1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "lfsampling.h"
21 #include "mifareutil.h"
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void ToSendReset(void)
51 void ToSendStuffBit(int b
) {
54 ToSend
[ToSendMax
] = 0;
59 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
63 if(ToSendMax
>= sizeof(ToSend
)) {
65 DbpString("ToSendStuffBit overflowed!");
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax
, ToSend
, 0);
74 void print_result(char *name
, uint8_t *buf
, size_t len
) {
77 if ( len
% 16 == 0 ) {
78 for(; p
-buf
< len
; p
+= 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
83 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7],p
[8], p
[9], p
[10], p
[11], p
[12], p
[13], p
[14], p
[15]
87 for(; p
-buf
< len
; p
+= 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
92 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7]);
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
100 void DbpStringEx(char *str
, uint32_t cmd
){
101 byte_t len
= strlen(str
);
102 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
105 void DbpString(char *str
) {
110 void DbpIntegers(int x1
, int x2
, int x3
) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
114 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string
[128] = {0x00};
120 kvsprintf(fmt
, output_string
, 10, ap
);
123 DbpStringEx(output_string
, cmd
);
126 void Dbprintf(const char *fmt
, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string
[128] = {0x00};
132 kvsprintf(fmt
, output_string
, 10, ap
);
135 DbpString(output_string
);
138 // prints HEX & ASCII
139 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
145 l
= (len
>8) ? 8 : len
;
152 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
155 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
157 Dbprintf("%*D",l
,d
," ");
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch
)
173 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
174 AT91C_BASE_ADC
->ADC_MR
=
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
190 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
192 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
194 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
196 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
200 int AvgAdc(int ch
) // was static - merlok
203 for(i
= 0; i
< 32; ++i
)
206 return (a
+ 15) >> 5;
210 void MeasureAntennaTuning(void) {
212 uint8_t LF_Results
[256];
213 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
214 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
216 memset(LF_Results
, 0, sizeof(LF_Results
));
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
231 for (i
= 255; i
>= 19; i
--) {
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
235 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
236 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
237 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
239 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results
[i
] > peak
) {
242 peak
= LF_Results
[i
];
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
252 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void) {
260 int vHf
= 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
265 while ( !BUTTON_PRESS() ){
267 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
272 DbpString("cancelled");
276 void ReadMem(int addr
) {
277 const uint8_t *data
= ((uint8_t *)addr
);
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
283 /* osimage version information is linked in */
284 extern struct version_information version_information
;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
287 void SendVersion(void)
289 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
290 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
296 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
298 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
299 strcat(VersionString
, "bootrom version information appears invalid\n");
301 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
302 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
305 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
306 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
308 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
312 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
316 uint32_t compressed_data_section_size
= common_area
.arg1
;
317 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data
= BigBuf_get_addr();
331 uint32_t start_time
= end_time
= GetTickCount();
332 uint32_t bytes_transferred
= 0;
335 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
337 end_time
= GetTickCount();
338 bytes_transferred
+= USB_CMD_DATA_SIZE
;
342 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred
/ (end_time
- start_time
));
350 * Prints runtime information about the PM3.
352 void SendStatus(void) {
353 BigBuf_print_status();
355 printConfig(); //LF Sampling config
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
359 Dbprintf(" ToSendMax..........%d", ToSendMax
);
360 Dbprintf(" ToSendBit..........%d", ToSendBit
);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
363 cmd_send(CMD_ACK
,1,0,0,0,0);
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
369 void StandAloneMode()
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_ORANGE
, 200);
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
385 #ifdef WITH_ISO14443a_StandAlone
386 void StandAloneMode14a()
389 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
392 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
393 int cardRead
[OPTS
] = {0};
394 uint8_t readUID
[10] = {0};
395 uint32_t uid_1st
[OPTS
]={0};
396 uint32_t uid_2nd
[OPTS
]={0};
397 uint32_t uid_tmp1
= 0;
398 uint32_t uid_tmp2
= 0;
399 iso14a_card_select_t hi14a_card
[OPTS
];
401 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
403 LED(selected
+ 1, 0);
411 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
415 LED(selected
+ 1, 0);
419 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
420 /* need this delay to prevent catching some weird data */
422 /* Code for reading from 14a tag */
423 uint8_t uid
[10] = {0};
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
430 if (BUTTON_PRESS()) {
431 if (cardRead
[selected
]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
435 else if (cardRead
[(selected
+1)%OPTS
]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
437 selected
= (selected
+1)%OPTS
;
438 break; // playing = 1;
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
445 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
449 Dbprintf("Read UID:");
450 Dbhexdump(10, uid
, 0);
451 memcpy(readUID
, uid
, 10 * sizeof(uint8_t));
452 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
453 // Set UID byte order
454 for (int i
=0; i
<4; i
++)
456 dst
= (uint8_t *)&uid_tmp2
;
457 for (int i
=0; i
<4; i
++)
459 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
460 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
464 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
465 uid_1st
[selected
] = (uid_tmp1
)>>8;
466 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
469 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
470 uid_1st
[selected
] = uid_tmp1
;
471 uid_2nd
[selected
] = uid_tmp2
;
477 Dbprintf("ATQA = %02X%02X", hi14a_card
[selected
].atqa
[0], hi14a_card
[selected
].atqa
[1]);
478 Dbprintf("SAK = %02X", hi14a_card
[selected
].sak
);
481 LED(LED_ORANGE
, 200);
483 LED(LED_ORANGE
, 200);
486 LED(selected
+ 1, 0);
488 // Next state is replay:
491 cardRead
[selected
] = 1;
493 /* MF Classic UID clone */
494 else if (iGotoClone
==1)
498 LED(selected
+ 1, 0);
499 LED(LED_ORANGE
, 250);
502 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
504 // wait for button to be released
505 // Delay cloning until card is in place
506 while(BUTTON_PRESS())
509 Dbprintf("Starting clone. [Bank: %u]", selected
);
510 // need this delay to prevent catching some weird data
512 // Begin clone function here:
513 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
514 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
515 memcpy(c.d.asBytes, data, 16);
518 Block read is similar:
519 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
520 We need to imitate that call with blockNo 0 to set a uid.
522 The get and set commands are handled in this file:
523 // Work with "magic Chinese" card
524 case CMD_MIFARE_CSETBLOCK:
525 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
527 case CMD_MIFARE_CGETBLOCK:
528 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
531 mfCSetUID provides example logic for UID set workflow:
532 -Read block0 from card in field with MifareCGetBlock()
533 -Configure new values without replacing reserved bytes
534 memcpy(block0, uid, 4); // Copy UID bytes from byte array
536 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
537 Bytes 5-7 are reserved SAK and ATQA for mifare classic
538 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
540 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
541 // arg0 = Flags, arg1=blockNo
542 MifareCGetBlock(params
, 0, oldBlock0
);
543 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
544 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
548 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0], oldBlock0
[1], oldBlock0
[2], oldBlock0
[3]);
549 memcpy(newBlock0
, oldBlock0
, 16);
550 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
552 newBlock0
[0] = uid_1st
[selected
]>>24;
553 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
554 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
555 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
556 newBlock0
[4] = newBlock0
[0] ^ newBlock0
[1] ^ newBlock0
[2] ^ newBlock0
[3];
558 // arg0 = workFlags, arg1 = blockNo, datain
559 MifareCSetBlock(params
, 0, newBlock0
);
560 MifareCGetBlock(params
, 0, testBlock0
);
562 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
563 DbpString("Cloned successfull!");
564 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
567 selected
= (selected
+ 1) % OPTS
;
569 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
574 LED(selected
+ 1, 0);
576 // Change where to record (or begin playing)
577 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
580 LED(selected
+ 1, 0);
582 // Begin transmitting
586 DbpString("Playing");
589 int button_action
= BUTTON_HELD(1000);
590 if (button_action
== 0) { // No button action, proceed with sim
591 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
592 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
593 num_to_bytes(uid_1st
[selected
], 3, data
);
594 num_to_bytes(uid_2nd
[selected
], 4, data
+3);
596 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
], uid_2nd
[selected
], selected
);
597 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
598 DbpString("Mifare Classic");
599 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
601 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
602 DbpString("Mifare Ultralight");
603 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
605 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
606 DbpString("Mifare DESFire");
607 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
610 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
611 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
614 else if (button_action
== BUTTON_SINGLE_CLICK
) {
615 selected
= (selected
+ 1) % OPTS
;
616 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
620 else if (button_action
== BUTTON_HOLD
) {
621 Dbprintf("Playtime over. Begin cloning...");
628 /* We pressed a button so ignore it here with a delay */
631 LED(selected
+ 1, 0);
634 while(BUTTON_PRESS())
640 // samy's sniff and repeat routine
644 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
646 int high
[OPTS
], low
[OPTS
];
651 // Turn on selected LED
652 LED(selected
+ 1, 0);
658 // Was our button held down or pressed?
659 int button_pressed
= BUTTON_HELD(1000);
662 // Button was held for a second, begin recording
663 if (button_pressed
> 0 && cardRead
== 0)
666 LED(selected
+ 1, 0);
670 DbpString("Starting recording");
672 // wait for button to be released
673 while(BUTTON_PRESS())
676 /* need this delay to prevent catching some weird data */
679 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
680 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
683 LED(selected
+ 1, 0);
684 // Finished recording
685 // If we were previously playing, set playing off
686 // so next button push begins playing what we recorded
690 else if (button_pressed
> 0 && cardRead
== 1) {
692 LED(selected
+ 1, 0);
696 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
698 // wait for button to be released
699 while(BUTTON_PRESS())
702 /* need this delay to prevent catching some weird data */
705 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
706 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
709 LED(selected
+ 1, 0);
710 // Finished recording
712 // If we were previously playing, set playing off
713 // so next button push begins playing what we recorded
718 // Change where to record (or begin playing)
719 else if (button_pressed
) {
720 // Next option if we were previously playing
722 selected
= (selected
+ 1) % OPTS
;
726 LED(selected
+ 1, 0);
728 // Begin transmitting
732 DbpString("Playing");
733 // wait for button to be released
734 while(BUTTON_PRESS())
737 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
738 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
739 DbpString("Done playing");
741 if (BUTTON_HELD(1000) > 0) {
742 DbpString("Exiting");
747 /* We pressed a button so ignore it here with a delay */
750 // when done, we're done playing, move to next option
751 selected
= (selected
+ 1) % OPTS
;
754 LED(selected
+ 1, 0);
757 while(BUTTON_PRESS())
766 Listen and detect an external reader. Determine the best location
770 Inside the ListenReaderField() function, there is two mode.
771 By default, when you call the function, you will enter mode 1.
772 If you press the PM3 button one time, you will enter mode 2.
773 If you press the PM3 button a second time, you will exit the function.
775 DESCRIPTION OF MODE 1:
776 This mode just listens for an external reader field and lights up green
777 for HF and/or red for LF. This is the original mode of the detectreader
780 DESCRIPTION OF MODE 2:
781 This mode will visually represent, using the LEDs, the actual strength of the
782 current compared to the maximum current detected. Basically, once you know
783 what kind of external reader is present, it will help you spot the best location to place
784 your antenna. You will probably not get some good results if there is a LF and a HF reader
785 at the same place! :-)
789 static const char LIGHT_SCHEME
[] = {
790 0x0, /* ---- | No field detected */
791 0x1, /* X--- | 14% of maximum current detected */
792 0x2, /* -X-- | 29% of maximum current detected */
793 0x4, /* --X- | 43% of maximum current detected */
794 0x8, /* ---X | 57% of maximum current detected */
795 0xC, /* --XX | 71% of maximum current detected */
796 0xE, /* -XXX | 86% of maximum current detected */
797 0xF, /* XXXX | 100% of maximum current detected */
799 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
801 void ListenReaderField(int limit
) {
804 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
806 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
807 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
808 int mode
=1, display_val
, display_max
, i
;
810 // switch off FPGA - we don't want to measure our own signal
811 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
812 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
816 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
818 if(limit
!= HF_ONLY
) {
819 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
823 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
825 if (limit
!= LF_ONLY
) {
826 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
831 if (BUTTON_PRESS()) {
836 DbpString("Signal Strength Mode");
840 DbpString("Stopped");
848 if (limit
!= HF_ONLY
) {
850 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
856 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
857 // see if there's a significant change
858 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
859 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
866 if (limit
!= LF_ONLY
) {
868 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
874 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
875 // see if there's a significant change
876 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
877 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
885 if (limit
== LF_ONLY
) {
887 display_max
= lf_max
;
888 } else if (limit
== HF_ONLY
) {
890 display_max
= hf_max
;
891 } else { /* Pick one at random */
892 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
894 display_max
= hf_max
;
897 display_max
= lf_max
;
900 for (i
=0; i
<LIGHT_LEN
; i
++) {
901 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
902 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
903 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
904 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
905 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
913 void UsbPacketReceived(uint8_t *packet
, int len
)
915 UsbCommand
*c
= (UsbCommand
*)packet
;
917 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
921 case CMD_SET_LF_SAMPLING_CONFIG
:
922 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
924 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
925 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
927 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
928 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
930 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
931 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
933 case CMD_HID_DEMOD_FSK
:
934 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
936 case CMD_HID_SIM_TAG
:
937 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
939 case CMD_FSK_SIM_TAG
:
940 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
942 case CMD_ASK_SIM_TAG
:
943 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
945 case CMD_PSK_SIM_TAG
:
946 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
948 case CMD_HID_CLONE_TAG
:
949 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
951 case CMD_IO_DEMOD_FSK
:
952 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
954 case CMD_IO_CLONE_TAG
:
955 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
957 case CMD_EM410X_DEMOD
:
958 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
960 case CMD_EM410X_WRITE_TAG
:
961 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
963 case CMD_READ_TI_TYPE
:
966 case CMD_WRITE_TI_TYPE
:
967 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
969 case CMD_SIMULATE_TAG_125K
:
971 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
974 case CMD_LF_SIMULATE_BIDIR
:
975 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
977 case CMD_INDALA_CLONE_TAG
:
978 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
980 case CMD_INDALA_CLONE_TAG_L
:
981 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
983 case CMD_T55XX_READ_BLOCK
:
984 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
986 case CMD_T55XX_WRITE_BLOCK
:
987 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
989 case CMD_T55XX_WAKEUP
:
990 T55xxWakeUp(c
->arg
[0]);
992 case CMD_T55XX_RESET_READ
:
995 case CMD_PCF7931_READ
:
998 case CMD_PCF7931_WRITE
:
999 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1001 case CMD_EM4X_READ_WORD
:
1002 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
1004 case CMD_EM4X_WRITE_WORD
:
1005 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1007 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1008 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1010 case CMD_VIKING_CLONE_TAG
:
1011 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1019 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1020 SnoopHitag(c
->arg
[0]);
1022 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1023 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1025 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1026 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1028 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1029 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1031 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1032 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1034 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1035 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1037 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1038 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1042 #ifdef WITH_ISO15693
1043 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1044 AcquireRawAdcSamplesIso15693();
1046 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1047 RecordRawAdcSamplesIso15693();
1049 case CMD_ISO_15693_COMMAND
:
1050 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1052 case CMD_ISO_15693_FIND_AFI
:
1053 BruteforceIso15693Afi(c
->arg
[0]);
1055 case CMD_ISO_15693_DEBUG
:
1056 SetDebugIso15693(c
->arg
[0]);
1058 case CMD_READER_ISO_15693
:
1059 ReaderIso15693(c
->arg
[0]);
1061 case CMD_SIMTAG_ISO_15693
:
1062 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1067 case CMD_SIMULATE_TAG_LEGIC_RF
:
1068 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1070 case CMD_WRITER_LEGIC_RF
:
1071 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1073 case CMD_READER_LEGIC_RF
:
1074 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1076 case CMD_LEGIC_INFO
:
1079 case CMD_LEGIC_ESET
:
1080 LegicEMemSet(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1084 #ifdef WITH_ISO14443b
1085 case CMD_READ_SRI_TAG
:
1086 ReadSTMemoryIso14443b(c
->arg
[0]);
1088 case CMD_SNOOP_ISO_14443B
:
1091 case CMD_SIMULATE_TAG_ISO_14443B
:
1092 SimulateIso14443bTag(c
->arg
[0]);
1094 case CMD_ISO_14443B_COMMAND
:
1095 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1096 SendRawCommand14443B_Ex(c
);
1100 #ifdef WITH_ISO14443a
1101 case CMD_SNOOP_ISO_14443a
:
1102 SniffIso14443a(c
->arg
[0]);
1104 case CMD_READER_ISO_14443a
:
1107 case CMD_SIMULATE_TAG_ISO_14443a
:
1108 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1110 case CMD_EPA_PACE_COLLECT_NONCE
:
1111 EPA_PACE_Collect_Nonce(c
);
1113 case CMD_EPA_PACE_REPLAY
:
1116 case CMD_READER_MIFARE
:
1117 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1119 case CMD_MIFARE_READBL
:
1120 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1122 case CMD_MIFAREU_READBL
:
1123 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1125 case CMD_MIFAREUC_AUTH
:
1126 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1128 case CMD_MIFAREU_READCARD
:
1129 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1131 case CMD_MIFAREUC_SETPWD
:
1132 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1134 case CMD_MIFARE_READSC
:
1135 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFARE_WRITEBL
:
1138 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 //case CMD_MIFAREU_WRITEBL_COMPAT:
1141 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1143 case CMD_MIFAREU_WRITEBL
:
1144 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1146 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1147 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1149 case CMD_MIFARE_NESTED
:
1150 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1152 case CMD_MIFARE_CHKKEYS
:
1153 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1155 case CMD_SIMULATE_MIFARE_CARD
:
1156 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1160 case CMD_MIFARE_SET_DBGMODE
:
1161 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1163 case CMD_MIFARE_EML_MEMCLR
:
1164 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1166 case CMD_MIFARE_EML_MEMSET
:
1167 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1169 case CMD_MIFARE_EML_MEMGET
:
1170 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1172 case CMD_MIFARE_EML_CARDLOAD
:
1173 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1176 // Work with "magic Chinese" card
1177 case CMD_MIFARE_CSETBLOCK
:
1178 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1180 case CMD_MIFARE_CGETBLOCK
:
1181 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1183 case CMD_MIFARE_CIDENT
:
1188 case CMD_MIFARE_SNIFFER
:
1189 SniffMifare(c
->arg
[0]);
1193 case CMD_MIFARE_DESFIRE_READBL
: break;
1194 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1195 case CMD_MIFARE_DESFIRE_AUTH1
:
1196 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_MIFARE_DESFIRE_AUTH2
:
1199 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1201 case CMD_MIFARE_DES_READER
:
1202 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1204 case CMD_MIFARE_DESFIRE_INFO
:
1205 MifareDesfireGetInformation();
1207 case CMD_MIFARE_DESFIRE
:
1208 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1210 case CMD_MIFARE_COLLECT_NONCES
:
1214 case CMD_EMV_TRANSACTION
:
1217 case CMD_EMV_GET_RANDOM_NUM
:
1220 case CMD_EMV_LOAD_VALUE
:
1221 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1223 case CMD_EMV_DUMP_CARD
:
1227 // Makes use of ISO14443a FPGA Firmware
1228 case CMD_SNOOP_ICLASS
:
1231 case CMD_SIMULATE_TAG_ICLASS
:
1232 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1234 case CMD_READER_ICLASS
:
1235 ReaderIClass(c
->arg
[0]);
1237 case CMD_READER_ICLASS_REPLAY
:
1238 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1240 case CMD_ICLASS_EML_MEMSET
:
1241 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1243 case CMD_ICLASS_WRITEBLOCK
:
1244 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1246 case CMD_ICLASS_READCHECK
: // auth step 1
1247 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1249 case CMD_ICLASS_READBLOCK
:
1250 iClass_ReadBlk(c
->arg
[0]);
1252 case CMD_ICLASS_AUTHENTICATION
: //check
1253 iClass_Authentication(c
->d
.asBytes
);
1255 case CMD_ICLASS_DUMP
:
1256 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1258 case CMD_ICLASS_CLONE
:
1259 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1263 case CMD_HF_SNIFFER
:
1264 HfSnoop(c
->arg
[0], c
->arg
[1]);
1268 case CMD_BUFF_CLEAR
:
1272 case CMD_MEASURE_ANTENNA_TUNING
:
1273 MeasureAntennaTuning();
1276 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1277 MeasureAntennaTuningHf();
1280 case CMD_LISTEN_READER_FIELD
:
1281 ListenReaderField(c
->arg
[0]);
1284 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1285 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1287 LED_D_OFF(); // LED D indicates field ON or OFF
1290 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1292 uint8_t *BigBuf
= BigBuf_get_addr();
1294 size_t startidx
= c
->arg
[0];
1295 uint8_t isok
= FALSE
;
1296 // arg0 = startindex
1297 // arg1 = length bytes to transfer
1299 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1301 for(size_t i
= 0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1302 len
= MIN( (c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1303 isok
= cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, i
, len
, BigBuf_get_traceLen(), BigBuf
+ startidx
+ i
, len
);
1305 Dbprintf("transfer to client failed :: | bytes %d", len
);
1307 // Trigger a finish downloading signal with an ACK frame
1308 cmd_send(CMD_ACK
, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config
));
1312 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1313 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1314 // to be able to use this one for uploading data to device
1315 // arg1 = 0 upload for LF usage
1316 // 1 upload for HF usage
1317 if ( c
->arg
[1] == 0 )
1318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1320 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1321 uint8_t *b
= BigBuf_get_addr();
1322 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1323 cmd_send(CMD_ACK
,1,0,0,0,0);
1326 case CMD_DOWNLOAD_EML_BIGBUF
: {
1328 uint8_t *cardmem
= BigBuf_get_EM_addr();
1330 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1331 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1332 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1334 // Trigger a finish downloading signal with an ACK frame
1335 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1343 case CMD_SET_LF_DIVISOR
:
1344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1345 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1348 case CMD_SET_ADC_MUX
:
1350 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1351 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1352 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1353 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1364 cmd_send(CMD_ACK
,0,0,0,0,0);
1374 case CMD_SETUP_WRITE
:
1375 case CMD_FINISH_WRITE
:
1376 case CMD_HARDWARE_RESET
:
1379 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1381 // We're going to reset, and the bootrom will take control.
1385 case CMD_START_FLASH
:
1386 if(common_area
.flags
.bootrom_present
) {
1387 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1390 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1394 case CMD_DEVICE_INFO
: {
1395 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1396 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1397 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1401 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1406 void __attribute__((noreturn
)) AppMain(void)
1410 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1411 /* Initialize common area */
1412 memset(&common_area
, 0, sizeof(common_area
));
1413 common_area
.magic
= COMMON_AREA_MAGIC
;
1414 common_area
.version
= 1;
1416 common_area
.flags
.osimage_present
= 1;
1423 // The FPGA gets its clock from us from PCK0 output, so set that up.
1424 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1425 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1426 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1427 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1428 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1429 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1432 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1434 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1436 // Load the FPGA image, which we have stored in our flash.
1437 // (the HF version by default)
1438 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1446 byte_t rx
[sizeof(UsbCommand
)];
1450 if ( usb_poll_validate_length() ) {
1451 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1454 UsbPacketReceived(rx
, rx_len
);
1459 #ifndef WITH_ISO14443a_StandAlone
1460 if (BUTTON_HELD(1000) > 0)
1464 #ifdef WITH_ISO14443a
1465 #ifdef WITH_ISO14443a_StandAlone
1466 if (BUTTON_HELD(1000) > 0)
1467 StandAloneMode14a();