendMax] = 0;
55 ToSendBit = 0;
56 }
57
58 if(b)
59 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
60
61 ++ToSendBit;
62
63 if(ToSendMax >= sizeof(ToSend)) {
64 ToSendBit = 0;
65 DbpString("ToSendStuffBit overflowed!");
66 }
67 }
68
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax, ToSend, 0);
72 }
73
74 void print_result(char *name, uint8_t *buf, size_t len) {
75 uint8_t *p = buf;
76
77 if ( len % 16 == 0 ) {
78 for(; p-buf < len; p += 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
80 name,
81 p-buf,
82 len,
83 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
84 );
85 }
86 else {
87 for(; p-buf < len; p += 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
89 name,
90 p-buf,
91 len,
92 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
93 }
94 }
95
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
99
100 void DbpStringEx(char *str, uint32_t cmd){
101 byte_t len = strlen(str);
102 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
103 }
104
105 void DbpString(char *str) {
106 DbpStringEx(str, 0);
107 }
108
109 #if 0
110 void DbpIntegers(int x1, int x2, int x3) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
112 }
113 #endif
114 void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string[128] = {0x00};
117 va_list ap;
118
119 va_start(ap, fmt);
120 kvsprintf(fmt, output_string, 10, ap);
121 va_end(ap);
122
123 DbpStringEx(output_string, cmd);
124 }
125
126 void Dbprintf(const char *fmt, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string[128] = {0x00};
129 va_list ap;
130
131 va_start(ap, fmt);
132 kvsprintf(fmt, output_string, 10, ap);
133 va_end(ap);
134
135 DbpString(output_string);
136 }
137
138 // prints HEX & ASCII
139 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
140 int l=0, i;
141 char ascii[9];
142
143 while (len>0) {
144
145 l = (len>8) ? 8 : len;
146
147 memcpy(ascii,d,l);
148 ascii[l]=0;
149
150 // filter safe ascii
151 for (i=0; i<l; ++i)
152 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
153
154 if (bAsci)
155 Dbprintf("%-8s %*D",ascii,l,d," ");
156 else
157 Dbprintf("%*D",l,d," ");
158
159 len -= 8;
160 d += 8;
161 }
162 }
163
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
167 // return that.
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch)
170 {
171 uint32_t d;
172
173 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
174 AT91C_BASE_ADC->ADC_MR =
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
178
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
182 //
183 // The maths are:
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
185 //
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
187 //
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
189
190 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
191
192 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
193
194 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
195
196 d = AT91C_BASE_ADC->ADC_CDR[ch];
197 return d;
198 }
199
200 int AvgAdc(int ch) // was static - merlok
201 {
202 int i, a = 0;
203 for(i = 0; i < 32; ++i)
204 a += ReadAdc(ch);
205
206 return (a + 15) >> 5;
207 }
208
209
210 void MeasureAntennaTuning(void) {
211
212 uint8_t LF_Results[256];
213 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
214 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
215
216 memset(LF_Results, 0, sizeof(LF_Results));
217 LED_B_ON();
218
219 /*
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
226 */
227
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
230
231 for (i = 255; i >= 19; i--) {
232 WDT_HIT();
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
234 SpinDelay(20);
235 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
236 if (i==95) vLf125 = adcval; // voltage at 125Khz
237 if (i==89) vLf134 = adcval; // voltage at 134Khz
238
239 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results[i] > peak) {
241 peakv = adcval;
242 peak = LF_Results[i];
243 peakf = i;
244 }
245 }
246
247 LED_A_ON();
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
251 SpinDelay(20);
252 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
253
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256 LEDsoff();
257 }
258
259 void MeasureAntennaTuningHf(void) {
260 int vHf = 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
264
265 while ( !BUTTON_PRESS() ){
266 SpinDelay(20);
267 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
270 }
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
272 DbpString("cancelled");
273 }
274
275
276 void ReadMem(int addr) {
277 const uint8_t *data = ((uint8_t *)addr);
278
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
281 }
282
283 /* osimage version information is linked in */
284 extern struct version_information version_information;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
287 void SendVersion(void)
288 {
289 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
290 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
291
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
295 */
296 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
297
298 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
299 strcat(VersionString, "bootrom version information appears invalid\n");
300 } else {
301 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
302 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
303 }
304
305 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
306 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
307
308 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
309 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
310
311 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
312 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
313
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
316 uint32_t compressed_data_section_size = common_area.arg1;
317 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
318 }
319
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
323 {
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
326
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data = BigBuf_get_addr();
329 uint32_t end_time;
330
331 uint32_t start_time = end_time = GetTickCount();
332 uint32_t bytes_transferred = 0;
333
334 LED_B_ON();
335 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
337 end_time = GetTickCount();
338 bytes_transferred += USB_CMD_DATA_SIZE;
339 }
340 LED_B_OFF();
341
342 Dbprintf(" Time elapsed: %dms", end_time - start_time);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred / (end_time - start_time));
346
347 }
348
349 /**
350 * Prints runtime information about the PM3.
351 **/
352 void SendStatus(void) {
353 BigBuf_print_status();
354 Fpga_print_status();
355 printConfig(); //LF Sampling config
356 printUSBSpeed();
357 Dbprintf("Various");
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
359 Dbprintf(" ToSendMax..........%d", ToSendMax);
360 Dbprintf(" ToSendBit..........%d", ToSendBit);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
362
363 cmd_send(CMD_ACK,1,0,0,0,0);
364 }
365
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
367
368 #define OPTS 2
369 void StandAloneMode()
370 {
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
373 LED(LED_RED, 200);
374 LED(LED_ORANGE, 200);
375 LED(LED_GREEN, 200);
376 LED(LED_ORANGE, 200);
377 LED(LED_RED, 200);
378 LED(LED_ORANGE, 200);
379 LED(LED_GREEN, 200);
380 LED(LED_ORANGE, 200);
381 LED(LED_RED, 200);
382 }
383 #endif
384
385 #ifdef WITH_ISO14443a_StandAlone
386
387 typedef struct {
388 uint8_t uid[10];
389 uint8_t uidlen;
390 uint8_t atqa[2];
391 uint8_t sak;
392 } __attribute__((__packed__)) card_clone_t;
393
394 void StandAloneMode14a()
395 {
396 StandAloneMode();
397 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
398
399 int selected = 0, playing = 0, iGotoRecord = 0, iGotoClone = 0;
400 int cardRead[OPTS] = {0};
401
402 card_clone_t uids[OPTS];
403 iso14a_card_select_t card_info[OPTS];
404 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
405
406 LED(selected + 1, 0);
407
408 for (;;)
409 {
410 usb_poll();
411 WDT_HIT();
412 SpinDelay(300);
413
414 if (iGotoRecord == 1 || cardRead[selected] == 0)
415 {
416 iGotoRecord = 0;
417 LEDsoff();
418 LED(selected + 1, 0);
419 LED(LED_RED2, 0);
420
421 // record
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
426
427 for ( ; ; )
428 {
429 WDT_HIT();
430 if (BUTTON_PRESS()) {
431 if (cardRead[selected]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
433 break;
434 }
435 else if (cardRead[(selected+1) % OPTS]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
437 selected = (selected+1) % OPTS;
438 break; // playing = 1;
439 }
440 else {
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
442 SpinDelay(300);
443 }
444 }
445 if (!iso14443a_select_card(NULL, &card_info[selected], NULL, true, 0))
446 continue;
447 else
448 {
449 Dbprintf("Read UID:");
450 Dbhexdump(card_info[selected].uidlen, card_info[selected].uid, 0);
451
452 if (memcmp(uids[(selected+1)%OPTS].uid, card_info[selected].uid, card_info[selected].uidlen ) == 0 ) {
453 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
454 }
455 else {
456
457 uids[selected].sak = card_info[selected].sak;
458 uids[selected].uidlen = card_info[selected].uidlen;
459 memcpy(uids[selected].uid , card_info[selected].uid, uids[selected].uidlen);
460 memcpy(uids[selected].atqa, card_info[selected].atqa, 2);
461
462 if (uids[selected].uidlen > 4)
463 Dbprintf("Bank[%d] received a 7-byte UID", selected);
464 else
465 Dbprintf("Bank[%d] received a 4-byte UID", selected);
466 break;
467 }
468 }
469 }
470 Dbprintf("ATQA = %02X%02X", uids[selected].atqa[0], uids[selected].atqa[1]);
471 Dbprintf("SAK = %02X", uids[selected].sak);
472 LEDsoff();
473 LED(LED_GREEN, 200);
474 LED(LED_ORANGE, 200);
475 LED(LED_GREEN, 200);
476 LED(LED_ORANGE, 200);
477
478 LEDsoff();
479 LED(selected + 1, 0);
480
481 // Next state is replay:
482 playing = 1;
483
484 cardRead[selected] = 1;
485 }
486 /* MF Classic UID clone */
487 else if (iGotoClone==1)
488 {
489 iGotoClone=0;
490 LEDsoff();
491 LED(selected + 1, 0);
492 LED(LED_ORANGE, 250);
493
494 // magiccards holds 4bytes uid.
495 uint64_t tmpuid = bytes_to_num(uids[selected].uid, 4);
496
497 // record
498 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, tmpuid & 0xFFFFFFFF);
499
500 // wait for button to be released
501 // Delay cloning until card is in place
502 while(BUTTON_PRESS())
503 WDT_HIT();
504
505 Dbprintf("Starting clone. [Bank: %u]", selected);
506 // need this delay to prevent catching some weird data
507 SpinDelay(500);
508 // Begin clone function here:
509 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
510 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
511 memcpy(c.d.asBytes, data, 16);
512 SendCommand(&c);
513
514 Block read is similar:
515 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
516 We need to imitate that call with blockNo 0 to set a uid.
517
518 The get and set commands are handled in this file:
519 // Work with "magic Chinese" card
520 case CMD_MIFARE_CSETBLOCK:
521 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
522 break;
523 case CMD_MIFARE_CGETBLOCK:
524 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
525 break;
526
527 mfCSetUID provides example logic for UID set workflow:
528 -Read block0 from card in field with MifareCGetBlock()
529 -Configure new values without replacing reserved bytes
530 memcpy(block0, uid, 4); // Copy UID bytes from byte array
531 // Mifare UID BCC
532 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
533 Bytes 5-7 are reserved SAK and ATQA for mifare classic
534 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
535 */
536 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
537 // arg0 = Flags, arg1=blockNo
538 MifareCGetBlock(params, 0, oldBlock0);
539 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
540 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
541 playing = 1;
542 }
543 else {
544 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
545 memcpy(newBlock0, oldBlock0, 16);
546
547 // Copy uid for bank (2nd is for longer UIDs not supported if classic)
548 memcpy(newBlock0, uids[selected].uid, 4);
549 newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
550
551 // arg0 = workFlags, arg1 = blockNo, datain
552 MifareCSetBlock(params, 0, newBlock0);
553 MifareCGetBlock(params, 0, testBlock0);
554
555 if (memcmp(testBlock0, newBlock0, 16)==0) {
556 DbpString("Cloned successfull!");
557 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
558 playing = 0;
559 iGotoRecord = 1;
560 selected = (selected + 1) % OPTS;
561 } else {
562 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
563 playing = 1;
564 }
565 }
566 LEDsoff();
567 LED(selected + 1, 0);
568 }
569 // Change where to record (or begin playing)
570 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
571 {
572 LEDsoff();
573 LED(selected + 1, 0);
574
575 // Begin transmitting
576 if (playing)
577 {
578 LED(LED_GREEN, 0);
579 DbpString("Playing");
580 for ( ; ; ) {
581 WDT_HIT();
582 int button_action = BUTTON_HELD(1000);
583 if (button_action == 0) { // No button action, proceed with sim
584
585 uint8_t flags = FLAG_4B_UID_IN_DATA;
586 uint8_t data[USB_CMD_DATA_SIZE] = {0}; // in case there is a read command received we shouldn't break
587
588 memcpy(data, uids[selected].uid, uids[selected].uidlen);
589
590 uint64_t tmpuid = bytes_to_num(uids[selected].uid, uids[selected].uidlen);
591
592 if ( uids[selected].uidlen == 7 ) {
593 flags = FLAG_7B_UID_IN_DATA;
594 Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid >> 32, tmpuid & 0xFFFFFFFF , selected);
595 } else {
596 Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid & 0xFFFFFFFF , selected);
597 }
598
599 if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0) {
600 DbpString("Mifare Classic 1k");
601 SimulateIso14443aTag(1, flags, data);
602 } else if (uids[selected].sak == 0x18 && uids[selected].atqa[0] == 0x02 && uids[selected].atqa[1] == 0) {
603 DbpString("Mifare Classic 4k (4b uid)");
604 SimulateIso14443aTag(8, flags, data);
605 } else if (uids[selected].sak == 0x08 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) {
606 DbpString("Mifare Classic 4k (7b uid)");
607 SimulateIso14443aTag(8, flags, data);
608 } else if (uids[selected].sak == 0x00 && uids[selected].atqa[0] == 0x44 && uids[selected].atqa[1] == 0) {
609 DbpString("Mifare Ultralight");
610 SimulateIso14443aTag(2, flags, data);
611 } else if (uids[selected].sak == 0x20 && uids[selected].atqa[0] == 0x04 && uids[selected].atqa[1] == 0x03) {
612 DbpString("Mifare DESFire");
613 SimulateIso14443aTag(3, flags, data);
614 }
615 else {
616 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
617 SimulateIso14443aTag(1, flags, data);
618 }
619 }
620 else if (button_action == BUTTON_SINGLE_CLICK) {
621 selected = (selected + 1) % OPTS;
622 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
623 iGotoRecord = 1;
624 break;
625 }
626 else if (button_action == BUTTON_HOLD) {
627 Dbprintf("Playtime over. Begin cloning...");
628 iGotoClone = 1;
629 break;
630 }
631 WDT_HIT();
632 }
633
634 /* We pressed a button so ignore it here with a delay */
635 SpinDelay(300);
636 LEDsoff();
637 LED(selected + 1, 0);
638 }
639 else
640 while(BUTTON_PRESS())
641 WDT_HIT();
642 }
643 }
644 }
645 #elif WITH_LF
646 // samy's sniff and repeat routine
647 void SamyRun()
648 {
649 StandAloneMode();
650 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
651
652 int high[OPTS], low[OPTS];
653 int selected = 0;
654 int playing = 0;
655 int cardRead = 0;
656
657 // Turn on selected LED
658 LED(selected + 1, 0);
659
660 for (;;) {
661 usb_poll();
662 WDT_HIT();
663
664 // Was our button held down or pressed?
665 int button_pressed = BUTTON_HELD(1000);
666 SpinDelay(300);
667
668 // Button was held for a second, begin recording
669 if (button_pressed > 0 && cardRead == 0)
670 {
671 LEDsoff();
672 LED(selected + 1, 0);
673 LED(LED_RED2, 0);
674
675 // record
676 DbpString("Starting recording");
677
678 // wait for button to be released
679 while(BUTTON_PRESS())
680 WDT_HIT();
681
682 /* need this delay to prevent catching some weird data */
683 SpinDelay(500);
684
685 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
686 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
687
688 LEDsoff();
689 LED(selected + 1, 0);
690 // Finished recording
691 // If we were previously playing, set playing off
692 // so next button push begins playing what we recorded
693 playing = 0;
694 cardRead = 1;
695 }
696 else if (button_pressed > 0 && cardRead == 1) {
697 LEDsoff();
698 LED(selected + 1, 0);
699 LED(LED_ORANGE, 0);
700
701 // record
702 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
703
704 // wait for button to be released
705 while(BUTTON_PRESS())
706 WDT_HIT();
707
708 /* need this delay to prevent catching some weird data */
709 SpinDelay(500);
710
711 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
712 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
713
714 LEDsoff();
715 LED(selected + 1, 0);
716 // Finished recording
717
718 // If we were previously playing, set playing off
719 // so next button push begins playing what we recorded
720 playing = 0;
721 cardRead = 0;
722 }
723
724 // Change where to record (or begin playing)
725 else if (button_pressed) {
726 // Next option if we were previously playing
727 if (playing)
728 selected = (selected + 1) % OPTS;
729 playing = !playing;
730
731 LEDsoff();
732 LED(selected + 1, 0);
733
734 // Begin transmitting
735 if (playing)
736 {
737 LED(LED_GREEN, 0);
738 DbpString("Playing");
739 // wait for button to be released
740 while(BUTTON_PRESS())
741 WDT_HIT();
742
743 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
744 CmdHIDsimTAG(high[selected], low[selected], 0);
745 DbpString("Done playing");
746
747 if (BUTTON_HELD(1000) > 0) {
748 DbpString("Exiting");
749 LEDsoff();
750 return;
751 }
752
753 /* We pressed a button so ignore it here with a delay */
754 SpinDelay(300);
755
756 // when done, we're done playing, move to next option
757 selected = (selected + 1) % OPTS;
758 playing = !playing;
759 LEDsoff();
760 LED(selected + 1, 0);
761 }
762 else
763 while(BUTTON_PRESS())
764 WDT_HIT();
765 }
766 }
767 }
768
769 #endif
770 /*
771 OBJECTIVE
772 Listen and detect an external reader. Determine the best location
773 for the antenna.
774
775 INSTRUCTIONS:
776 Inside the ListenReaderField() function, there is two mode.
777 By default, when you call the function, you will enter mode 1.
778 If you press the PM3 button one time, you will enter mode 2.
779 If you press the PM3 button a second time, you will exit the function.
780
781 DESCRIPTION OF MODE 1:
782 This mode just listens for an external reader field and lights up green
783 for HF and/or red for LF. This is the original mode of the detectreader
784 function.
785
786 DESCRIPTION OF MODE 2:
787 This mode will visually represent, using the LEDs, the actual strength of the
788 current compared to the maximum current detected. Basically, once you know
789 what kind of external reader is present, it will help you spot the best location to place
790 your antenna. You will probably not get some good results if there is a LF and a HF reader
791 at the same place! :-)
792
793 LIGHT SCHEME USED:
794 */
795 static const char LIGHT_SCHEME[] = {
796 0x0, /* ---- | No field detected */
797 0x1, /* X--- | 14% of maximum current detected */
798 0x2, /* -X-- | 29% of maximum current detected */
799 0x4, /* --X- | 43% of maximum current detected */
800 0x8, /* ---X | 57% of maximum current detected */
801 0xC, /* --XX | 71% of maximum current detected */
802 0xE, /* -XXX | 86% of maximum current detected */
803 0xF, /* XXXX | 100% of maximum current detected */
804 };
805 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
806
807 void ListenReaderField(int limit) {
808 #define LF_ONLY 1
809 #define HF_ONLY 2
810 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
811
812 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
813 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
814 int mode=1, display_val, display_max, i;
815
816 // switch off FPGA - we don't want to measure our own signal
817 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
818 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
819
820 LEDsoff();
821
822 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
823
824 if(limit != HF_ONLY) {
825 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
826 lf_baseline = lf_av;
827 }
828
829 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
830
831 if (limit != LF_ONLY) {
832 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
833 hf_baseline = hf_av;
834 }
835
836 for(;;) {
837 if (BUTTON_PRESS()) {
838 SpinDelay(500);
839 switch (mode) {
840 case 1:
841 mode=2;
842 DbpString("Signal Strength Mode");
843 break;
844 case 2:
845 default:
846 DbpString("Stopped");
847 LEDsoff();
848 return;
849 break;
850 }
851 }
852 WDT_HIT();
853
854 if (limit != HF_ONLY) {
855 if(mode == 1) {
856 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
857 LED_D_ON();
858 else
859 LED_D_OFF();
860 }
861
862 lf_av_new = AvgAdc(ADC_CHAN_LF);
863 // see if there's a significant change
864 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
865 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
866 lf_av = lf_av_new;
867 if (lf_av > lf_max)
868 lf_max = lf_av;
869 }
870 }
871
872 if (limit != LF_ONLY) {
873 if (mode == 1){
874 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
875 LED_B_ON();
876 else
877 LED_B_OFF();
878 }
879
880 hf_av_new = AvgAdc(ADC_CHAN_HF);
881 // see if there's a significant change
882 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
883 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
884 hf_av = hf_av_new;
885 if (hf_av > hf_max)
886 hf_max = hf_av;
887 }
888 }
889
890 if(mode == 2) {
891 if (limit == LF_ONLY) {
892 display_val = lf_av;
893 display_max = lf_max;
894 } else if (limit == HF_ONLY) {
895 display_val = hf_av;
896 display_max = hf_max;
897 } else { /* Pick one at random */
898 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
899 display_val = hf_av;
900 display_max = hf_max;
901 } else {
902 display_val = lf_av;
903 display_max = lf_max;
904 }
905 }
906 for (i=0; i<LIGHT_LEN; i++) {
907 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
908 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
909 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
910 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
911 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
912 break;
913 }
914 }
915 }
916 }
917 }
918
919 void UsbPacketReceived(uint8_t *packet, int len)
920 {
921 UsbCommand *c = (UsbCommand *)packet;
922
923 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
924
925 switch(c->cmd) {
926 #ifdef WITH_LF
927 case CMD_SET_LF_SAMPLING_CONFIG:
928 setSamplingConfig((sample_config *) c->d.asBytes);
929 break;
930 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
931 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
932 break;
933 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
934 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
935 break;
936 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
937 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
938 break;
939 case CMD_HID_DEMOD_FSK:
940 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
941 break;
942 case CMD_HID_SIM_TAG:
943 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
944 break;
945 case CMD_FSK_SIM_TAG:
946 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
947 break;
948 case CMD_ASK_SIM_TAG:
949 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
950 break;
951 case CMD_PSK_SIM_TAG:
952 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
953 break;
954 case CMD_HID_CLONE_TAG:
955 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
956 break;
957 case CMD_IO_DEMOD_FSK:
958 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
959 break;
960 case CMD_IO_CLONE_TAG:
961 CopyIOtoT55x7(c->arg[0], c->arg[1]);
962 break;
963 case CMD_EM410X_DEMOD:
964 CmdEM410xdemod(c->arg[0], 0, 0, 1);
965 break;
966 case CMD_EM410X_WRITE_TAG:
967 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
968 break;
969 case CMD_READ_TI_TYPE:
970 ReadTItag();
971 break;
972 case CMD_WRITE_TI_TYPE:
973 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
974 break;
975 case CMD_SIMULATE_TAG_125K:
976 LED_A_ON();
977 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
978 LED_A_OFF();
979 break;
980 case CMD_LF_SIMULATE_BIDIR:
981 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
982 break;
983 case CMD_INDALA_CLONE_TAG:
984 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
985 break;
986 case CMD_INDALA_CLONE_TAG_L:
987 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
988 break;
989 case CMD_T55XX_READ_BLOCK:
990 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
991 break;
992 case CMD_T55XX_WRITE_BLOCK:
993 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
994 break;
995 case CMD_T55XX_WAKEUP:
996 T55xxWakeUp(c->arg[0]);
997 break;
998 case CMD_T55XX_RESET_READ:
999 T55xxResetRead();
1000 break;
1001 case CMD_PCF7931_READ:
1002 ReadPCF7931();
1003 break;
1004 case CMD_PCF7931_WRITE:
1005 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
1006 break;
1007 case CMD_EM4X_READ_WORD:
1008 EM4xReadWord(c->arg[0], c->arg[1], c->arg[2]);
1009 break;
1010 case CMD_EM4X_WRITE_WORD:
1011 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1012 break;
1013 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1014 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1015 break;
1016 case CMD_VIKING_CLONE_TAG:
1017 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1018 break;
1019 case CMD_COTAG:
1020 Cotag(c->arg[0]);
1021 break;
1022 #endif
1023
1024 #ifdef WITH_HITAG
1025 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1026 SnoopHitag(c->arg[0]);
1027 break;
1028 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1029 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1030 break;
1031 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1032 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1033 break;
1034 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1035 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1036 break;
1037 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1038 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1039 break;
1040 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
1041 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1042 break;
1043 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
1044 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1045 break;
1046 #endif
1047
1048 #ifdef WITH_ISO15693
1049 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1050 AcquireRawAdcSamplesIso15693();
1051 break;
1052 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1053 RecordRawAdcSamplesIso15693();
1054 break;
1055 case CMD_ISO_15693_COMMAND:
1056 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1057 break;
1058 case CMD_ISO_15693_FIND_AFI:
1059 BruteforceIso15693Afi(c->arg[0]);
1060 break;
1061 case CMD_ISO_15693_DEBUG:
1062 SetDebugIso15693(c->arg[0]);
1063 break;
1064 case CMD_READER_ISO_15693:
1065 ReaderIso15693(c->arg[0]);
1066 break;
1067 case CMD_SIMTAG_ISO_15693:
1068 SimTagIso15693(c->arg[0], c->d.asBytes);
1069 break;
1070 #endif
1071
1072 #ifdef WITH_LEGICRF
1073 case CMD_SIMULATE_TAG_LEGIC_RF:
1074 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1075 break;
1076 case CMD_WRITER_LEGIC_RF:
1077 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1078 break;
1079 case CMD_READER_LEGIC_RF:
1080 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
1081 break;
1082 case CMD_LEGIC_INFO:
1083 LegicRfInfo();
1084 break;
1085 case CMD_LEGIC_ESET:
1086 LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes);
1087 break;
1088 #endif
1089
1090 #ifdef WITH_ISO14443b
1091 case CMD_READ_SRI_TAG:
1092 ReadSTMemoryIso14443b(c->arg[0]);
1093 break;
1094 case CMD_SNOOP_ISO_14443B:
1095 SnoopIso14443b();
1096 break;
1097 case CMD_SIMULATE_TAG_ISO_14443B:
1098 SimulateIso14443bTag(c->arg[0]);
1099 break;
1100 case CMD_ISO_14443B_COMMAND:
1101 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1102 SendRawCommand14443B_Ex(c);
1103 break;
1104 #endif
1105
1106 #ifdef WITH_ISO14443a
1107 case CMD_SNOOP_ISO_14443a:
1108 SniffIso14443a(c->arg[0]);
1109 break;
1110 case CMD_READER_ISO_14443a:
1111 ReaderIso14443a(c);
1112 break;
1113 case CMD_SIMULATE_TAG_ISO_14443a:
1114 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1115 break;
1116 case CMD_EPA_PACE_COLLECT_NONCE:
1117 EPA_PACE_Collect_Nonce(c);
1118 break;
1119 case CMD_EPA_PACE_REPLAY:
1120 EPA_PACE_Replay(c);
1121 break;
1122 case CMD_READER_MIFARE:
1123 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
1124 break;
1125 case CMD_MIFARE_READBL:
1126 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1127 break;
1128 case CMD_MIFAREU_READBL:
1129 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1130 break;
1131 case CMD_MIFAREUC_AUTH:
1132 MifareUC_Auth(c->arg[0],c->d.asBytes);
1133 break;
1134 case CMD_MIFAREU_READCARD:
1135 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1136 break;
1137 case CMD_MIFAREUC_SETPWD:
1138 MifareUSetPwd(c->arg[0], c->d.asBytes);
1139 break;
1140 case CMD_MIFARE_READSC:
1141 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1142 break;
1143 case CMD_MIFARE_WRITEBL:
1144 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
1146 //case CMD_MIFAREU_WRITEBL_COMPAT:
1147 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1148 //break;
1149 case CMD_MIFAREU_WRITEBL:
1150 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1151 break;
1152 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1153 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1154 break;
1155 case CMD_MIFARE_NESTED:
1156 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1157 break;
1158 case CMD_MIFARE_CHKKEYS:
1159 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1160 break;
1161 case CMD_SIMULATE_MIFARE_CARD:
1162 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1163 break;
1164
1165 // emulator
1166 case CMD_MIFARE_SET_DBGMODE:
1167 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1168 break;
1169 case CMD_MIFARE_EML_MEMCLR:
1170 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1171 break;
1172 case CMD_MIFARE_EML_MEMSET:
1173 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1174 break;
1175 case CMD_MIFARE_EML_MEMGET:
1176 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1177 break;
1178 case CMD_MIFARE_EML_CARDLOAD:
1179 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1180 break;
1181
1182 // Work with "magic Chinese" card
1183 case CMD_MIFARE_CSETBLOCK:
1184 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1185 break;
1186 case CMD_MIFARE_CGETBLOCK:
1187 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1188 break;
1189 case CMD_MIFARE_CIDENT:
1190 MifareCIdent();
1191 break;
1192
1193 // mifare sniffer
1194 case CMD_MIFARE_SNIFFER:
1195 SniffMifare(c->arg[0]);
1196 break;
1197
1198 //mifare desfire
1199 case CMD_MIFARE_DESFIRE_READBL: break;
1200 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1201 case CMD_MIFARE_DESFIRE_AUTH1:
1202 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1203 break;
1204 case CMD_MIFARE_DESFIRE_AUTH2:
1205 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1206 break;
1207 case CMD_MIFARE_DES_READER:
1208 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1209 break;
1210 case CMD_MIFARE_DESFIRE_INFO:
1211 MifareDesfireGetInformation();
1212 break;
1213 case CMD_MIFARE_DESFIRE:
1214 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1215 break;
1216 case CMD_MIFARE_COLLECT_NONCES:
1217 break;
1218 #endif
1219 #ifdef WITH_EMV
1220 case CMD_EMV_TRANSACTION:
1221 EMVTransaction();
1222 break;
1223 case CMD_EMV_GET_RANDOM_NUM:
1224 //EMVgetUDOL();
1225 break;
1226 case CMD_EMV_LOAD_VALUE:
1227 EMVloadvalue(c->arg[0], c->d.asBytes);
1228 break;
1229 case CMD_EMV_DUMP_CARD:
1230 EMVdumpcard();
1231 break;
1232 /*
1233 case CMD_EMV_READ_RECORD:
1234 EMVReadRecord(c->arg[0], c->arg[1], NULL);
1235 break;
1236 case CMD_EMV_CLONE:
1237 EMVClone(c->arg[0], c->arg[1]);
1238 break;
1239 case CMD_EMV_SIM:
1240 EMVSim();
1241 break;
1242 case CMD_EMV_TEST:
1243 EMVTest();
1244 break;
1245 case CMD_EMV_FUZZ_RATS:
1246 EMVFuzz_RATS(c->arg[0],c->d.asBytes);
1247 break;
1248 */
1249 #endif
1250 #ifdef WITH_ICLASS
1251 // Makes use of ISO14443a FPGA Firmware
1252 case CMD_SNOOP_ICLASS:
1253 SnoopIClass();
1254 break;
1255 case CMD_SIMULATE_TAG_ICLASS:
1256 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1257 break;
1258 case CMD_READER_ICLASS:
1259 ReaderIClass(c->arg[0]);
1260 break;
1261 case CMD_READER_ICLASS_REPLAY:
1262 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1263 break;
1264 case CMD_ICLASS_EML_MEMSET:
1265 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1266 break;
1267 case CMD_ICLASS_WRITEBLOCK:
1268 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1269 break;
1270 case CMD_ICLASS_READCHECK: // auth step 1
1271 iClass_ReadCheck(c->arg[0], c->arg[1]);
1272 break;
1273 case CMD_ICLASS_READBLOCK:
1274 iClass_ReadBlk(c->arg[0]);
1275 break;
1276 case CMD_ICLASS_AUTHENTICATION: //check
1277 iClass_Authentication(c->d.asBytes);
1278 break;
1279 case CMD_ICLASS_DUMP:
1280 iClass_Dump(c->arg[0], c->arg[1]);
1281 break;
1282 case CMD_ICLASS_CLONE:
1283 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1284 break;
1285 #endif
1286 #ifdef WITH_HFSNOOP
1287 case CMD_HF_SNIFFER:
1288 HfSnoop(c->arg[0], c->arg[1]);
1289 break;
1290 #endif
1291
1292 case CMD_BUFF_CLEAR:
1293 BigBuf_Clear();
1294 break;
1295
1296 case CMD_MEASURE_ANTENNA_TUNING:
1297 MeasureAntennaTuning();
1298 break;
1299
1300 case CMD_MEASURE_ANTENNA_TUNING_HF:
1301 MeasureAntennaTuningHf();
1302 break;
1303
1304 case CMD_LISTEN_READER_FIELD:
1305 ListenReaderField(c->arg[0]);
1306 break;
1307
1308 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1309 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1310 SpinDelay(200);
1311 LED_D_OFF(); // LED D indicates field ON or OFF
1312 break;
1313
1314 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1315 LED_B_ON();
1316 uint8_t *BigBuf = BigBuf_get_addr();
1317 size_t len = 0;
1318 size_t startidx = c->arg[0];
1319 uint8_t isok = FALSE;
1320 // arg0 = startindex
1321 // arg1 = length bytes to transfer
1322 // arg2 = RFU
1323 //Dbprintf("transfer to client parameters: %" PRIu64 " | %" PRIu64 " | %" PRIu64, c->arg[0], c->arg[1], c->arg[2]);
1324
1325 for(size_t i = 0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1326 len = MIN( (c->arg[1] - i), USB_CMD_DATA_SIZE);
1327 isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), BigBuf + startidx + i, len);
1328 if (!isok)
1329 Dbprintf("transfer to client failed :: | bytes %d", len);
1330 }
1331 // Trigger a finish downloading signal with an ACK frame
1332 cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config));
1333 LED_B_OFF();
1334 break;
1335 }
1336 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1337 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1338 // to be able to use this one for uploading data to device
1339 // arg1 = 0 upload for LF usage
1340 // 1 upload for HF usage
1341 if ( c->arg[1] == 0 )
1342 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1343 else
1344 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1345 uint8_t *b = BigBuf_get_addr();
1346 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1347 cmd_send(CMD_ACK,1,0,0,0,0);
1348 break;
1349 }
1350 case CMD_DOWNLOAD_EML_BIGBUF: {
1351 LED_B_ON();
1352 uint8_t *cardmem = BigBuf_get_EM_addr();
1353 size_t len = 0;
1354 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1355 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1356 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1357 }
1358 // Trigger a finish downloading signal with an ACK frame
1359 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1360 LED_B_OFF();
1361 break;
1362 }
1363 case CMD_READ_MEM:
1364 ReadMem(c->arg[0]);
1365 break;
1366
1367 case CMD_SET_LF_DIVISOR:
1368 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1369 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1370 break;
1371
1372 case CMD_SET_ADC_MUX:
1373 switch(c->arg[0]) {
1374 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1375 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1376 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1377 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1378 }
1379 break;
1380
1381 case CMD_VERSION:
1382 SendVersion();
1383 break;
1384 case CMD_STATUS:
1385 SendStatus();
1386 break;
1387 case CMD_PING:
1388 cmd_send(CMD_ACK,0,0,0,0,0);
1389 break;
1390 #ifdef WITH_LCD
1391 case CMD_LCD_RESET:
1392 LCDReset();
1393 break;
1394 case CMD_LCD:
1395 LCDSend(c->arg[0]);
1396 break;
1397 #endif
1398 case CMD_SETUP_WRITE:
1399 case CMD_FINISH_WRITE:
1400 case CMD_HARDWARE_RESET:
1401 usb_disable();
1402 SpinDelay(2000);
1403 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1404 for(;;) {
1405 // We're going to reset, and the bootrom will take control.
1406 }
1407 break;
1408
1409 case CMD_START_FLASH:
1410 if(common_area.flags.bootrom_present) {
1411 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1412 }
1413 usb_disable();
1414 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1415 for(;;);
1416 break;
1417
1418 case CMD_DEVICE_INFO: {
1419 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1420 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1421 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1422 break;
1423 }
1424 default:
1425 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1426 break;
1427 }
1428 }
1429
1430 void __attribute__((noreturn)) AppMain(void)
1431 {
1432 SpinDelay(100);
1433 clear_trace();
1434 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1435 /* Initialize common area */
1436 memset(&common_area, 0, sizeof(common_area));
1437 common_area.magic = COMMON_AREA_MAGIC;
1438 common_area.version = 1;
1439 }
1440 common_area.flags.osimage_present = 1;
1441
1442 LEDsoff();
1443
1444 // Init USB device
1445 usb_enable();
1446
1447 // The FPGA gets its clock from us from PCK0 output, so set that up.
1448 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1449 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1450 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1451 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1452 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1453 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1454
1455 // Reset SPI
1456 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1457 // Reset SSC
1458 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1459
1460 // Load the FPGA image, which we have stored in our flash.
1461 // (the HF version by default)
1462 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1463
1464 StartTickCount();
1465
1466 #ifdef WITH_LCD
1467 LCDInit();
1468 #endif
1469
1470 byte_t rx[sizeof(UsbCommand)];
1471 size_t rx_len;
1472
1473 for(;;) {
1474 if ( usb_poll_validate_length() ) {
1475 rx_len = usb_read(rx, sizeof(UsbCommand));
1476
1477 if (rx_len)
1478 UsbPacketReceived(rx, rx_len);
1479 }
1480 WDT_HIT();
1481
1482 #ifdef WITH_LF
1483 #ifndef WITH_ISO14443a_StandAlone
1484 if (BUTTON_HELD(1000) > 0)
1485 SamyRun();
1486 #endif
1487 #endif
1488 #ifdef WITH_ISO14443a
1489 #ifdef WITH_ISO14443a_StandAlone
1490 if (BUTTON_HELD(1000) > 0)
1491 StandAloneMode14a();
1492 #endif
1493 #endif
1494 }
1495 }
Impressum, Datenschutz