1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendBit
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 cmd_send(CMD_DEBUG_PRINT_STRING
,strlen(str
),0,0,(byte_t
*)str
,strlen(str
));
83 // /* this holds up stuff unless we're connected to usb */
84 // if (!UsbConnected())
88 // c.cmd = CMD_DEBUG_PRINT_STRING;
89 // c.arg[0] = strlen(str);
90 // if(c.arg[0] > sizeof(c.d.asBytes)) {
91 // c.arg[0] = sizeof(c.d.asBytes);
93 // memcpy(c.d.asBytes, str, c.arg[0]);
95 // UsbSendPacket((uint8_t *)&c, sizeof(c));
96 // // TODO fix USB so stupid things like this aren't req'd
101 void DbpIntegers(int x1
, int x2
, int x3
)
103 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
104 // /* this holds up stuff unless we're connected to usb */
105 // if (!UsbConnected())
109 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
114 // UsbSendPacket((uint8_t *)&c, sizeof(c));
120 void Dbprintf(const char *fmt
, ...) {
121 // should probably limit size here; oh well, let's just use a big buffer
122 char output_string
[128];
126 kvsprintf(fmt
, output_string
, 10, ap
);
129 DbpString(output_string
);
132 // prints HEX & ASCII
133 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
146 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
149 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
151 Dbprintf("%*D",l
,d
," ");
159 //-----------------------------------------------------------------------------
160 // Read an ADC channel and block till it completes, then return the result
161 // in ADC units (0 to 1023). Also a routine to average 32 samples and
163 //-----------------------------------------------------------------------------
164 static int ReadAdc(int ch
)
168 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
169 AT91C_BASE_ADC
->ADC_MR
=
170 ADC_MODE_PRESCALE(32) |
171 ADC_MODE_STARTUP_TIME(16) |
172 ADC_MODE_SAMPLE_HOLD_TIME(8);
173 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
175 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
176 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
178 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
183 int AvgAdc(int ch
) // was static - merlok
188 for(i
= 0; i
< 32; i
++) {
192 return (a
+ 15) >> 5;
195 void MeasureAntennaTuning(void)
197 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
198 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
199 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
204 DbpString("Measuring antenna characteristics, please wait...");
205 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
208 * Sweeps the useful LF range of the proxmark from
209 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
210 * read the voltage in the antenna, the result left
211 * in the buffer is a graph which should clearly show
212 * the resonating frequency of your LF antenna
213 * ( hopefully around 95 if it is tuned to 125kHz!)
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
217 for (i
=255; i
>19; i
--) {
219 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
221 // Vref = 3.3V, and a 10000:240 voltage divider on the input
222 // can measure voltages up to 137500 mV
223 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
224 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
225 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
227 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
237 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
238 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
240 // Vref = 3300mV, and an 10:1 voltage divider on the input
241 // can measure voltages up to 33000 mV
242 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
244 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
245 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
247 // c.arg[2] = peakf | (peakv << 16);
249 DbpString("Measuring complete, sending report back to host");
250 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
251 // UsbSendPacket((uint8_t *)&c, sizeof(c));
252 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
258 void MeasureAntennaTuningHf(void)
260 int vHf
= 0; // in mV
262 DbpString("Measuring HF antenna, press button to exit");
265 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
268 // Vref = 3300mV, and an 10:1 voltage divider on the input
269 // can measure voltages up to 33000 mV
270 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
272 Dbprintf("%d mV",vHf
);
273 if (BUTTON_PRESS()) break;
275 DbpString("cancelled");
279 void SimulateTagHfListen(void)
281 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
286 // We're using this mode just so that I can test it out; the simulated
287 // tag mode would work just as well and be simpler.
288 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
290 // We need to listen to the high-frequency, peak-detected path.
291 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
297 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
298 AT91C_BASE_SSC
->SSC_THR
= 0xff;
300 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
301 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
315 if(i
>= FREE_BUFFER_SIZE
) {
321 DbpString("simulate tag (now type bitsamples)");
324 void ReadMem(int addr
)
326 const uint8_t *data
= ((uint8_t *)addr
);
328 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
329 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
332 /* osimage version information is linked in */
333 extern struct version_information version_information
;
334 /* bootrom version information is pointed to from _bootphase1_version_pointer */
335 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
336 void SendVersion(void)
338 char temp
[48]; /* Limited data payload in USB packets */
339 DbpString("Prox/RFID mark3 RFID instrument");
341 /* Try to find the bootrom version information. Expect to find a pointer at
342 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
343 * pointer, then use it.
345 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
346 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
347 DbpString("bootrom version information appears invalid");
349 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
353 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
356 FpgaGatherVersion(temp
, sizeof(temp
));
361 // samy's sniff and repeat routine
364 DbpString("Stand-alone mode! No PC necessary.");
366 // 3 possible options? no just 2 for now
369 int high
[OPTS
], low
[OPTS
];
371 // Oooh pretty -- notify user we're in elite samy mode now
373 LED(LED_ORANGE
, 200);
375 LED(LED_ORANGE
, 200);
377 LED(LED_ORANGE
, 200);
379 LED(LED_ORANGE
, 200);
385 // Turn on selected LED
386 LED(selected
+ 1, 0);
393 // Was our button held down or pressed?
394 int button_pressed
= BUTTON_HELD(1000);
397 // Button was held for a second, begin recording
398 if (button_pressed
> 0)
401 LED(selected
+ 1, 0);
405 DbpString("Starting recording");
407 // wait for button to be released
408 while(BUTTON_PRESS())
411 /* need this delay to prevent catching some weird data */
414 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
415 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
418 LED(selected
+ 1, 0);
419 // Finished recording
421 // If we were previously playing, set playing off
422 // so next button push begins playing what we recorded
426 // Change where to record (or begin playing)
427 else if (button_pressed
)
429 // Next option if we were previously playing
431 selected
= (selected
+ 1) % OPTS
;
435 LED(selected
+ 1, 0);
437 // Begin transmitting
441 DbpString("Playing");
442 // wait for button to be released
443 while(BUTTON_PRESS())
445 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
446 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
447 DbpString("Done playing");
448 if (BUTTON_HELD(1000) > 0)
450 DbpString("Exiting");
455 /* We pressed a button so ignore it here with a delay */
458 // when done, we're done playing, move to next option
459 selected
= (selected
+ 1) % OPTS
;
462 LED(selected
+ 1, 0);
465 while(BUTTON_PRESS())
474 Listen and detect an external reader. Determine the best location
478 Inside the ListenReaderField() function, there is two mode.
479 By default, when you call the function, you will enter mode 1.
480 If you press the PM3 button one time, you will enter mode 2.
481 If you press the PM3 button a second time, you will exit the function.
483 DESCRIPTION OF MODE 1:
484 This mode just listens for an external reader field and lights up green
485 for HF and/or red for LF. This is the original mode of the detectreader
488 DESCRIPTION OF MODE 2:
489 This mode will visually represent, using the LEDs, the actual strength of the
490 current compared to the maximum current detected. Basically, once you know
491 what kind of external reader is present, it will help you spot the best location to place
492 your antenna. You will probably not get some good results if there is a LF and a HF reader
493 at the same place! :-)
497 static const char LIGHT_SCHEME
[] = {
498 0x0, /* ---- | No field detected */
499 0x1, /* X--- | 14% of maximum current detected */
500 0x2, /* -X-- | 29% of maximum current detected */
501 0x4, /* --X- | 43% of maximum current detected */
502 0x8, /* ---X | 57% of maximum current detected */
503 0xC, /* --XX | 71% of maximum current detected */
504 0xE, /* -XXX | 86% of maximum current detected */
505 0xF, /* XXXX | 100% of maximum current detected */
507 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
509 void ListenReaderField(int limit
)
511 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
512 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
513 int mode
=1, display_val
, display_max
, i
;
520 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
522 if(limit
!= HF_ONLY
) {
523 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
527 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
529 if (limit
!= LF_ONLY
) {
530 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
535 if (BUTTON_PRESS()) {
540 DbpString("Signal Strength Mode");
544 DbpString("Stopped");
552 if (limit
!= HF_ONLY
) {
554 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
559 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
560 // see if there's a significant change
561 if(abs(lf_av
- lf_av_new
) > 10) {
562 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
570 if (limit
!= LF_ONLY
) {
572 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
577 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
578 // see if there's a significant change
579 if(abs(hf_av
- hf_av_new
) > 10) {
580 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
589 if (limit
== LF_ONLY
) {
591 display_max
= lf_max
;
592 } else if (limit
== HF_ONLY
) {
594 display_max
= hf_max
;
595 } else { /* Pick one at random */
596 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
598 display_max
= hf_max
;
601 display_max
= lf_max
;
604 for (i
=0; i
<LIGHT_LEN
; i
++) {
605 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
606 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
607 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
608 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
609 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
617 void UsbPacketReceived(uint8_t *packet
, int len
)
619 UsbCommand
*c
= (UsbCommand
*)packet
;
621 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
625 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
626 AcquireRawAdcSamples125k(c
->arg
[0]);
627 cmd_send(CMD_ACK
,0,0,0,0,0);
629 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
630 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
632 case CMD_HID_DEMOD_FSK
:
633 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
635 case CMD_HID_SIM_TAG
:
636 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
638 case CMD_HID_CLONE_TAG
:
639 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1]); // Clone HID tag by ID to T55x7
641 case CMD_EM410X_WRITE_TAG
:
642 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
644 case CMD_READ_TI_TYPE
:
647 case CMD_WRITE_TI_TYPE
:
648 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
650 case CMD_SIMULATE_TAG_125K
:
652 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
655 case CMD_LF_SIMULATE_BIDIR
:
656 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
658 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
659 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
661 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
662 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
667 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
668 SnoopHitag(c
->arg
[0]);
670 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
671 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
673 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
674 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
679 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
680 AcquireRawAdcSamplesIso15693();
682 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
683 RecordRawAdcSamplesIso15693();
686 case CMD_ISO_15693_COMMAND
:
687 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
690 case CMD_ISO_15693_FIND_AFI
:
691 BruteforceIso15693Afi(c
->arg
[0]);
694 case CMD_ISO_15693_DEBUG
:
695 SetDebugIso15693(c
->arg
[0]);
698 case CMD_READER_ISO_15693
:
699 ReaderIso15693(c
->arg
[0]);
701 case CMD_SIMTAG_ISO_15693
:
702 SimTagIso15693(c
->arg
[0]);
707 case CMD_SIMULATE_TAG_LEGIC_RF
:
708 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
711 case CMD_WRITER_LEGIC_RF
:
712 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
715 case CMD_READER_LEGIC_RF
:
716 LegicRfReader(c
->arg
[0], c
->arg
[1]);
720 #ifdef WITH_ISO14443b
721 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
722 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
724 case CMD_READ_SRI512_TAG
:
725 ReadSRI512Iso14443(c
->arg
[0]);
727 case CMD_READ_SRIX4K_TAG
:
728 ReadSRIX4KIso14443(c
->arg
[0]);
730 case CMD_SNOOP_ISO_14443
:
733 case CMD_SIMULATE_TAG_ISO_14443
:
734 SimulateIso14443Tag();
738 #ifdef WITH_ISO14443a
739 case CMD_SNOOP_ISO_14443a
:
740 SnoopIso14443a(c
->arg
[0]);
742 case CMD_READER_ISO_14443a
:
745 case CMD_SIMULATE_TAG_ISO_14443a
:
746 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2]); // ## Simulate iso14443a tag - pass tag type & UID
748 case CMD_EPA_PACE_COLLECT_NONCE
:
749 EPA_PACE_Collect_Nonce(c
);
752 case CMD_READER_MIFARE
:
753 ReaderMifare(c
->arg
[0]);
755 case CMD_MIFARE_READBL
:
756 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
758 case CMD_MIFARE_READSC
:
759 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
761 case CMD_MIFARE_WRITEBL
:
762 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
764 case CMD_MIFARE_NESTED
:
765 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
767 case CMD_MIFARE_CHKKEYS
:
768 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
770 case CMD_SIMULATE_MIFARE_CARD
:
771 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
775 case CMD_MIFARE_SET_DBGMODE
:
776 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
778 case CMD_MIFARE_EML_MEMCLR
:
779 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
781 case CMD_MIFARE_EML_MEMSET
:
782 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
784 case CMD_MIFARE_EML_MEMGET
:
785 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
787 case CMD_MIFARE_EML_CARDLOAD
:
788 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
791 // Work with "magic Chinese" card
792 case CMD_MIFARE_EML_CSETBLOCK
:
793 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
795 case CMD_MIFARE_EML_CGETBLOCK
:
796 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFARE_SNIFFER
:
801 SniffMifare(c
->arg
[0]);
806 // Makes use of ISO14443a FPGA Firmware
807 case CMD_SNOOP_ICLASS
:
810 case CMD_SIMULATE_TAG_ICLASS
:
811 SimulateIClass(c
->arg
[0], c
->d
.asBytes
);
813 case CMD_READER_ICLASS
:
814 ReaderIClass(c
->arg
[0]);
818 case CMD_SIMULATE_TAG_HF_LISTEN
:
819 SimulateTagHfListen();
826 case CMD_MEASURE_ANTENNA_TUNING
:
827 MeasureAntennaTuning();
830 case CMD_MEASURE_ANTENNA_TUNING_HF
:
831 MeasureAntennaTuningHf();
834 case CMD_LISTEN_READER_FIELD
:
835 ListenReaderField(c
->arg
[0]);
838 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
839 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
841 LED_D_OFF(); // LED D indicates field ON or OFF
844 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
846 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
847 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
849 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
851 // n.arg[0] = c->arg[0];
852 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
854 // usb_write((uint8_t *)&n, sizeof(n));
855 // UsbSendPacket((uint8_t *)&n, sizeof(n));
859 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
860 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
861 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
863 // Trigger a finish downloading signal with an ACK frame
864 cmd_send(CMD_ACK
,0,0,0,0,0);
868 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
869 uint8_t *b
= (uint8_t *)BigBuf
;
870 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
871 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
872 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
873 cmd_send(CMD_ACK
,0,0,0,0,0);
880 case CMD_SET_LF_DIVISOR
:
881 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
884 case CMD_SET_ADC_MUX
:
886 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
887 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
888 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
889 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
905 case CMD_SETUP_WRITE
:
906 case CMD_FINISH_WRITE
:
907 case CMD_HARDWARE_RESET
: {
908 USB_D_PLUS_PULLUP_OFF();
911 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
913 // We're going to reset, and the bootrom will take control.
917 case CMD_START_FLASH
: {
918 if(common_area
.flags
.bootrom_present
) {
919 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
921 USB_D_PLUS_PULLUP_OFF();
922 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
926 case CMD_DEVICE_INFO
: {
927 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
928 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
929 // UsbSendPacket((uint8_t*)&c, sizeof(c));
930 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
934 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
939 void __attribute__((noreturn
)) AppMain(void)
943 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
944 /* Initialize common area */
945 memset(&common_area
, 0, sizeof(common_area
));
946 common_area
.magic
= COMMON_AREA_MAGIC
;
947 common_area
.version
= 1;
949 common_area
.flags
.osimage_present
= 1;
961 // The FPGA gets its clock from us from PCK0 output, so set that up.
962 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
963 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
964 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
965 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
966 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
967 AT91C_PMC_PRES_CLK_4
;
968 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
971 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
973 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
975 // Load the FPGA image, which we have stored in our flash.
984 byte_t rx
[sizeof(UsbCommand
)];
989 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
991 UsbPacketReceived(rx
,rx_len
);
999 if (BUTTON_HELD(1000) > 0)