1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
67 // Delays in SSP_CLK ticks.
68 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
69 #define DELAY_READER_TO_ARM 8
70 #define DELAY_ARM_TO_READER 0
71 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
72 #define DELAY_ARM_TO_TAG 16
73 #define DELAY_TAG_TO_ARM 32
74 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16
75 #define DELAY_TAG_TO_ARM_SNOOP 32
76 #define DELAY_READER_TO_ARM_SNOOP 32
81 ///////////////////////////////////////////////////////////////////////
82 // ISO 15693 Part 2 - Air Interface
83 // This section basically contains transmission and receiving of bits
84 ///////////////////////////////////////////////////////////////////////
87 #define ISO15693_DMA_BUFFER_SIZE 256 // must be a power of 2
88 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
89 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
92 // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
93 bool LogTrace_ISO15693(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
) {
94 uint32_t duration
= timestamp_end
- timestamp_start
;
96 timestamp_end
= timestamp_start
+ duration
;
97 return LogTrace(btBytes
, iLen
, timestamp_start
, timestamp_end
, parity
, readerToTag
);
101 // ---------------------------
103 // ---------------------------
105 // prepare data using "1 out of 4" code for later transmission
106 // resulting data rate is 26.48 kbit/s (fc/512)
108 // n ... length of data
109 void CodeIso15693AsReader(uint8_t *cmd
, int n
) {
114 ToSend
[++ToSendMax
] = 0x84; //10000100
117 for (int i
= 0; i
< n
; i
++) {
118 for (int j
= 0; j
< 8; j
+= 2) {
119 int these
= (cmd
[i
] >> j
) & 0x03;
122 ToSend
[++ToSendMax
] = 0x40; //01000000
125 ToSend
[++ToSendMax
] = 0x10; //00010000
128 ToSend
[++ToSendMax
] = 0x04; //00000100
131 ToSend
[++ToSendMax
] = 0x01; //00000001
138 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
143 // encode data using "1 out of 256" scheme
144 // data rate is 1,66 kbit/s (fc/8192)
145 // is designed for more robust communication over longer distances
146 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
151 ToSend
[++ToSendMax
] = 0x81; //10000001
154 for(int i
= 0; i
< n
; i
++) {
155 for (int j
= 0; j
<= 255; j
++) {
167 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
173 // static uint8_t encode4Bits(const uint8_t b) {
174 // uint8_t c = b & 0xF;
175 // // OTA, the least significant bits first
176 // // The columns are
177 // // 1 - Bit value to send
178 // // 2 - Reversed (big-endian)
179 // // 3 - Manchester Encoded
184 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
185 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
186 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
187 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
188 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
189 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
190 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
191 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
192 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
193 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
194 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
195 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
196 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
197 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
198 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
199 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
204 static const uint8_t encode_4bits
[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
206 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
208 * SOF comprises 3 parts;
209 * * An unmodulated time of 56.64 us
210 * * 24 pulses of 423.75 kHz (fc/32)
211 * * A logic 1, which starts with an unmodulated time of 18.88us
212 * followed by 8 pulses of 423.75kHz (fc/32)
214 * EOF comprises 3 parts:
215 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
217 * - 24 pulses of fc/32
218 * - An unmodulated time of 56.64 us
220 * A logic 0 starts with 8 pulses of fc/32
221 * followed by an unmodulated time of 256/fc (~18,88us).
223 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
224 * 8 pulses of fc/32 (also 18.88us)
226 * A bit here becomes 8 pulses of fc/32. Therefore:
227 * The SOF can be written as 00011101 = 0x1D
228 * The EOF can be written as 10111000 = 0xb8
237 ToSend
[++ToSendMax
] = 0x1D; // 00011101
240 for (int i
= 0; i
< len
; i
++) {
241 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] & 0xF];
242 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] >> 4];
246 ToSend
[++ToSendMax
] = 0xB8; // 10111000
252 // Transmit the command (to the tag) that was placed in cmd[].
253 void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t *start_time
) {
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
257 if (*start_time
< DELAY_ARM_TO_TAG
) {
258 *start_time
= DELAY_ARM_TO_TAG
;
261 *start_time
= (*start_time
- DELAY_ARM_TO_TAG
) & 0xfffffff0;
263 if (GetCountSspClk() > *start_time
) { // we may miss the intended time
264 *start_time
= (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
267 while (GetCountSspClk() < *start_time
)
271 for (int c
= 0; c
< len
; c
++) {
272 uint8_t data
= cmd
[c
];
273 for (int i
= 0; i
< 8; i
++) {
274 uint16_t send_word
= (data
& 0x80) ? 0xffff : 0x0000;
275 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
276 AT91C_BASE_SSC
->SSC_THR
= send_word
;
277 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
278 AT91C_BASE_SSC
->SSC_THR
= send_word
;
286 *start_time
= *start_time
+ DELAY_ARM_TO_TAG
;
291 //-----------------------------------------------------------------------------
292 // Transmit the tag response (to the reader) that was placed in cmd[].
293 //-----------------------------------------------------------------------------
294 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t *start_time
, uint32_t slot_time
, bool slow
) {
295 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
298 uint32_t modulation_start_time
= *start_time
- DELAY_ARM_TO_READER
+ 3 * 8; // no need to transfer the unmodulated start of SOF
300 while (GetCountSspClk() > (modulation_start_time
& 0xfffffff8) + 3) { // we will miss the intended time
302 modulation_start_time
+= slot_time
; // use next available slot
304 modulation_start_time
= (modulation_start_time
& 0xfffffff8) + 8; // next possible time
308 while (GetCountSspClk() < (modulation_start_time
& 0xfffffff8))
311 uint8_t shift_delay
= modulation_start_time
& 0x00000007;
313 *start_time
= modulation_start_time
+ DELAY_ARM_TO_READER
- 3 * 8;
316 uint8_t bits_to_shift
= 0x00;
317 uint8_t bits_to_send
= 0x00;
318 for (size_t c
= 0; c
< len
; c
++) {
319 for (int i
= (c
==0?4:7); i
>= 0; i
--) {
320 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
321 for (int j
= 0; j
< (slow
?4:1); ) {
322 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
323 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
324 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
325 bits_to_shift
= cmd_bits
;
332 // send the remaining bits, padded with 0:
333 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
335 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
336 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
344 //=============================================================================
345 // An ISO 15693 decoder for tag responses (one subcarrier only).
346 // Uses cross correlation to identify each bit and EOF.
347 // This function is called 8 times per bit (every 2 subcarrier cycles).
348 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
349 // i.e. function is called every 4,72us
351 // LED C -> ON once we have received the SOF and are expecting the rest.
352 // LED C -> OFF once we have received EOF or are unsynced
354 // Returns: true if we received a EOF
355 // false if we are still waiting for some more
356 //=============================================================================
358 #define NOISE_THRESHOLD 160 // don't try to correlate noise
359 #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
361 typedef struct DecodeTag
{
364 STATE_TAG_SOF_RISING_EDGE
,
366 STATE_TAG_SOF_HIGH_END
,
367 STATE_TAG_RECEIVING_DATA
,
386 uint16_t previous_amplitude
;
390 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
) {
391 switch (DecodeTag
->state
) {
392 case STATE_TAG_SOF_LOW
:
393 // waiting for a rising edge
394 if (amplitude
> NOISE_THRESHOLD
+ DecodeTag
->previous_amplitude
) {
395 if (DecodeTag
->posCount
> 10) {
396 DecodeTag
->threshold_sof
= amplitude
- DecodeTag
->previous_amplitude
; // to be divided by 2
397 DecodeTag
->threshold_half
= 0;
398 DecodeTag
->state
= STATE_TAG_SOF_RISING_EDGE
;
400 DecodeTag
->posCount
= 0;
403 DecodeTag
->posCount
++;
404 DecodeTag
->previous_amplitude
= amplitude
;
408 case STATE_TAG_SOF_RISING_EDGE
:
409 if (amplitude
> DecodeTag
->threshold_sof
+ DecodeTag
->previous_amplitude
) { // edge still rising
410 if (amplitude
> DecodeTag
->threshold_sof
+ DecodeTag
->threshold_sof
) { // steeper edge, take this as time reference
411 DecodeTag
->posCount
= 1;
413 DecodeTag
->posCount
= 2;
415 DecodeTag
->threshold_sof
= (amplitude
- DecodeTag
->previous_amplitude
) / 2;
417 DecodeTag
->posCount
= 2;
418 DecodeTag
->threshold_sof
= DecodeTag
->threshold_sof
/2;
420 // DecodeTag->posCount = 2;
421 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
424 case STATE_TAG_SOF_HIGH
:
425 // waiting for 10 times high. Take average over the last 8
426 if (amplitude
> DecodeTag
->threshold_sof
) {
427 DecodeTag
->posCount
++;
428 if (DecodeTag
->posCount
> 2) {
429 DecodeTag
->threshold_half
+= amplitude
; // keep track of average high value
431 if (DecodeTag
->posCount
== 10) {
432 DecodeTag
->threshold_half
>>= 2; // (4 times 1/2 average)
433 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
435 } else { // high phase was too short
436 DecodeTag
->posCount
= 1;
437 DecodeTag
->previous_amplitude
= amplitude
;
438 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
442 case STATE_TAG_SOF_HIGH_END
:
443 // check for falling edge
444 if (DecodeTag
->posCount
== 13 && amplitude
< DecodeTag
->threshold_sof
) {
445 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
446 DecodeTag
->shiftReg
= 0;
447 DecodeTag
->bitCount
= 0;
449 DecodeTag
->sum1
= amplitude
;
451 DecodeTag
->posCount
= 2;
452 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
453 // FpgaDisableTracing(); // DEBUGGING
454 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
456 // DecodeTag->threshold_sof,
457 // DecodeTag->threshold_half/4,
458 // DecodeTag->previous_amplitude); // DEBUGGING
461 DecodeTag
->posCount
++;
462 if (DecodeTag
->posCount
> 13) { // high phase too long
463 DecodeTag
->posCount
= 0;
464 DecodeTag
->previous_amplitude
= amplitude
;
465 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
471 case STATE_TAG_RECEIVING_DATA
:
472 // FpgaDisableTracing(); // DEBUGGING
473 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
475 // DecodeTag->threshold_sof,
476 // DecodeTag->threshold_half/4,
477 // DecodeTag->previous_amplitude); // DEBUGGING
478 if (DecodeTag
->posCount
== 1) {
482 if (DecodeTag
->posCount
<= 4) {
483 DecodeTag
->sum1
+= amplitude
;
485 DecodeTag
->sum2
+= amplitude
;
487 if (DecodeTag
->posCount
== 8) {
488 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in both halves
489 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
490 DecodeTag
->state
= STATE_TAG_EOF
;
492 DecodeTag
->posCount
= 0;
493 DecodeTag
->previous_amplitude
= amplitude
;
494 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
497 } else if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in second half
499 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
500 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
502 DecodeTag
->lastBit
= LOGIC1
;
503 DecodeTag
->shiftReg
>>= 1;
504 DecodeTag
->shiftReg
|= 0x80;
505 DecodeTag
->bitCount
++;
506 if (DecodeTag
->bitCount
== 8) {
507 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
509 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
510 if (DecodeTag
->len
> DecodeTag
->max_len
) {
511 // buffer overflow, give up
515 DecodeTag
->bitCount
= 0;
516 DecodeTag
->shiftReg
= 0;
519 } else if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
521 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
522 DecodeTag
->posCount
= 0;
523 DecodeTag
->previous_amplitude
= amplitude
;
524 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
527 DecodeTag
->lastBit
= LOGIC0
;
528 DecodeTag
->shiftReg
>>= 1;
529 DecodeTag
->bitCount
++;
530 if (DecodeTag
->bitCount
== 8) {
531 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
533 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
534 if (DecodeTag
->len
> DecodeTag
->max_len
) {
535 // buffer overflow, give up
536 DecodeTag
->posCount
= 0;
537 DecodeTag
->previous_amplitude
= amplitude
;
538 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
541 DecodeTag
->bitCount
= 0;
542 DecodeTag
->shiftReg
= 0;
545 } else { // no modulation
546 if (DecodeTag
->lastBit
== SOF_PART2
) { // only SOF (this is OK for iClass)
550 DecodeTag
->posCount
= 0;
551 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
555 DecodeTag
->posCount
= 0;
557 DecodeTag
->posCount
++;
561 if (DecodeTag
->posCount
== 1) {
565 if (DecodeTag
->posCount
<= 4) {
566 DecodeTag
->sum1
+= amplitude
;
568 DecodeTag
->sum2
+= amplitude
;
570 if (DecodeTag
->posCount
== 8) {
571 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
572 DecodeTag
->posCount
= 0;
573 DecodeTag
->state
= STATE_TAG_EOF_TAIL
;
575 DecodeTag
->posCount
= 0;
576 DecodeTag
->previous_amplitude
= amplitude
;
577 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
581 DecodeTag
->posCount
++;
584 case STATE_TAG_EOF_TAIL
:
585 if (DecodeTag
->posCount
== 1) {
589 if (DecodeTag
->posCount
<= 4) {
590 DecodeTag
->sum1
+= amplitude
;
592 DecodeTag
->sum2
+= amplitude
;
594 if (DecodeTag
->posCount
== 8) {
595 if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // no modulation in both halves
599 DecodeTag
->posCount
= 0;
600 DecodeTag
->previous_amplitude
= amplitude
;
601 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
605 DecodeTag
->posCount
++;
613 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
) {
614 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
615 DecodeTag
->posCount
= 0;
616 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
617 DecodeTag
->output
= data
;
618 DecodeTag
->max_len
= max_len
;
622 static void DecodeTagReset(DecodeTag_t
*DecodeTag
) {
623 DecodeTag
->posCount
= 0;
624 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
625 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
630 * Receive and decode the tag response, also log to tracebuffer
632 int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, uint16_t timeout
, uint32_t *eof_time
) {
637 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
639 // the Decoder data structure
640 DecodeTag_t DecodeTag
= { 0 };
641 DecodeTagInit(&DecodeTag
, response
, max_len
);
643 // wait for last transfer to complete
644 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
646 // And put the FPGA in the appropriate mode
647 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
649 // Setup and start DMA.
650 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
651 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
652 uint32_t dma_start_time
= 0;
653 uint16_t *upTo
= dmaBuf
;
656 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
658 if (behindBy
== 0) continue;
662 // DMA has transferred the very first data
663 dma_start_time
= GetCountSspClk() & 0xfffffff0;
666 uint16_t tagdata
= *upTo
++;
668 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
669 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
670 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
671 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
676 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
677 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
678 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
681 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
682 *eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM
; // end of EOF
683 if (DecodeTag
.lastBit
== SOF_PART2
) {
684 *eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
686 if (DecodeTag
.len
> DecodeTag
.max_len
) {
687 ret
= -2; // buffer overflow
692 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
701 if (DEBUG
) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
702 samples
, ret
, DecodeTag
.state
, DecodeTag
.lastBit
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
708 uint32_t sof_time
= *eof_time
709 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
710 - 32 * 16 // time for SOF transfer
711 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
713 if (DEBUG
) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time
, *eof_time
);
715 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, *eof_time
*4, NULL
, false);
717 return DecodeTag
.len
;
721 //=============================================================================
722 // An ISO15693 decoder for reader commands.
724 // This function is called 4 times per bit (every 2 subcarrier cycles).
725 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
727 // LED B -> ON once we have received the SOF and are expecting the rest.
728 // LED B -> OFF once we have received EOF or are in error state or unsynced
730 // Returns: true if we received a EOF
731 // false if we are still waiting for some more
732 //=============================================================================
734 typedef struct DecodeReader
{
736 STATE_READER_UNSYNCD
,
737 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
,
738 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
739 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
740 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
741 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
742 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
743 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
,
744 STATE_READER_RECEIVE_JAMMING
757 uint8_t jam_search_len
;
758 uint8_t *jam_search_string
;
762 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
, uint8_t jam_search_len
, uint8_t *jam_search_string
) {
763 DecodeReader
->output
= data
;
764 DecodeReader
->byteCountMax
= max_len
;
765 DecodeReader
->state
= STATE_READER_UNSYNCD
;
766 DecodeReader
->byteCount
= 0;
767 DecodeReader
->bitCount
= 0;
768 DecodeReader
->posCount
= 1;
769 DecodeReader
->shiftReg
= 0;
770 DecodeReader
->jam_search_len
= jam_search_len
;
771 DecodeReader
->jam_search_string
= jam_search_string
;
775 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
) {
776 DecodeReader
->state
= STATE_READER_UNSYNCD
;
780 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(bool bit
, DecodeReader_t
*DecodeReader
) {
781 switch (DecodeReader
->state
) {
782 case STATE_READER_UNSYNCD
:
783 // wait for unmodulated carrier
785 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
789 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
:
791 // we went low, so this could be the beginning of a SOF
792 DecodeReader
->posCount
= 1;
793 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
797 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
798 DecodeReader
->posCount
++;
799 if (bit
) { // detected rising edge
800 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
801 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
803 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
806 if (DecodeReader
->posCount
> 5) { // stayed low for too long
807 DecodeReaderReset(DecodeReader
);
809 // do nothing, keep waiting
814 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
815 DecodeReader
->posCount
++;
816 if (!bit
) { // detected a falling edge
817 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
818 DecodeReaderReset(DecodeReader
);
819 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
820 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
821 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
822 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
823 DecodeReaderReset(DecodeReader
);
824 } else { // SOF for 1 out of 256 coding
825 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
826 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
829 if (DecodeReader
->posCount
> 29) { // stayed high for too long
830 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
832 // do nothing, keep waiting
837 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
838 DecodeReader
->posCount
++;
839 if (bit
) { // detected rising edge
840 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
841 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
842 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
844 DecodeReader
->posCount
= 1;
845 DecodeReader
->bitCount
= 0;
846 DecodeReader
->byteCount
= 0;
847 DecodeReader
->sum1
= 1;
848 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
851 } else { // CODING_1_OUT_OF_4
852 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
853 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
855 DecodeReader
->posCount
= 1;
856 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
860 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
861 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
862 DecodeReaderReset(DecodeReader
);
864 // do nothing, keep waiting
866 } else { // CODING_1_OUT_OF_4
867 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
868 DecodeReaderReset(DecodeReader
);
870 // do nothing, keep waiting
876 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
877 DecodeReader
->posCount
++;
879 if (DecodeReader
->posCount
== 9) {
880 DecodeReader
->posCount
= 1;
881 DecodeReader
->bitCount
= 0;
882 DecodeReader
->byteCount
= 0;
883 DecodeReader
->sum1
= 1;
884 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
887 // do nothing, keep waiting
889 } else { // unexpected falling edge
890 DecodeReaderReset(DecodeReader
);
894 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
895 DecodeReader
->posCount
++;
896 if (DecodeReader
->posCount
== 1) {
897 DecodeReader
->sum1
= bit
?1:0;
898 } else if (DecodeReader
->posCount
<= 4) {
899 if (bit
) DecodeReader
->sum1
++;
900 } else if (DecodeReader
->posCount
== 5) {
901 DecodeReader
->sum2
= bit
?1:0;
903 if (bit
) DecodeReader
->sum2
++;
905 if (DecodeReader
->posCount
== 8) {
906 DecodeReader
->posCount
= 0;
907 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
908 LED_B_OFF(); // Finished receiving
909 DecodeReaderReset(DecodeReader
);
910 if (DecodeReader
->byteCount
!= 0) {
913 } else if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected a 2bit position
914 DecodeReader
->shiftReg
>>= 2;
915 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
917 if (DecodeReader
->bitCount
== 15) { // we have a full byte
918 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
919 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
920 // buffer overflow, give up
922 DecodeReaderReset(DecodeReader
);
924 DecodeReader
->bitCount
= 0;
925 DecodeReader
->shiftReg
= 0;
926 if (DecodeReader
->byteCount
== DecodeReader
->jam_search_len
) {
927 if (!memcmp(DecodeReader
->output
, DecodeReader
->jam_search_string
, DecodeReader
->jam_search_len
)) {
929 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_JAM
);
930 DecodeReader
->state
= STATE_READER_RECEIVE_JAMMING
;
934 DecodeReader
->bitCount
++;
939 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
940 DecodeReader
->posCount
++;
941 if (DecodeReader
->posCount
== 1) {
942 DecodeReader
->sum1
= bit
?1:0;
943 } else if (DecodeReader
->posCount
<= 4) {
944 if (bit
) DecodeReader
->sum1
++;
945 } else if (DecodeReader
->posCount
== 5) {
946 DecodeReader
->sum2
= bit
?1:0;
948 DecodeReader
->sum2
++;
950 if (DecodeReader
->posCount
== 8) {
951 DecodeReader
->posCount
= 0;
952 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
953 LED_B_OFF(); // Finished receiving
954 DecodeReaderReset(DecodeReader
);
955 if (DecodeReader
->byteCount
!= 0) {
958 } else if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected the bit position
959 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
961 if (DecodeReader
->bitCount
== 255) { // we have a full byte
962 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
963 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
964 // buffer overflow, give up
966 DecodeReaderReset(DecodeReader
);
968 if (DecodeReader
->byteCount
== DecodeReader
->jam_search_len
) {
969 if (!memcmp(DecodeReader
->output
, DecodeReader
->jam_search_string
, DecodeReader
->jam_search_len
)) {
971 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_JAM
);
972 DecodeReader
->state
= STATE_READER_RECEIVE_JAMMING
;
976 DecodeReader
->bitCount
++;
980 case STATE_READER_RECEIVE_JAMMING
:
981 DecodeReader
->posCount
++;
982 if (DecodeReader
->Coding
== CODING_1_OUT_OF_4
) {
983 if (DecodeReader
->posCount
== 7*16) { // 7 bits jammed
984 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
); // stop jamming
985 // FpgaDisableTracing();
987 } else if (DecodeReader
->posCount
== 8*16) {
988 DecodeReader
->posCount
= 0;
989 DecodeReader
->output
[DecodeReader
->byteCount
++] = 0x00;
990 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
993 if (DecodeReader
->posCount
== 7*256) { // 7 bits jammend
994 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
); // stop jamming
996 } else if (DecodeReader
->posCount
== 8*256) {
997 DecodeReader
->posCount
= 0;
998 DecodeReader
->output
[DecodeReader
->byteCount
++] = 0x00;
999 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
1006 DecodeReaderReset(DecodeReader
);
1014 //-----------------------------------------------------------------------------
1015 // Receive a command (from the reader to us, where we are the simulated tag),
1016 // and store it in the given buffer, up to the given maximum length. Keeps
1017 // spinning, waiting for a well-framed command, until either we get one
1018 // (returns len) or someone presses the pushbutton on the board (returns -1).
1020 // Assume that we're called with the SSC (to the FPGA) and ADC path set
1022 //-----------------------------------------------------------------------------
1024 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
1026 bool gotFrame
= false;
1029 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
1031 // the decoder data structure
1032 DecodeReader_t DecodeReader
= {0};
1033 DecodeReaderInit(&DecodeReader
, received
, max_len
, 0, NULL
);
1035 // wait for last transfer to complete
1036 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
1039 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1041 // clear receive register and wait for next transfer
1042 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
1044 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
1046 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
1048 // Setup and start DMA.
1049 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1050 uint8_t *upTo
= dmaBuf
;
1053 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1055 if (behindBy
== 0) continue;
1058 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1059 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1060 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1061 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1065 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1066 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1067 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1070 for (int i
= 7; i
>= 0; i
--) {
1071 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
1072 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM
; // end of EOF
1083 if (BUTTON_PRESS()) {
1084 DecodeReader
.byteCount
= -1;
1091 FpgaDisableSscDma();
1093 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1094 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
1096 if (DecodeReader
.byteCount
> 0) {
1097 uint32_t sof_time
= *eof_time
1098 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
1099 - 32 // time for SOF transfer
1100 - 16; // time for EOF transfer
1101 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*32, *eof_time
*32, NULL
, true);
1104 return DecodeReader
.byteCount
;
1108 // Encode (into the ToSend buffers) an identify request, which is the first
1109 // thing that you must send to a tag to get a response.
1110 static void BuildIdentifyRequest(void)
1115 // one sub-carrier, inventory, 1 slot, fast rate
1116 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1117 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1118 // inventory command code
1123 crc
= Iso15693Crc(cmd
, 3);
1124 cmd
[3] = crc
& 0xff;
1127 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1131 //-----------------------------------------------------------------------------
1132 // Start to read an ISO 15693 tag. We send an identify request, then wait
1133 // for the response. The response is not demodulated, just left in the buffer
1134 // so that it can be downloaded to a PC and processed there.
1135 //-----------------------------------------------------------------------------
1136 void AcquireRawAdcSamplesIso15693(void)
1140 uint8_t *dest
= BigBuf_get_addr();
1142 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1143 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1145 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1146 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1148 BuildIdentifyRequest();
1150 // Give the tags time to energize
1153 // Now send the command
1154 uint32_t start_time
= 0;
1155 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1157 // wait for last transfer to complete
1158 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1160 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1162 for(int c
= 0; c
< 4000; ) {
1163 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1164 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1169 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1174 void SnoopIso15693(uint8_t jam_search_len
, uint8_t *jam_search_string
) {
1178 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1183 // The DMA buffer, used to stream samples from the FPGA
1184 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
1186 // Count of samples received so far, so that we can include timing
1187 // information in the trace buffer.
1190 DecodeTag_t DecodeTag
= {0};
1191 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1192 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1194 DecodeReader_t DecodeReader
= {0};
1195 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1196 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
), jam_search_len
, jam_search_string
);
1198 // Print some debug information about the buffer sizes
1200 Dbprintf("Snooping buffers initialized:");
1201 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1202 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1203 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1204 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1206 Dbprintf("Snoop started. Press PM3 Button to stop.");
1208 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1210 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1211 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1213 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1215 bool TagIsActive
= false;
1216 bool ReaderIsActive
= false;
1217 bool ExpectTagAnswer
= false;
1218 uint32_t dma_start_time
= 0;
1219 uint16_t *upTo
= dmaBuf
;
1221 uint16_t max_behindBy
= 0;
1223 // And now we loop, receiving samples.
1225 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1226 if (behindBy
> max_behindBy
) {
1227 max_behindBy
= behindBy
;
1230 if (behindBy
== 0) continue;
1234 // DMA has transferred the very first data
1235 dma_start_time
= GetCountSspClk() & 0xfffffff0;
1238 uint16_t snoopdata
= *upTo
++;
1240 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1241 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1242 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1243 // FpgaDisableTracing();
1244 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1247 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1248 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1249 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1251 if (BUTTON_PRESS()) {
1252 DbpString("Snoop stopped.");
1258 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1259 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1260 // FpgaDisableSscDma();
1261 uint32_t eof_time
= dma_start_time
+ samples
*16 + 8 - DELAY_READER_TO_ARM_SNOOP
; // end of EOF
1262 if (DecodeReader
.byteCount
> 0) {
1263 uint32_t sof_time
= eof_time
1264 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128*16:2048*16) // time for byte transfers
1265 - 32*16 // time for SOF transfer
1266 - 16*16; // time for EOF transfer
1267 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*4, eof_time
*4, NULL
, true);
1269 /* And ready to receive another command. */
1270 DecodeReaderReset(&DecodeReader
);
1271 /* And also reset the demod code, which might have been */
1272 /* false-triggered by the commands from the reader. */
1273 DecodeTagReset(&DecodeTag
);
1274 ReaderIsActive
= false;
1275 ExpectTagAnswer
= true;
1278 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1280 } else if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1281 // FpgaDisableSscDma();
1282 uint32_t eof_time
= dma_start_time
+ samples
*16 + 16 - DELAY_READER_TO_ARM_SNOOP
; // end of EOF
1283 if (DecodeReader
.byteCount
> 0) {
1284 uint32_t sof_time
= eof_time
1285 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128*16:2048*16) // time for byte transfers
1286 - 32*16 // time for SOF transfer
1287 - 16*16; // time for EOF transfer
1288 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*4, eof_time
*4, NULL
, true);
1290 /* And ready to receive another command. */
1291 DecodeReaderReset(&DecodeReader
);
1292 /* And also reset the demod code, which might have been */
1293 /* false-triggered by the commands from the reader. */
1294 DecodeTagReset(&DecodeTag
);
1295 ReaderIsActive
= false;
1296 ExpectTagAnswer
= true;
1299 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1302 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
);
1306 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1307 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1308 // FpgaDisableSscDma();
1309 uint32_t eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM_SNOOP
; // end of EOF
1310 if (DecodeTag
.lastBit
== SOF_PART2
) {
1311 eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
1313 uint32_t sof_time
= eof_time
1314 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
1315 - 32 * 16 // time for SOF transfer
1316 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
1317 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, eof_time
*4, NULL
, false);
1318 // And ready to receive another response.
1319 DecodeTagReset(&DecodeTag
);
1320 DecodeReaderReset(&DecodeReader
);
1321 ExpectTagAnswer
= false;
1322 TagIsActive
= false;
1325 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1328 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1334 FpgaDisableSscDma();
1336 DbpString("Snoop statistics:");
1337 Dbprintf(" ExpectTagAnswer: %d, TagIsActive: %d, ReaderIsActive: %d", ExpectTagAnswer
, TagIsActive
, ReaderIsActive
);
1338 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1339 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1340 Dbprintf(" DecodeTag posCount: %d", DecodeTag
.posCount
);
1341 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1342 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1343 Dbprintf(" DecodeReader posCount: %d", DecodeReader
.posCount
);
1344 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1345 Dbprintf(" Max behindBy: %d", max_behindBy
);
1349 // Initialize the proxmark as iso15k reader
1350 void Iso15693InitReader() {
1351 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1353 // Start from off (no field generated)
1355 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1358 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1359 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1361 // Give the tags time to energize
1363 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1367 ///////////////////////////////////////////////////////////////////////
1368 // ISO 15693 Part 3 - Air Interface
1369 // This section basically contains transmission and receiving of bits
1370 ///////////////////////////////////////////////////////////////////////
1373 // uid is in transmission order (which is reverse of display order)
1374 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1379 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1380 // followed by the block data
1381 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1382 // READ BLOCK command code
1383 cmd
[1] = ISO15693_READBLOCK
;
1384 // UID may be optionally specified here
1393 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1394 // Block number to read
1395 cmd
[10] = blockNumber
;
1397 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1398 cmd
[11] = crc
& 0xff;
1401 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1405 // Now the VICC>VCD responses when we are simulating a tag
1406 static void BuildInventoryResponse(uint8_t *uid
)
1412 cmd
[0] = 0; // No error, no protocol format extension
1413 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1415 cmd
[2] = uid
[7]; //0x32;
1416 cmd
[3] = uid
[6]; //0x4b;
1417 cmd
[4] = uid
[5]; //0x03;
1418 cmd
[5] = uid
[4]; //0x01;
1419 cmd
[6] = uid
[3]; //0x00;
1420 cmd
[7] = uid
[2]; //0x10;
1421 cmd
[8] = uid
[1]; //0x05;
1422 cmd
[9] = uid
[0]; //0xe0;
1424 crc
= Iso15693Crc(cmd
, 10);
1425 cmd
[10] = crc
& 0xff;
1428 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1431 // Universal Method for sending to and recv bytes from a tag
1432 // init ... should we initialize the reader?
1433 // speed ... 0 low speed, 1 hi speed
1434 // *recv will contain the tag's answer
1435 // return: length of received data, or -1 for timeout
1436 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
, uint32_t *eof_time
) {
1439 Iso15693InitReader();
1446 // low speed (1 out of 256)
1447 CodeIso15693AsReader256(send
, sendlen
);
1449 // high speed (1 out of 4)
1450 CodeIso15693AsReader(send
, sendlen
);
1453 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1455 // Now wait for a response
1457 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, ISO15693_READER_TIMEOUT
, eof_time
);
1464 // --------------------------------------------------------------------
1466 // --------------------------------------------------------------------
1468 // Decodes a message from a tag and displays its metadata and content
1469 #define DBD15STATLEN 48
1470 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1471 char status
[DBD15STATLEN
+1]={0};
1475 if (d
[0] & ISO15693_RES_EXT
)
1476 strncat(status
,"ProtExt ", DBD15STATLEN
);
1477 if (d
[0] & ISO15693_RES_ERROR
) {
1479 strncat(status
,"Error ", DBD15STATLEN
);
1482 strncat(status
,"01:notSupp", DBD15STATLEN
);
1485 strncat(status
,"02:notRecog", DBD15STATLEN
);
1488 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1491 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1494 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1497 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1500 strncat(status
,"12:locked", DBD15STATLEN
);
1503 strncat(status
,"13:progErr", DBD15STATLEN
);
1506 strncat(status
,"14:lockErr", DBD15STATLEN
);
1509 strncat(status
,"unknownErr", DBD15STATLEN
);
1511 strncat(status
," ", DBD15STATLEN
);
1513 strncat(status
,"NoErr ", DBD15STATLEN
);
1516 crc
=Iso15693Crc(d
,len
-2);
1517 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1518 strncat(status
,"CrcOK",DBD15STATLEN
);
1520 strncat(status
,"CrcFail!",DBD15STATLEN
);
1522 Dbprintf("%s",status
);
1528 ///////////////////////////////////////////////////////////////////////
1529 // Functions called via USB/Client
1530 ///////////////////////////////////////////////////////////////////////
1532 void SetDebugIso15693(uint32_t debug
) {
1534 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1539 //---------------------------------------------------------------------------------------
1540 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1541 // all demodulation performed in arm rather than host. - greg
1542 //---------------------------------------------------------------------------------------
1543 void ReaderIso15693(uint32_t parameter
) {
1550 uint8_t TagUID
[8] = {0x00};
1552 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1554 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1556 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1558 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1560 // Start from off (no field generated)
1561 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1564 // Give the tags time to energize
1566 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1571 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1572 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1574 // Now send the IDENTIFY command
1575 BuildIdentifyRequest();
1576 uint32_t start_time
= 0;
1577 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1579 // Now wait for a response
1581 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
) ;
1582 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1584 if (answerLen
>=12) // we should do a better check than this
1586 TagUID
[0] = answer
[2];
1587 TagUID
[1] = answer
[3];
1588 TagUID
[2] = answer
[4];
1589 TagUID
[3] = answer
[5];
1590 TagUID
[4] = answer
[6];
1591 TagUID
[5] = answer
[7];
1592 TagUID
[6] = answer
[8]; // IC Manufacturer code
1593 TagUID
[7] = answer
[9]; // always E0
1597 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1598 DbdecodeIso15693Answer(answerLen
, answer
);
1599 Dbhexdump(answerLen
, answer
, false);
1602 if (answerLen
>= 12)
1603 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1604 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1605 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1608 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1609 // DbdecodeIso15693Answer(answerLen2,answer2);
1610 // Dbhexdump(answerLen2,answer2,true);
1612 // Dbprintf("%d octets read from XXX request:", answerLen3);
1613 // DbdecodeIso15693Answer(answerLen3,answer3);
1614 // Dbhexdump(answerLen3,answer3,true);
1617 if (answerLen
>= 12 && DEBUG
) {
1618 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1619 BuildReadBlockRequest(TagUID
, i
);
1620 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1621 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
);
1622 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1623 if (answerLen
> 0) {
1624 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1625 DbdecodeIso15693Answer(answerLen
, answer
);
1626 Dbhexdump(answerLen
, answer
, false);
1627 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1632 // for the time being, switch field off to protect rdv4.0
1633 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1634 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1641 // Simulate an ISO15693 TAG.
1642 // For Inventory command: print command and send Inventory Response with given UID
1643 // TODO: interpret other reader commands and send appropriate response
1644 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
) {
1648 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1649 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1650 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1651 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1655 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1657 // Build a suitable response to the reader INVENTORY command
1658 BuildInventoryResponse(uid
);
1661 while (!BUTTON_PRESS()) {
1662 uint32_t eof_time
= 0, start_time
= 0;
1663 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1665 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1666 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1667 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
;
1668 TransmitTo15693Reader(ToSend
, ToSendMax
, &start_time
, 0, slow
);
1671 Dbprintf("%d bytes read from reader:", cmd_len
);
1672 Dbhexdump(cmd_len
, cmd
, false);
1675 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1681 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1682 // (some manufactures offer a way to read the AFI, though)
1683 void BruteforceIso15693Afi(uint32_t speed
)
1688 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1689 int datalen
= 0, recvlen
= 0;
1692 // first without AFI
1693 // Tags should respond without AFI and with AFI=0 even when AFI is active
1695 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1696 data
[1] = ISO15693_INVENTORY
;
1697 data
[2] = 0; // mask length
1698 datalen
= Iso15693AddCrc(data
,3);
1699 uint32_t start_time
= GetCountSspClk();
1700 recvlen
= SendDataTag(data
, datalen
, true, speed
, recv
, sizeof(recv
), 0, &eof_time
);
1701 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1704 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1709 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1710 data
[1] = ISO15693_INVENTORY
;
1712 data
[3] = 0; // mask length
1714 for (int i
= 0; i
< 256; i
++) {
1716 datalen
= Iso15693AddCrc(data
,4);
1717 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
, &eof_time
);
1718 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1720 if (recvlen
>= 12) {
1721 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1724 Dbprintf("AFI Bruteforcing done.");
1726 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1732 // Allows to directly send commands to the tag via the client
1733 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1738 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1743 Dbhexdump(datalen
, data
, false);
1746 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0, &eof_time
);
1748 // for the time being, switch field off to protect rdv4.0
1749 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1750 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1757 Dbhexdump(recvlen
, recvbuf
, false);
1758 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1761 if (recvlen
> ISO15693_MAX_RESPONSE_LENGTH
) {
1762 recvlen
= ISO15693_MAX_RESPONSE_LENGTH
;
1764 cmd_send(CMD_ACK
, recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1770 //-----------------------------------------------------------------------------
1771 // Work with "magic Chinese" card.
1773 //-----------------------------------------------------------------------------
1775 // Set the UID to the tag (based on Iceman work).
1776 void SetTag15693Uid(uint8_t *uid
) {
1780 uint8_t cmd
[4][9] = {
1781 {0x02, 0x21, 0x3e, 0x00, 0x00, 0x00, 0x00},
1782 {0x02, 0x21, 0x3f, 0x69, 0x96, 0x00, 0x00},
1790 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1793 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1799 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1805 for (int i
= 0; i
< 4; i
++) {
1807 crc
= Iso15693Crc(cmd
[i
], 7);
1808 cmd
[i
][7] = crc
& 0xff;
1809 cmd
[i
][8] = crc
>> 8;
1813 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1816 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0, &eof_time
);
1821 Dbhexdump(recvlen
, recvbuf
, false);
1822 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1826 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1834 // --------------------------------------------------------------------
1835 // -- Misc & deprecated functions
1836 // --------------------------------------------------------------------
1840 // do not use; has a fix UID
1841 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1846 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1847 // followed by the block data
1848 // one sub-carrier, inventory, 1 slot, fast rate
1849 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1850 // System Information command code
1852 // UID may be optionally specified here
1861 cmd[9]= 0xe0; // always e0 (not exactly unique)
1863 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1864 cmd[10] = crc & 0xff;
1867 CodeIso15693AsReader(cmd, sizeof(cmd));
1871 // do not use; has a fix UID
1872 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1877 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1878 // followed by the block data
1879 // one sub-carrier, inventory, 1 slot, fast rate
1880 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1881 // READ Multi BLOCK command code
1883 // UID may be optionally specified here
1892 cmd[9]= 0xe0; // always e0 (not exactly unique)
1893 // First Block number to read
1895 // Number of Blocks to read
1896 cmd[11] = 0x2f; // read quite a few
1898 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1899 cmd[12] = crc & 0xff;
1902 CodeIso15693AsReader(cmd, sizeof(cmd));
1905 // do not use; has a fix UID
1906 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1911 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1912 // followed by the block data
1913 // one sub-carrier, inventory, 1 slot, fast rate
1914 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1915 // READ BLOCK command code
1917 // UID may be optionally specified here
1926 cmd[9]= 0xe0; // always e0 (not exactly unique)
1932 // cmd[13] = 0x00; //Now the CRC
1933 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1934 cmd[12] = crc & 0xff;
1937 CodeIso15693AsReader(cmd, sizeof(cmd));
1940 // do not use; has a fix UID
1941 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1946 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1947 // followed by the block data
1948 // one sub-carrier, inventory, 1 slot, fast rate
1949 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1950 // READ BLOCK command code
1952 // UID may be optionally specified here
1961 cmd[9]= 0xe0; // always e0 (not exactly unique)
1963 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1967 // cmd[13] = 0x00; //Now the CRC
1968 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1969 cmd[12] = crc & 0xff;
1972 CodeIso15693AsReader(cmd, sizeof(cmd));