]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso15693.c
dbc1ca4c4a48101331282c9f504e91e6a4dc1a4a
[proxmark3-svn] / armsrc / iso15693.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
14
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
21 //
22 // VCD (reader) -> VICC (tag)
23 // 1 out of 256:
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
26 // 1 out of 4:
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
29 //
30 // VICC (tag) -> VCD (reader)
31 // Modulation:
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
40
41
42 // Random Remarks:
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
44
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
52
53 #include "iso15693.h"
54
55 #include "proxmark3.h"
56 #include "util.h"
57 #include "apps.h"
58 #include "string.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
61 #include "cmd.h"
62 #include "BigBuf.h"
63 #include "fpgaloader.h"
64
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
66
67 static int DEBUG = 0;
68
69 ///////////////////////////////////////////////////////////////////////
70 // ISO 15693 Part 2 - Air Interface
71 // This section basically contains transmission and receiving of bits
72 ///////////////////////////////////////////////////////////////////////
73
74 // buffers
75 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
76 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
77 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
78
79 // ---------------------------
80 // Signal Processing
81 // ---------------------------
82
83 // prepare data using "1 out of 4" code for later transmission
84 // resulting data rate is 26.48 kbit/s (fc/512)
85 // cmd ... data
86 // n ... length of data
87 static void CodeIso15693AsReader(uint8_t *cmd, int n)
88 {
89 int i, j;
90
91 ToSendReset();
92
93 // Give it a bit of slack at the beginning
94 for(i = 0; i < 24; i++) {
95 ToSendStuffBit(1);
96 }
97
98 // SOF for 1of4
99 ToSendStuffBit(0);
100 ToSendStuffBit(1);
101 ToSendStuffBit(1);
102 ToSendStuffBit(1);
103 ToSendStuffBit(1);
104 ToSendStuffBit(0);
105 ToSendStuffBit(1);
106 ToSendStuffBit(1);
107 for(i = 0; i < n; i++) {
108 for(j = 0; j < 8; j += 2) {
109 int these = (cmd[i] >> j) & 3;
110 switch(these) {
111 case 0:
112 ToSendStuffBit(1);
113 ToSendStuffBit(0);
114 ToSendStuffBit(1);
115 ToSendStuffBit(1);
116 ToSendStuffBit(1);
117 ToSendStuffBit(1);
118 ToSendStuffBit(1);
119 ToSendStuffBit(1);
120 break;
121 case 1:
122 ToSendStuffBit(1);
123 ToSendStuffBit(1);
124 ToSendStuffBit(1);
125 ToSendStuffBit(0);
126 ToSendStuffBit(1);
127 ToSendStuffBit(1);
128 ToSendStuffBit(1);
129 ToSendStuffBit(1);
130 break;
131 case 2:
132 ToSendStuffBit(1);
133 ToSendStuffBit(1);
134 ToSendStuffBit(1);
135 ToSendStuffBit(1);
136 ToSendStuffBit(1);
137 ToSendStuffBit(0);
138 ToSendStuffBit(1);
139 ToSendStuffBit(1);
140 break;
141 case 3:
142 ToSendStuffBit(1);
143 ToSendStuffBit(1);
144 ToSendStuffBit(1);
145 ToSendStuffBit(1);
146 ToSendStuffBit(1);
147 ToSendStuffBit(1);
148 ToSendStuffBit(1);
149 ToSendStuffBit(0);
150 break;
151 }
152 }
153 }
154 // EOF
155 ToSendStuffBit(1);
156 ToSendStuffBit(1);
157 ToSendStuffBit(0);
158 ToSendStuffBit(1);
159
160 // Fill remainder of last byte with 1
161 for(i = 0; i < 4; i++) {
162 ToSendStuffBit(1);
163 }
164
165 ToSendMax++;
166 }
167
168 // encode data using "1 out of 256" scheme
169 // data rate is 1,66 kbit/s (fc/8192)
170 // is designed for more robust communication over longer distances
171 static void CodeIso15693AsReader256(uint8_t *cmd, int n)
172 {
173 int i, j;
174
175 ToSendReset();
176
177 // Give it a bit of slack at the beginning
178 for(i = 0; i < 24; i++) {
179 ToSendStuffBit(1);
180 }
181
182 // SOF for 1of256
183 ToSendStuffBit(0);
184 ToSendStuffBit(1);
185 ToSendStuffBit(1);
186 ToSendStuffBit(1);
187 ToSendStuffBit(1);
188 ToSendStuffBit(1);
189 ToSendStuffBit(1);
190 ToSendStuffBit(0);
191
192 for(i = 0; i < n; i++) {
193 for (j = 0; j<=255; j++) {
194 if (cmd[i]==j) {
195 ToSendStuffBit(1);
196 ToSendStuffBit(0);
197 } else {
198 ToSendStuffBit(1);
199 ToSendStuffBit(1);
200 }
201 }
202 }
203 // EOF
204 ToSendStuffBit(1);
205 ToSendStuffBit(1);
206 ToSendStuffBit(0);
207 ToSendStuffBit(1);
208
209 // Fill remainder of last byte with 1
210 for(i = 0; i < 4; i++) {
211 ToSendStuffBit(1);
212 }
213
214 ToSendMax++;
215 }
216
217
218 // static uint8_t encode4Bits(const uint8_t b) {
219 // uint8_t c = b & 0xF;
220 // // OTA, the least significant bits first
221 // // The columns are
222 // // 1 - Bit value to send
223 // // 2 - Reversed (big-endian)
224 // // 3 - Manchester Encoded
225 // // 4 - Hex values
226
227 // switch(c){
228 // // 1 2 3 4
229 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
230 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
231 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
232 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
233 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
234 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
235 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
236 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
237 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
238 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
239 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
240 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
241 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
242 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
243 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
244 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
245
246 // }
247 // }
248
249 void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
250 /*
251 * SOF comprises 3 parts;
252 * * An unmodulated time of 56.64 us
253 * * 24 pulses of 423.75 kHz (fc/32)
254 * * A logic 1, which starts with an unmodulated time of 18.88us
255 * followed by 8 pulses of 423.75kHz (fc/32)
256 *
257 * EOF comprises 3 parts:
258 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
259 * time of 18.88us.
260 * - 24 pulses of fc/32
261 * - An unmodulated time of 56.64 us
262 *
263 * A logic 0 starts with 8 pulses of fc/32
264 * followed by an unmodulated time of 256/fc (~18,88us).
265 *
266 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
267 * 8 pulses of fc/32 (also 18.88us)
268 *
269 * A bit here becomes 8 pulses of fc/32. Therefore:
270 * The SOF can be written as 00011101 = 0x1D
271 * The EOF can be written as 10111000 = 0xb8
272 * A logic 1 is 01
273 * A logic 0 is 10
274 *
275 * */
276
277 ToSendReset();
278
279 // SOF
280 ToSend[++ToSendMax] = 0x1D; // 00011101
281
282 // data
283 for(int i = 0; i < len; i++) {
284 for(int j = 0; j < 8; j++) {
285 if ((cmd[i] >> j) & 0x01) {
286 ToSendStuffBit(0);
287 ToSendStuffBit(1);
288 } else {
289 ToSendStuffBit(1);
290 ToSendStuffBit(0);
291 }
292 }
293 }
294
295 // EOF
296 ToSend[++ToSendMax] = 0xB8; // 10111000
297
298 ToSendMax++;
299 }
300
301
302 // Transmit the command (to the tag) that was placed in cmd[].
303 static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
304 {
305 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
306 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
307
308 while (GetCountSspClk() < start_time) ;
309
310 LED_B_ON();
311 for(int c = 0; c < len; c++) {
312 uint8_t data = cmd[c];
313 for (int i = 0; i < 8; i++) {
314 uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
315 while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
316 AT91C_BASE_SSC->SSC_THR = send_word;
317 while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
318 AT91C_BASE_SSC->SSC_THR = send_word;
319 data <<= 1;
320 }
321 WDT_HIT();
322 }
323 LED_B_OFF();
324 }
325
326
327 //-----------------------------------------------------------------------------
328 // Transmit the tag response (to the reader) that was placed in cmd[].
329 //-----------------------------------------------------------------------------
330 void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow) {
331 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
332 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
333
334 uint8_t shift_delay = start_time & 0x00000007;
335
336 while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
337
338 LED_C_ON();
339 uint8_t bits_to_shift = 0x00;
340 uint8_t bits_to_send = 0x00;
341 for(size_t c = 0; c < len; c++) {
342 for (int i = 7; i >= 0; i--) {
343 uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
344 for (int j = 0; j < (slow?4:1); ) {
345 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
346 bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
347 AT91C_BASE_SSC->SSC_THR = bits_to_send;
348 bits_to_shift = cmd_bits;
349 j++;
350 }
351 }
352 }
353 WDT_HIT();
354 }
355 // send the remaining bits, padded with 0:
356 bits_to_send = bits_to_shift << (8 - shift_delay);
357 for ( ; ; ) {
358 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
359 AT91C_BASE_SSC->SSC_THR = bits_to_send;
360 break;
361 }
362 }
363 LED_C_OFF();
364
365 }
366
367
368 //=============================================================================
369 // An ISO 15693 decoder for tag responses (one subcarrier only).
370 // Uses cross correlation to identify each bit and EOF.
371 // This function is called 8 times per bit (every 2 subcarrier cycles).
372 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
373 // i.e. function is called every 4,72us
374 // LED handling:
375 // LED C -> ON once we have received the SOF and are expecting the rest.
376 // LED C -> OFF once we have received EOF or are unsynced
377 //
378 // Returns: true if we received a EOF
379 // false if we are still waiting for some more
380 //=============================================================================
381
382 #define NOISE_THRESHOLD 160 // don't try to correlate noise
383
384 typedef struct DecodeTag {
385 enum {
386 STATE_TAG_SOF_LOW,
387 STATE_TAG_SOF_HIGH,
388 STATE_TAG_SOF_HIGH_END,
389 STATE_TAG_RECEIVING_DATA,
390 STATE_TAG_EOF
391 } state;
392 int bitCount;
393 int posCount;
394 enum {
395 LOGIC0,
396 LOGIC1,
397 SOF_PART1,
398 SOF_PART2
399 } lastBit;
400 uint16_t shiftReg;
401 uint16_t max_len;
402 uint8_t *output;
403 int len;
404 int sum1, sum2;
405 } DecodeTag_t;
406
407
408 static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag)
409 {
410 switch(DecodeTag->state) {
411 case STATE_TAG_SOF_LOW:
412 // waiting for 12 times low (11 times low is accepted as well)
413 if (amplitude < NOISE_THRESHOLD) {
414 DecodeTag->posCount++;
415 } else {
416 if (DecodeTag->posCount > 10) {
417 DecodeTag->posCount = 1;
418 DecodeTag->sum1 = 0;
419 DecodeTag->state = STATE_TAG_SOF_HIGH;
420 } else {
421 DecodeTag->posCount = 0;
422 }
423 }
424 break;
425
426 case STATE_TAG_SOF_HIGH:
427 // waiting for 10 times high. Take average over the last 8
428 if (amplitude > NOISE_THRESHOLD) {
429 DecodeTag->posCount++;
430 if (DecodeTag->posCount > 2) {
431 DecodeTag->sum1 += amplitude; // keep track of average high value
432 }
433 if (DecodeTag->posCount == 10) {
434 DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
435 DecodeTag->state = STATE_TAG_SOF_HIGH_END;
436 }
437 } else { // high phase was too short
438 DecodeTag->posCount = 1;
439 DecodeTag->state = STATE_TAG_SOF_LOW;
440 }
441 break;
442
443 case STATE_TAG_SOF_HIGH_END:
444 // waiting for a falling edge
445 if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
446 DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
447 DecodeTag->shiftReg = 0;
448 DecodeTag->bitCount = 0;
449 DecodeTag->len = 0;
450 DecodeTag->sum1 = amplitude;
451 DecodeTag->sum2 = 0;
452 DecodeTag->posCount = 2;
453 DecodeTag->state = STATE_TAG_RECEIVING_DATA;
454 LED_C_ON();
455 } else {
456 DecodeTag->posCount++;
457 if (DecodeTag->posCount > 13) { // high phase too long
458 DecodeTag->posCount = 0;
459 DecodeTag->state = STATE_TAG_SOF_LOW;
460 LED_C_OFF();
461 }
462 }
463 break;
464
465 case STATE_TAG_RECEIVING_DATA:
466 if (DecodeTag->posCount == 1) {
467 DecodeTag->sum1 = 0;
468 DecodeTag->sum2 = 0;
469 }
470 if (DecodeTag->posCount <= 4) {
471 DecodeTag->sum1 += amplitude;
472 } else {
473 DecodeTag->sum2 += amplitude;
474 }
475 if (DecodeTag->posCount == 8) {
476 int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
477 int32_t corr_0 = -corr_1;
478 int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
479 if (corr_EOF > corr_0 && corr_EOF > corr_1) {
480 if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
481 DecodeTag->state = STATE_TAG_EOF;
482 } else {
483 DecodeTag->posCount = 0;
484 DecodeTag->state = STATE_TAG_SOF_LOW;
485 LED_C_OFF();
486 }
487 } else if (corr_1 > corr_0) {
488 // logic 1
489 if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
490 DecodeTag->lastBit = SOF_PART2; // SOF completed
491 } else {
492 DecodeTag->lastBit = LOGIC1;
493 DecodeTag->shiftReg >>= 1;
494 DecodeTag->shiftReg |= 0x80;
495 DecodeTag->bitCount++;
496 if (DecodeTag->bitCount == 8) {
497 DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
498 DecodeTag->len++;
499 if (DecodeTag->len > DecodeTag->max_len) {
500 // buffer overflow, give up
501 DecodeTag->posCount = 0;
502 DecodeTag->state = STATE_TAG_SOF_LOW;
503 LED_C_OFF();
504 }
505 DecodeTag->bitCount = 0;
506 DecodeTag->shiftReg = 0;
507 }
508 }
509 } else {
510 // logic 0
511 if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
512 DecodeTag->posCount = 0;
513 DecodeTag->state = STATE_TAG_SOF_LOW;
514 LED_C_OFF();
515 } else {
516 DecodeTag->lastBit = LOGIC0;
517 DecodeTag->shiftReg >>= 1;
518 DecodeTag->bitCount++;
519 if (DecodeTag->bitCount == 8) {
520 DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
521 DecodeTag->len++;
522 if (DecodeTag->len > DecodeTag->max_len) {
523 // buffer overflow, give up
524 DecodeTag->posCount = 0;
525 DecodeTag->state = STATE_TAG_SOF_LOW;
526 LED_C_OFF();
527 }
528 DecodeTag->bitCount = 0;
529 DecodeTag->shiftReg = 0;
530 }
531 }
532 }
533 DecodeTag->posCount = 0;
534 }
535 DecodeTag->posCount++;
536 break;
537
538 case STATE_TAG_EOF:
539 if (DecodeTag->posCount == 1) {
540 DecodeTag->sum1 = 0;
541 DecodeTag->sum2 = 0;
542 }
543 if (DecodeTag->posCount <= 4) {
544 DecodeTag->sum1 += amplitude;
545 } else {
546 DecodeTag->sum2 += amplitude;
547 }
548 if (DecodeTag->posCount == 8) {
549 int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
550 int32_t corr_0 = -corr_1;
551 int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
552 if (corr_EOF > corr_0 || corr_1 > corr_0) {
553 DecodeTag->posCount = 0;
554 DecodeTag->state = STATE_TAG_SOF_LOW;
555 LED_C_OFF();
556 } else {
557 LED_C_OFF();
558 return true;
559 }
560 }
561 DecodeTag->posCount++;
562 break;
563
564 }
565
566 return false;
567 }
568
569
570 static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
571 {
572 DecodeTag->posCount = 0;
573 DecodeTag->state = STATE_TAG_SOF_LOW;
574 DecodeTag->output = data;
575 DecodeTag->max_len = max_len;
576 }
577
578
579 static void DecodeTagReset(DecodeTag_t *DecodeTag)
580 {
581 DecodeTag->posCount = 0;
582 DecodeTag->state = STATE_TAG_SOF_LOW;
583 }
584
585
586 /*
587 * Receive and decode the tag response, also log to tracebuffer
588 */
589 static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
590 {
591 int samples = 0;
592 bool gotFrame = false;
593
594 uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
595
596 // the Decoder data structure
597 DecodeTag_t DecodeTag = { 0 };
598 DecodeTagInit(&DecodeTag, response, max_len);
599
600 // wait for last transfer to complete
601 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
602
603 // And put the FPGA in the appropriate mode
604 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
605
606 // Setup and start DMA.
607 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
608 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
609 uint16_t *upTo = dmaBuf;
610
611 for(;;) {
612 uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
613
614 if (behindBy == 0) continue;
615
616 uint16_t tagdata = *upTo++;
617
618 if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
619 upTo = dmaBuf; // start reading the circular buffer from the beginning
620 if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
621 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
622 break;
623 }
624 }
625 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
626 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
627 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
628 }
629
630 samples++;
631
632 if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
633 gotFrame = true;
634 break;
635 }
636
637 if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
638 DecodeTag.len = 0;
639 break;
640 }
641
642 }
643
644 FpgaDisableSscDma();
645 BigBuf_free();
646
647 if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
648 samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
649
650 if (DecodeTag.len > 0) {
651 LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
652 }
653
654 return DecodeTag.len;
655 }
656
657
658 //=============================================================================
659 // An ISO15693 decoder for reader commands.
660 //
661 // This function is called 4 times per bit (every 2 subcarrier cycles).
662 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
663 // LED handling:
664 // LED B -> ON once we have received the SOF and are expecting the rest.
665 // LED B -> OFF once we have received EOF or are in error state or unsynced
666 //
667 // Returns: true if we received a EOF
668 // false if we are still waiting for some more
669 //=============================================================================
670
671 typedef struct DecodeReader {
672 enum {
673 STATE_READER_UNSYNCD,
674 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
675 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
676 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
677 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
678 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
679 STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
680 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
681 } state;
682 enum {
683 CODING_1_OUT_OF_4,
684 CODING_1_OUT_OF_256
685 } Coding;
686 uint8_t shiftReg;
687 uint8_t bitCount;
688 int byteCount;
689 int byteCountMax;
690 int posCount;
691 int sum1, sum2;
692 uint8_t *output;
693 } DecodeReader_t;
694
695
696 static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len)
697 {
698 DecodeReader->output = data;
699 DecodeReader->byteCountMax = max_len;
700 DecodeReader->state = STATE_READER_UNSYNCD;
701 DecodeReader->byteCount = 0;
702 DecodeReader->bitCount = 0;
703 DecodeReader->posCount = 1;
704 DecodeReader->shiftReg = 0;
705 }
706
707
708 static void DecodeReaderReset(DecodeReader_t* DecodeReader)
709 {
710 DecodeReader->state = STATE_READER_UNSYNCD;
711 }
712
713
714 static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
715 {
716 switch (DecodeReader->state) {
717 case STATE_READER_UNSYNCD:
718 // wait for unmodulated carrier
719 if (bit) {
720 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
721 }
722 break;
723
724 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
725 if (!bit) {
726 // we went low, so this could be the beginning of a SOF
727 DecodeReader->posCount = 1;
728 DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
729 }
730 break;
731
732 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
733 DecodeReader->posCount++;
734 if (bit) { // detected rising edge
735 if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
736 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
737 } else { // SOF
738 DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
739 }
740 } else {
741 if (DecodeReader->posCount > 5) { // stayed low for too long
742 DecodeReaderReset(DecodeReader);
743 } else {
744 // do nothing, keep waiting
745 }
746 }
747 break;
748
749 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
750 DecodeReader->posCount++;
751 if (!bit) { // detected a falling edge
752 if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
753 DecodeReaderReset(DecodeReader);
754 } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
755 DecodeReader->Coding = CODING_1_OUT_OF_4;
756 DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
757 } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
758 DecodeReaderReset(DecodeReader);
759 } else { // SOF for 1 out of 256 coding
760 DecodeReader->Coding = CODING_1_OUT_OF_256;
761 DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
762 }
763 } else {
764 if (DecodeReader->posCount > 29) { // stayed high for too long
765 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
766 } else {
767 // do nothing, keep waiting
768 }
769 }
770 break;
771
772 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
773 DecodeReader->posCount++;
774 if (bit) { // detected rising edge
775 if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
776 if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
777 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
778 } else {
779 DecodeReader->posCount = 1;
780 DecodeReader->bitCount = 0;
781 DecodeReader->byteCount = 0;
782 DecodeReader->sum1 = 1;
783 DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
784 LED_B_ON();
785 }
786 } else { // CODING_1_OUT_OF_4
787 if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
788 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
789 } else {
790 DecodeReader->posCount = 1;
791 DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
792 }
793 }
794 } else {
795 if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
796 if (DecodeReader->posCount > 34) { // signal stayed low for too long
797 DecodeReaderReset(DecodeReader);
798 } else {
799 // do nothing, keep waiting
800 }
801 } else { // CODING_1_OUT_OF_4
802 if (DecodeReader->posCount > 26) { // signal stayed low for too long
803 DecodeReaderReset(DecodeReader);
804 } else {
805 // do nothing, keep waiting
806 }
807 }
808 }
809 break;
810
811 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
812 DecodeReader->posCount++;
813 if (bit) {
814 if (DecodeReader->posCount == 9) {
815 DecodeReader->posCount = 1;
816 DecodeReader->bitCount = 0;
817 DecodeReader->byteCount = 0;
818 DecodeReader->sum1 = 1;
819 DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
820 LED_B_ON();
821 } else {
822 // do nothing, keep waiting
823 }
824 } else { // unexpected falling edge
825 DecodeReaderReset(DecodeReader);
826 }
827 break;
828
829 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
830 bit = !!bit;
831 DecodeReader->posCount++;
832 if (DecodeReader->posCount == 1) {
833 DecodeReader->sum1 = bit;
834 } else if (DecodeReader->posCount <= 4) {
835 DecodeReader->sum1 += bit;
836 } else if (DecodeReader->posCount == 5) {
837 DecodeReader->sum2 = bit;
838 } else {
839 DecodeReader->sum2 += bit;
840 }
841 if (DecodeReader->posCount == 8) {
842 DecodeReader->posCount = 0;
843 if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
844 LED_B_OFF(); // Finished receiving
845 DecodeReaderReset(DecodeReader);
846 if (DecodeReader->byteCount != 0) {
847 return true;
848 }
849 }
850 if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
851 DecodeReader->shiftReg >>= 2;
852 DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
853 }
854 if (DecodeReader->bitCount == 15) { // we have a full byte
855 DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
856 if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
857 // buffer overflow, give up
858 LED_B_OFF();
859 DecodeReaderReset(DecodeReader);
860 }
861 DecodeReader->bitCount = 0;
862 DecodeReader->shiftReg = 0;
863 } else {
864 DecodeReader->bitCount++;
865 }
866 }
867 break;
868
869 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
870 bit = !!bit;
871 DecodeReader->posCount++;
872 if (DecodeReader->posCount == 1) {
873 DecodeReader->sum1 = bit;
874 } else if (DecodeReader->posCount <= 4) {
875 DecodeReader->sum1 += bit;
876 } else if (DecodeReader->posCount == 5) {
877 DecodeReader->sum2 = bit;
878 } else {
879 DecodeReader->sum2 += bit;
880 }
881 if (DecodeReader->posCount == 8) {
882 DecodeReader->posCount = 0;
883 if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
884 LED_B_OFF(); // Finished receiving
885 DecodeReaderReset(DecodeReader);
886 if (DecodeReader->byteCount != 0) {
887 return true;
888 }
889 }
890 if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
891 DecodeReader->shiftReg = DecodeReader->bitCount;
892 }
893 if (DecodeReader->bitCount == 255) { // we have a full byte
894 DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
895 if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
896 // buffer overflow, give up
897 LED_B_OFF();
898 DecodeReaderReset(DecodeReader);
899 }
900 }
901 DecodeReader->bitCount++;
902 }
903 break;
904
905 default:
906 LED_B_OFF();
907 DecodeReaderReset(DecodeReader);
908 break;
909 }
910
911 return false;
912 }
913
914
915 //-----------------------------------------------------------------------------
916 // Receive a command (from the reader to us, where we are the simulated tag),
917 // and store it in the given buffer, up to the given maximum length. Keeps
918 // spinning, waiting for a well-framed command, until either we get one
919 // (returns len) or someone presses the pushbutton on the board (returns -1).
920 //
921 // Assume that we're called with the SSC (to the FPGA) and ADC path set
922 // correctly.
923 //-----------------------------------------------------------------------------
924
925 int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
926 int samples = 0;
927 bool gotFrame = false;
928 uint8_t b;
929
930 uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
931
932 // the decoder data structure
933 DecodeReader_t DecodeReader = {0};
934 DecodeReaderInit(&DecodeReader, received, max_len);
935
936 // wait for last transfer to complete
937 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
938
939 LED_D_OFF();
940 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
941
942 // clear receive register and wait for next transfer
943 uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
944 (void) temp;
945 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
946
947 uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
948
949 // Setup and start DMA.
950 FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
951 uint8_t *upTo = dmaBuf;
952
953 for (;;) {
954 uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
955
956 if (behindBy == 0) continue;
957
958 b = *upTo++;
959 if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
960 upTo = dmaBuf; // start reading the circular buffer from the beginning
961 if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
962 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
963 break;
964 }
965 }
966 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
967 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
968 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
969 }
970
971 for (int i = 7; i >= 0; i--) {
972 if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
973 *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
974 gotFrame = true;
975 break;
976 }
977 samples++;
978 }
979
980 if (gotFrame) {
981 break;
982 }
983
984 if (BUTTON_PRESS()) {
985 DecodeReader.byteCount = -1;
986 break;
987 }
988
989 WDT_HIT();
990 }
991
992 FpgaDisableSscDma();
993
994 if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
995 samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
996
997 if (DecodeReader.byteCount > 0) {
998 uint32_t sof_time = *eof_time
999 - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
1000 - 32 // time for SOF transfer
1001 - 16; // time for EOF transfer
1002 LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
1003 }
1004
1005 return DecodeReader.byteCount;
1006 }
1007
1008
1009 // Encode (into the ToSend buffers) an identify request, which is the first
1010 // thing that you must send to a tag to get a response.
1011 static void BuildIdentifyRequest(void)
1012 {
1013 uint8_t cmd[5];
1014
1015 uint16_t crc;
1016 // one sub-carrier, inventory, 1 slot, fast rate
1017 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1018 cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
1019 // inventory command code
1020 cmd[1] = 0x01;
1021 // no mask
1022 cmd[2] = 0x00;
1023 //Now the CRC
1024 crc = Iso15693Crc(cmd, 3);
1025 cmd[3] = crc & 0xff;
1026 cmd[4] = crc >> 8;
1027
1028 CodeIso15693AsReader(cmd, sizeof(cmd));
1029 }
1030
1031
1032 //-----------------------------------------------------------------------------
1033 // Start to read an ISO 15693 tag. We send an identify request, then wait
1034 // for the response. The response is not demodulated, just left in the buffer
1035 // so that it can be downloaded to a PC and processed there.
1036 //-----------------------------------------------------------------------------
1037 void AcquireRawAdcSamplesIso15693(void)
1038 {
1039 LEDsoff();
1040 LED_A_ON();
1041
1042 uint8_t *dest = BigBuf_get_addr();
1043
1044 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1045 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1046 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1047 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1048
1049 BuildIdentifyRequest();
1050
1051 // Give the tags time to energize
1052 LED_D_ON();
1053 SpinDelay(100);
1054
1055 // Now send the command
1056 TransmitTo15693Tag(ToSend, ToSendMax, 0);
1057
1058 // wait for last transfer to complete
1059 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
1060
1061 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
1062
1063 for(int c = 0; c < 4000; ) {
1064 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1065 uint16_t r = AT91C_BASE_SSC->SSC_RHR;
1066 dest[c++] = r >> 5;
1067 }
1068 }
1069
1070 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1071 LEDsoff();
1072 }
1073
1074
1075 void SnoopIso15693(void)
1076 {
1077 LED_A_ON();
1078 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1079 BigBuf_free();
1080
1081 clear_trace();
1082 set_tracing(true);
1083
1084 // The DMA buffer, used to stream samples from the FPGA
1085 uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
1086 uint16_t *upTo;
1087
1088 // Count of samples received so far, so that we can include timing
1089 // information in the trace buffer.
1090 int samples = 0;
1091
1092 DecodeTag_t DecodeTag = {0};
1093 uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
1094 DecodeTagInit(&DecodeTag, response, sizeof(response));
1095
1096 DecodeReader_t DecodeReader = {0};;
1097 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
1098 DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd));
1099
1100 // Print some debug information about the buffer sizes
1101 if (DEBUG) {
1102 Dbprintf("Snooping buffers initialized:");
1103 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1104 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH);
1105 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH);
1106 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
1107 }
1108 Dbprintf("Snoop started. Press PM3 Button to stop.");
1109
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
1111 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1112
1113 // Setup for the DMA.
1114 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1115 upTo = dmaBuf;
1116 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1117
1118 bool TagIsActive = false;
1119 bool ReaderIsActive = false;
1120 bool ExpectTagAnswer = false;
1121
1122 // And now we loop, receiving samples.
1123 for(;;) {
1124 uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
1125
1126 if (behindBy == 0) continue;
1127
1128 uint16_t snoopdata = *upTo++;
1129
1130 if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
1131 upTo = dmaBuf; // start reading the circular buffer from the beginning
1132 if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
1133 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
1134 break;
1135 }
1136 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
1137 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
1138 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
1139 WDT_HIT();
1140 if(BUTTON_PRESS()) {
1141 DbpString("Snoop stopped.");
1142 break;
1143 }
1144 }
1145 }
1146 samples++;
1147
1148 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1149 if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
1150 FpgaDisableSscDma();
1151 ExpectTagAnswer = true;
1152 LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
1153 /* And ready to receive another command. */
1154 DecodeReaderReset(&DecodeReader);
1155 /* And also reset the demod code, which might have been */
1156 /* false-triggered by the commands from the reader. */
1157 DecodeTagReset(&DecodeTag);
1158 upTo = dmaBuf;
1159 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1160 }
1161 if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
1162 FpgaDisableSscDma();
1163 ExpectTagAnswer = true;
1164 LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
1165 /* And ready to receive another command. */
1166 DecodeReaderReset(&DecodeReader);
1167 /* And also reset the demod code, which might have been */
1168 /* false-triggered by the commands from the reader. */
1169 DecodeTagReset(&DecodeTag);
1170 upTo = dmaBuf;
1171 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1172 }
1173 ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF);
1174 }
1175
1176 if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1177 if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
1178 FpgaDisableSscDma();
1179 //Use samples as a time measurement
1180 LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
1181 // And ready to receive another response.
1182 DecodeTagReset(&DecodeTag);
1183 DecodeReaderReset(&DecodeReader);
1184 ExpectTagAnswer = false;
1185 upTo = dmaBuf;
1186 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1187 }
1188 TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
1189 }
1190
1191 }
1192
1193 FpgaDisableSscDma();
1194 BigBuf_free();
1195
1196 LEDsoff();
1197
1198 DbpString("Snoop statistics:");
1199 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer);
1200 Dbprintf(" DecodeTag State: %d", DecodeTag.state);
1201 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len);
1202 Dbprintf(" DecodeReader State: %d", DecodeReader.state);
1203 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount);
1204 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1205 }
1206
1207
1208 // Initialize the proxmark as iso15k reader
1209 static void Iso15693InitReader() {
1210 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1211 // Setup SSC
1212 // FpgaSetupSsc();
1213
1214 // Start from off (no field generated)
1215 LED_D_OFF();
1216 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1217 SpinDelay(10);
1218
1219 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1220 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1221
1222 // Give the tags time to energize
1223 LED_D_ON();
1224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1225 SpinDelay(250);
1226 }
1227
1228 ///////////////////////////////////////////////////////////////////////
1229 // ISO 15693 Part 3 - Air Interface
1230 // This section basically contains transmission and receiving of bits
1231 ///////////////////////////////////////////////////////////////////////
1232
1233
1234 // uid is in transmission order (which is reverse of display order)
1235 static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
1236 {
1237 uint8_t cmd[13];
1238
1239 uint16_t crc;
1240 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1241 // followed by the block data
1242 cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
1243 // READ BLOCK command code
1244 cmd[1] = ISO15693_READBLOCK;
1245 // UID may be optionally specified here
1246 // 64-bit UID
1247 cmd[2] = uid[0];
1248 cmd[3] = uid[1];
1249 cmd[4] = uid[2];
1250 cmd[5] = uid[3];
1251 cmd[6] = uid[4];
1252 cmd[7] = uid[5];
1253 cmd[8] = uid[6];
1254 cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
1255 // Block number to read
1256 cmd[10] = blockNumber;
1257 //Now the CRC
1258 crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
1259 cmd[11] = crc & 0xff;
1260 cmd[12] = crc >> 8;
1261
1262 CodeIso15693AsReader(cmd, sizeof(cmd));
1263 }
1264
1265
1266 // Now the VICC>VCD responses when we are simulating a tag
1267 static void BuildInventoryResponse(uint8_t *uid)
1268 {
1269 uint8_t cmd[12];
1270
1271 uint16_t crc;
1272
1273 cmd[0] = 0; // No error, no protocol format extension
1274 cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1275 // 64-bit UID
1276 cmd[2] = uid[7]; //0x32;
1277 cmd[3] = uid[6]; //0x4b;
1278 cmd[4] = uid[5]; //0x03;
1279 cmd[5] = uid[4]; //0x01;
1280 cmd[6] = uid[3]; //0x00;
1281 cmd[7] = uid[2]; //0x10;
1282 cmd[8] = uid[1]; //0x05;
1283 cmd[9] = uid[0]; //0xe0;
1284 //Now the CRC
1285 crc = Iso15693Crc(cmd, 10);
1286 cmd[10] = crc & 0xff;
1287 cmd[11] = crc >> 8;
1288
1289 CodeIso15693AsTag(cmd, sizeof(cmd));
1290 }
1291
1292 // Universal Method for sending to and recv bytes from a tag
1293 // init ... should we initialize the reader?
1294 // speed ... 0 low speed, 1 hi speed
1295 // *recv will contain the tag's answer
1296 // return: lenght of received data
1297 int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
1298
1299 LED_A_ON();
1300 LED_B_OFF();
1301 LED_C_OFF();
1302
1303 if (init) Iso15693InitReader();
1304
1305 int answerLen=0;
1306
1307 if (!speed) {
1308 // low speed (1 out of 256)
1309 CodeIso15693AsReader256(send, sendlen);
1310 } else {
1311 // high speed (1 out of 4)
1312 CodeIso15693AsReader(send, sendlen);
1313 }
1314
1315 TransmitTo15693Tag(ToSend, ToSendMax, start_time);
1316
1317 // Now wait for a response
1318 if (recv != NULL) {
1319 answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
1320 }
1321
1322 LED_A_OFF();
1323
1324 return answerLen;
1325 }
1326
1327
1328 // --------------------------------------------------------------------
1329 // Debug Functions
1330 // --------------------------------------------------------------------
1331
1332 // Decodes a message from a tag and displays its metadata and content
1333 #define DBD15STATLEN 48
1334 void DbdecodeIso15693Answer(int len, uint8_t *d) {
1335 char status[DBD15STATLEN+1]={0};
1336 uint16_t crc;
1337
1338 if (len > 3) {
1339 if (d[0] & ISO15693_RES_EXT)
1340 strncat(status,"ProtExt ", DBD15STATLEN);
1341 if (d[0] & ISO15693_RES_ERROR) {
1342 // error
1343 strncat(status,"Error ", DBD15STATLEN);
1344 switch (d[1]) {
1345 case 0x01:
1346 strncat(status,"01:notSupp", DBD15STATLEN);
1347 break;
1348 case 0x02:
1349 strncat(status,"02:notRecog", DBD15STATLEN);
1350 break;
1351 case 0x03:
1352 strncat(status,"03:optNotSupp", DBD15STATLEN);
1353 break;
1354 case 0x0f:
1355 strncat(status,"0f:noInfo", DBD15STATLEN);
1356 break;
1357 case 0x10:
1358 strncat(status,"10:doesn'tExist", DBD15STATLEN);
1359 break;
1360 case 0x11:
1361 strncat(status,"11:lockAgain", DBD15STATLEN);
1362 break;
1363 case 0x12:
1364 strncat(status,"12:locked", DBD15STATLEN);
1365 break;
1366 case 0x13:
1367 strncat(status,"13:progErr", DBD15STATLEN);
1368 break;
1369 case 0x14:
1370 strncat(status,"14:lockErr", DBD15STATLEN);
1371 break;
1372 default:
1373 strncat(status,"unknownErr", DBD15STATLEN);
1374 }
1375 strncat(status," ", DBD15STATLEN);
1376 } else {
1377 strncat(status,"NoErr ", DBD15STATLEN);
1378 }
1379
1380 crc=Iso15693Crc(d,len-2);
1381 if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
1382 strncat(status,"CrcOK",DBD15STATLEN);
1383 else
1384 strncat(status,"CrcFail!",DBD15STATLEN);
1385
1386 Dbprintf("%s",status);
1387 }
1388 }
1389
1390
1391
1392 ///////////////////////////////////////////////////////////////////////
1393 // Functions called via USB/Client
1394 ///////////////////////////////////////////////////////////////////////
1395
1396 void SetDebugIso15693(uint32_t debug) {
1397 DEBUG=debug;
1398 Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
1399 return;
1400 }
1401
1402
1403 //---------------------------------------------------------------------------------------
1404 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1405 // all demodulation performed in arm rather than host. - greg
1406 //---------------------------------------------------------------------------------------
1407 void ReaderIso15693(uint32_t parameter)
1408 {
1409 LEDsoff();
1410 LED_A_ON();
1411
1412 set_tracing(true);
1413
1414 int answerLen = 0;
1415 uint8_t TagUID[8] = {0x00};
1416
1417 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1418
1419 uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
1420
1421 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1422 // Setup SSC
1423 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1424
1425 // Start from off (no field generated)
1426 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1427 SpinDelay(200);
1428
1429 // Give the tags time to energize
1430 LED_D_ON();
1431 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1432 SpinDelay(200);
1433 StartCountSspClk();
1434
1435
1436 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1437 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1438
1439 // Now send the IDENTIFY command
1440 BuildIdentifyRequest();
1441 TransmitTo15693Tag(ToSend, ToSendMax, 0);
1442
1443 // Now wait for a response
1444 answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
1445 uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1446
1447 if (answerLen >=12) // we should do a better check than this
1448 {
1449 TagUID[0] = answer[2];
1450 TagUID[1] = answer[3];
1451 TagUID[2] = answer[4];
1452 TagUID[3] = answer[5];
1453 TagUID[4] = answer[6];
1454 TagUID[5] = answer[7];
1455 TagUID[6] = answer[8]; // IC Manufacturer code
1456 TagUID[7] = answer[9]; // always E0
1457
1458 }
1459
1460 Dbprintf("%d octets read from IDENTIFY request:", answerLen);
1461 DbdecodeIso15693Answer(answerLen, answer);
1462 Dbhexdump(answerLen, answer, false);
1463
1464 // UID is reverse
1465 if (answerLen >= 12)
1466 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1467 TagUID[7],TagUID[6],TagUID[5],TagUID[4],
1468 TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
1469
1470
1471 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1472 // DbdecodeIso15693Answer(answerLen2,answer2);
1473 // Dbhexdump(answerLen2,answer2,true);
1474
1475 // Dbprintf("%d octets read from XXX request:", answerLen3);
1476 // DbdecodeIso15693Answer(answerLen3,answer3);
1477 // Dbhexdump(answerLen3,answer3,true);
1478
1479 // read all pages
1480 if (answerLen >= 12 && DEBUG) {
1481 for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
1482 BuildReadBlockRequest(TagUID, i);
1483 TransmitTo15693Tag(ToSend, ToSendMax, start_time);
1484 int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
1485 start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1486 if (answerLen > 0) {
1487 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
1488 DbdecodeIso15693Answer(answerLen, answer);
1489 Dbhexdump(answerLen, answer, false);
1490 if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr
1491 }
1492 }
1493 }
1494
1495 // for the time being, switch field off to protect rdv4.0
1496 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1497 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1498 LED_D_OFF();
1499
1500 LED_A_OFF();
1501 }
1502
1503
1504 // Simulate an ISO15693 TAG.
1505 // For Inventory command: print command and send Inventory Response with given UID
1506 // TODO: interpret other reader commands and send appropriate response
1507 void SimTagIso15693(uint32_t parameter, uint8_t *uid)
1508 {
1509 LEDsoff();
1510 LED_A_ON();
1511
1512 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1513 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1514 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
1515 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
1516
1517 StartCountSspClk();
1518
1519 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
1520
1521 // Build a suitable response to the reader INVENTORY command
1522 BuildInventoryResponse(uid);
1523
1524 // Listen to reader
1525 while (!BUTTON_PRESS()) {
1526 uint32_t eof_time = 0, start_time = 0;
1527 int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
1528
1529 if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
1530 bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
1531 start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
1532 TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
1533 }
1534
1535 Dbprintf("%d bytes read from reader:", cmd_len);
1536 Dbhexdump(cmd_len, cmd, false);
1537 }
1538
1539 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1540 LEDsoff();
1541 }
1542
1543
1544 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1545 // (some manufactures offer a way to read the AFI, though)
1546 void BruteforceIso15693Afi(uint32_t speed)
1547 {
1548 LEDsoff();
1549 LED_A_ON();
1550
1551 uint8_t data[6];
1552 uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
1553
1554 int datalen=0, recvlen=0;
1555
1556 Iso15693InitReader();
1557 StartCountSspClk();
1558
1559 // first without AFI
1560 // Tags should respond without AFI and with AFI=0 even when AFI is active
1561
1562 data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
1563 data[1] = ISO15693_INVENTORY;
1564 data[2] = 0; // mask length
1565 datalen = Iso15693AddCrc(data,3);
1566 recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
1567 uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1568 WDT_HIT();
1569 if (recvlen>=12) {
1570 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
1571 }
1572
1573 // now with AFI
1574
1575 data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
1576 data[1] = ISO15693_INVENTORY;
1577 data[2] = 0; // AFI
1578 data[3] = 0; // mask length
1579
1580 for (int i = 0; i < 256; i++) {
1581 data[2] = i & 0xFF;
1582 datalen = Iso15693AddCrc(data,4);
1583 recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
1584 start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1585 WDT_HIT();
1586 if (recvlen >= 12) {
1587 Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
1588 }
1589 }
1590 Dbprintf("AFI Bruteforcing done.");
1591
1592 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1593 LEDsoff();
1594 }
1595
1596 // Allows to directly send commands to the tag via the client
1597 void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
1598
1599 int recvlen = 0;
1600 uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
1601
1602 LED_A_ON();
1603
1604 if (DEBUG) {
1605 Dbprintf("SEND:");
1606 Dbhexdump(datalen, data, false);
1607 }
1608
1609 recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
1610
1611 if (recv) {
1612 if (DEBUG) {
1613 Dbprintf("RECV:");
1614 Dbhexdump(recvlen, recvbuf, false);
1615 DbdecodeIso15693Answer(recvlen, recvbuf);
1616 }
1617
1618 cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
1619
1620 }
1621
1622 // for the time being, switch field off to protect rdv4.0
1623 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1624 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1625 LED_D_OFF();
1626
1627 LED_A_OFF();
1628 }
1629
1630 //-----------------------------------------------------------------------------
1631 // Work with "magic Chinese" card.
1632 //
1633 //-----------------------------------------------------------------------------
1634
1635 // Set the UID to the tag (based on Iceman work).
1636 void SetTag15693Uid(uint8_t *uid)
1637 {
1638 uint8_t cmd[4][9] = {0x00};
1639
1640 uint16_t crc;
1641
1642 int recvlen = 0;
1643 uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
1644
1645 LED_A_ON();
1646
1647 // Command 1 : 02213E00000000
1648 cmd[0][0] = 0x02;
1649 cmd[0][1] = 0x21;
1650 cmd[0][2] = 0x3e;
1651 cmd[0][3] = 0x00;
1652 cmd[0][4] = 0x00;
1653 cmd[0][5] = 0x00;
1654 cmd[0][6] = 0x00;
1655
1656 // Command 2 : 02213F69960000
1657 cmd[1][0] = 0x02;
1658 cmd[1][1] = 0x21;
1659 cmd[1][2] = 0x3f;
1660 cmd[1][3] = 0x69;
1661 cmd[1][4] = 0x96;
1662 cmd[1][5] = 0x00;
1663 cmd[1][6] = 0x00;
1664
1665 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1666 cmd[2][0] = 0x02;
1667 cmd[2][1] = 0x21;
1668 cmd[2][2] = 0x38;
1669 cmd[2][3] = uid[7];
1670 cmd[2][4] = uid[6];
1671 cmd[2][5] = uid[5];
1672 cmd[2][6] = uid[4];
1673
1674 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1675 cmd[3][0] = 0x02;
1676 cmd[3][1] = 0x21;
1677 cmd[3][2] = 0x39;
1678 cmd[3][3] = uid[3];
1679 cmd[3][4] = uid[2];
1680 cmd[3][5] = uid[1];
1681 cmd[3][6] = uid[0];
1682
1683 for (int i=0; i<4; i++) {
1684 // Add the CRC
1685 crc = Iso15693Crc(cmd[i], 7);
1686 cmd[i][7] = crc & 0xff;
1687 cmd[i][8] = crc >> 8;
1688
1689 if (DEBUG) {
1690 Dbprintf("SEND:");
1691 Dbhexdump(sizeof(cmd[i]), cmd[i], false);
1692 }
1693
1694 recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
1695
1696 if (DEBUG) {
1697 Dbprintf("RECV:");
1698 Dbhexdump(recvlen, recvbuf, false);
1699 DbdecodeIso15693Answer(recvlen, recvbuf);
1700 }
1701
1702 cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
1703 }
1704
1705 LED_D_OFF();
1706
1707 LED_A_OFF();
1708 }
1709
1710
1711
1712 // --------------------------------------------------------------------
1713 // -- Misc & deprecated functions
1714 // --------------------------------------------------------------------
1715
1716 /*
1717
1718 // do not use; has a fix UID
1719 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1720 {
1721 uint8_t cmd[12];
1722
1723 uint16_t crc;
1724 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1725 // followed by the block data
1726 // one sub-carrier, inventory, 1 slot, fast rate
1727 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1728 // System Information command code
1729 cmd[1] = 0x2B;
1730 // UID may be optionally specified here
1731 // 64-bit UID
1732 cmd[2] = 0x32;
1733 cmd[3]= 0x4b;
1734 cmd[4] = 0x03;
1735 cmd[5] = 0x01;
1736 cmd[6] = 0x00;
1737 cmd[7] = 0x10;
1738 cmd[8] = 0x05;
1739 cmd[9]= 0xe0; // always e0 (not exactly unique)
1740 //Now the CRC
1741 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1742 cmd[10] = crc & 0xff;
1743 cmd[11] = crc >> 8;
1744
1745 CodeIso15693AsReader(cmd, sizeof(cmd));
1746 }
1747
1748
1749 // do not use; has a fix UID
1750 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1751 {
1752 uint8_t cmd[14];
1753
1754 uint16_t crc;
1755 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1756 // followed by the block data
1757 // one sub-carrier, inventory, 1 slot, fast rate
1758 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1759 // READ Multi BLOCK command code
1760 cmd[1] = 0x23;
1761 // UID may be optionally specified here
1762 // 64-bit UID
1763 cmd[2] = 0x32;
1764 cmd[3]= 0x4b;
1765 cmd[4] = 0x03;
1766 cmd[5] = 0x01;
1767 cmd[6] = 0x00;
1768 cmd[7] = 0x10;
1769 cmd[8] = 0x05;
1770 cmd[9]= 0xe0; // always e0 (not exactly unique)
1771 // First Block number to read
1772 cmd[10] = 0x00;
1773 // Number of Blocks to read
1774 cmd[11] = 0x2f; // read quite a few
1775 //Now the CRC
1776 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1777 cmd[12] = crc & 0xff;
1778 cmd[13] = crc >> 8;
1779
1780 CodeIso15693AsReader(cmd, sizeof(cmd));
1781 }
1782
1783 // do not use; has a fix UID
1784 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1785 {
1786 uint8_t cmd[14];
1787
1788 uint16_t crc;
1789 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1790 // followed by the block data
1791 // one sub-carrier, inventory, 1 slot, fast rate
1792 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1793 // READ BLOCK command code
1794 cmd[1] = CmdCode;
1795 // UID may be optionally specified here
1796 // 64-bit UID
1797 cmd[2] = 0x32;
1798 cmd[3]= 0x4b;
1799 cmd[4] = 0x03;
1800 cmd[5] = 0x01;
1801 cmd[6] = 0x00;
1802 cmd[7] = 0x10;
1803 cmd[8] = 0x05;
1804 cmd[9]= 0xe0; // always e0 (not exactly unique)
1805 // Parameter
1806 cmd[10] = 0x00;
1807 cmd[11] = 0x0a;
1808
1809 // cmd[12] = 0x00;
1810 // cmd[13] = 0x00; //Now the CRC
1811 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1812 cmd[12] = crc & 0xff;
1813 cmd[13] = crc >> 8;
1814
1815 CodeIso15693AsReader(cmd, sizeof(cmd));
1816 }
1817
1818 // do not use; has a fix UID
1819 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1820 {
1821 uint8_t cmd[14];
1822
1823 uint16_t crc;
1824 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1825 // followed by the block data
1826 // one sub-carrier, inventory, 1 slot, fast rate
1827 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1828 // READ BLOCK command code
1829 cmd[1] = CmdCode;
1830 // UID may be optionally specified here
1831 // 64-bit UID
1832 cmd[2] = 0x32;
1833 cmd[3]= 0x4b;
1834 cmd[4] = 0x03;
1835 cmd[5] = 0x01;
1836 cmd[6] = 0x00;
1837 cmd[7] = 0x10;
1838 cmd[8] = 0x05;
1839 cmd[9]= 0xe0; // always e0 (not exactly unique)
1840 // Parameter
1841 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1842 cmd[11] = 0x00;
1843
1844 // cmd[12] = 0x00;
1845 // cmd[13] = 0x00; //Now the CRC
1846 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1847 cmd[12] = crc & 0xff;
1848 cmd[13] = crc >> 8;
1849
1850 CodeIso15693AsReader(cmd, sizeof(cmd));
1851 }
1852
1853
1854
1855
1856 */
1857
1858
Impressum, Datenschutz