1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
28 #define abs(x) ( ((x)<0) ? -(x) : (x) )
30 //=============================================================================
31 // A buffer where we can queue things up to be sent through the FPGA, for
32 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
33 // is the order in which they go out on the wire.
34 //=============================================================================
39 struct common_area common_area
__attribute__((section(".commonarea")));
41 void BufferClear(void)
43 memset(BigBuf
,0,sizeof(BigBuf
));
44 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
47 void ToSendReset(void)
53 void ToSendStuffBit(int b
)
57 ToSend
[ToSendMax
] = 0;
62 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
67 if(ToSendBit
>= sizeof(ToSend
)) {
69 DbpString("ToSendStuffBit overflowed!");
73 //=============================================================================
74 // Debug print functions, to go out over USB, to the usual PC-side client.
75 //=============================================================================
77 void DbpString(char *str
)
79 /* this holds up stuff unless we're connected to usb */
84 c
.cmd
= CMD_DEBUG_PRINT_STRING
;
85 c
.arg
[0] = strlen(str
);
86 if(c
.arg
[0] > sizeof(c
.d
.asBytes
)) {
87 c
.arg
[0] = sizeof(c
.d
.asBytes
);
89 memcpy(c
.d
.asBytes
, str
, c
.arg
[0]);
91 UsbSendPacket((uint8_t *)&c
, sizeof(c
));
92 // TODO fix USB so stupid things like this aren't req'd
97 void DbpIntegers(int x1
, int x2
, int x3
)
99 /* this holds up stuff unless we're connected to usb */
104 c
.cmd
= CMD_DEBUG_PRINT_INTEGERS
;
109 UsbSendPacket((uint8_t *)&c
, sizeof(c
));
115 void Dbprintf(const char *fmt
, ...) {
116 // should probably limit size here; oh well, let's just use a big buffer
117 char output_string
[128];
121 kvsprintf(fmt
, output_string
, 10, ap
);
124 DbpString(output_string
);
127 // prints HEX & ASCII
128 void Dbhexdump(int len
, uint8_t *d
) {
141 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
143 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
150 //-----------------------------------------------------------------------------
151 // Read an ADC channel and block till it completes, then return the result
152 // in ADC units (0 to 1023). Also a routine to average 32 samples and
154 //-----------------------------------------------------------------------------
155 static int ReadAdc(int ch
)
159 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
160 AT91C_BASE_ADC
->ADC_MR
=
161 ADC_MODE_PRESCALE(32) |
162 ADC_MODE_STARTUP_TIME(16) |
163 ADC_MODE_SAMPLE_HOLD_TIME(8);
164 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
166 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
167 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
169 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
174 int AvgAdc(int ch
) // was static - merlok
179 for(i
= 0; i
< 32; i
++) {
183 return (a
+ 15) >> 5;
186 void MeasureAntennaTuning(void)
188 uint8_t *dest
= (uint8_t *)BigBuf
;
189 int i
, ptr
= 0, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;;
190 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
194 DbpString("Measuring antenna characteristics, please wait.");
195 memset(BigBuf
,0,sizeof(BigBuf
));
198 * Sweeps the useful LF range of the proxmark from
199 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
200 * read the voltage in the antenna, the result left
201 * in the buffer is a graph which should clearly show
202 * the resonating frequency of your LF antenna
203 * ( hopefully around 95 if it is tuned to 125kHz!)
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
206 for (i
=255; i
>19; i
--) {
207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
209 // Vref = 3.3V, and a 10000:240 voltage divider on the input
210 // can measure voltages up to 137500 mV
211 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
212 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
213 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
215 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
227 // Vref = 3300mV, and an 10:1 voltage divider on the input
228 // can measure voltages up to 33000 mV
229 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
231 c
.cmd
= CMD_MEASURED_ANTENNA_TUNING
;
232 c
.arg
[0] = (vLf125
<< 0) | (vLf134
<< 16);
234 c
.arg
[2] = peakf
| (peakv
<< 16);
235 UsbSendPacket((uint8_t *)&c
, sizeof(c
));
238 void MeasureAntennaTuningHf(void)
240 int vHf
= 0; // in mV
242 DbpString("Measuring HF antenna, press button to exit");
245 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
248 // Vref = 3300mV, and an 10:1 voltage divider on the input
249 // can measure voltages up to 33000 mV
250 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
252 Dbprintf("%d mV",vHf
);
253 if (BUTTON_PRESS()) break;
255 DbpString("cancelled");
259 void SimulateTagHfListen(void)
261 uint8_t *dest
= (uint8_t *)BigBuf
;
262 int n
= sizeof(BigBuf
);
267 // We're using this mode just so that I can test it out; the simulated
268 // tag mode would work just as well and be simpler.
269 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
271 // We need to listen to the high-frequency, peak-detected path.
272 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
278 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
279 AT91C_BASE_SSC
->SSC_THR
= 0xff;
281 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
282 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
302 DbpString("simulate tag (now type bitsamples)");
305 void ReadMem(int addr
)
307 const uint8_t *data
= ((uint8_t *)addr
);
309 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
310 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
313 /* osimage version information is linked in */
314 extern struct version_information version_information
;
315 /* bootrom version information is pointed to from _bootphase1_version_pointer */
316 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
317 void SendVersion(void)
319 char temp
[48]; /* Limited data payload in USB packets */
320 DbpString("Prox/RFID mark3 RFID instrument");
322 /* Try to find the bootrom version information. Expect to find a pointer at
323 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
324 * pointer, then use it.
326 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
327 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
328 DbpString("bootrom version information appears invalid");
330 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
334 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
337 FpgaGatherVersion(temp
, sizeof(temp
));
342 // samy's sniff and repeat routine
345 DbpString("Stand-alone mode! No PC necessary.");
347 // 3 possible options? no just 2 for now
350 int high
[OPTS
], low
[OPTS
];
352 // Oooh pretty -- notify user we're in elite samy mode now
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
358 LED(LED_ORANGE
, 200);
360 LED(LED_ORANGE
, 200);
366 // Turn on selected LED
367 LED(selected
+ 1, 0);
374 // Was our button held down or pressed?
375 int button_pressed
= BUTTON_HELD(1000);
378 // Button was held for a second, begin recording
379 if (button_pressed
> 0)
382 LED(selected
+ 1, 0);
386 DbpString("Starting recording");
388 // wait for button to be released
389 while(BUTTON_PRESS())
392 /* need this delay to prevent catching some weird data */
395 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
396 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
399 LED(selected
+ 1, 0);
400 // Finished recording
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
407 // Change where to record (or begin playing)
408 else if (button_pressed
)
410 // Next option if we were previously playing
412 selected
= (selected
+ 1) % OPTS
;
416 LED(selected
+ 1, 0);
418 // Begin transmitting
422 DbpString("Playing");
423 // wait for button to be released
424 while(BUTTON_PRESS())
426 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
427 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
428 DbpString("Done playing");
429 if (BUTTON_HELD(1000) > 0)
431 DbpString("Exiting");
436 /* We pressed a button so ignore it here with a delay */
439 // when done, we're done playing, move to next option
440 selected
= (selected
+ 1) % OPTS
;
443 LED(selected
+ 1, 0);
446 while(BUTTON_PRESS())
455 Listen and detect an external reader. Determine the best location
459 Inside the ListenReaderField() function, there is two mode.
460 By default, when you call the function, you will enter mode 1.
461 If you press the PM3 button one time, you will enter mode 2.
462 If you press the PM3 button a second time, you will exit the function.
464 DESCRIPTION OF MODE 1:
465 This mode just listens for an external reader field and lights up green
466 for HF and/or red for LF. This is the original mode of the detectreader
469 DESCRIPTION OF MODE 2:
470 This mode will visually represent, using the LEDs, the actual strength of the
471 current compared to the maximum current detected. Basically, once you know
472 what kind of external reader is present, it will help you spot the best location to place
473 your antenna. You will probably not get some good results if there is a LF and a HF reader
474 at the same place! :-)
478 static const char LIGHT_SCHEME
[] = {
479 0x0, /* ---- | No field detected */
480 0x1, /* X--- | 14% of maximum current detected */
481 0x2, /* -X-- | 29% of maximum current detected */
482 0x4, /* --X- | 43% of maximum current detected */
483 0x8, /* ---X | 57% of maximum current detected */
484 0xC, /* --XX | 71% of maximum current detected */
485 0xE, /* -XXX | 86% of maximum current detected */
486 0xF, /* XXXX | 100% of maximum current detected */
488 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
490 void ListenReaderField(int limit
)
492 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
493 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
494 int mode
=1, display_val
, display_max
, i
;
501 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
503 if(limit
!= HF_ONLY
) {
504 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
508 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
510 if (limit
!= LF_ONLY
) {
511 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
516 if (BUTTON_PRESS()) {
521 DbpString("Signal Strength Mode");
525 DbpString("Stopped");
533 if (limit
!= HF_ONLY
) {
535 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
540 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
541 // see if there's a significant change
542 if(abs(lf_av
- lf_av_new
) > 10) {
543 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
551 if (limit
!= LF_ONLY
) {
553 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
558 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
559 // see if there's a significant change
560 if(abs(hf_av
- hf_av_new
) > 10) {
561 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
570 if (limit
== LF_ONLY
) {
572 display_max
= lf_max
;
573 } else if (limit
== HF_ONLY
) {
575 display_max
= hf_max
;
576 } else { /* Pick one at random */
577 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
579 display_max
= hf_max
;
582 display_max
= lf_max
;
585 for (i
=0; i
<LIGHT_LEN
; i
++) {
586 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
587 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
588 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
589 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
590 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
598 void UsbPacketReceived(uint8_t *packet
, int len
)
600 UsbCommand
*c
= (UsbCommand
*)packet
;
606 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
607 AcquireRawAdcSamples125k(c
->arg
[0]);
608 UsbSendPacket((uint8_t*)&ack
, sizeof(ack
));
613 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
614 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
619 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
620 AcquireRawAdcSamplesIso15693();
625 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
626 RecordRawAdcSamplesIso15693();
629 case CMD_ISO_15693_COMMAND
:
630 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
633 case CMD_ISO_15693_FIND_AFI
:
634 BruteforceIso15693Afi(c
->arg
[0]);
637 case CMD_ISO_15693_DEBUG
:
638 SetDebugIso15693(c
->arg
[0]);
647 case CMD_READER_ISO_15693
:
648 ReaderIso15693(c
->arg
[0]);
652 case CMD_SIMULATE_TAG_LEGIC_RF
:
653 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
656 case CMD_WRITER_LEGIC_RF
:
657 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
660 case CMD_READER_LEGIC_RF
:
661 LegicRfReader(c
->arg
[0], c
->arg
[1]);
665 case CMD_SIMTAG_ISO_15693
:
666 SimTagIso15693(c
->arg
[0]);
670 #ifdef WITH_ISO14443b
671 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
672 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
676 #ifdef WITH_ISO14443b
677 case CMD_READ_SRI512_TAG
:
678 ReadSRI512Iso14443(c
->arg
[0]);
680 case CMD_READ_SRIX4K_TAG
:
681 ReadSRIX4KIso14443(c
->arg
[0]);
685 #ifdef WITH_ISO14443a
686 case CMD_READER_ISO_14443a
:
687 ReaderIso14443a(c
, &ack
);
691 #ifdef WITH_ISO14443a
692 case CMD_READER_MIFARE
:
693 ReaderMifare(c
->arg
[0]);
697 #ifdef WITH_ISO14443a
698 case CMD_MIFARE_READBL
:
699 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
701 case CMD_MIFARE_READSC
:
702 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
704 case CMD_MIFARE_WRITEBL
:
705 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
707 case CMD_MIFARE_NESTED
:
708 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
710 case CMD_MIFARE_CHKKEYS
:
711 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
713 case CMD_SIMULATE_MIFARE_CARD
:
714 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
718 case CMD_MIFARE_SET_DBGMODE
:
719 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
721 case CMD_MIFARE_EML_MEMCLR
:
722 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
724 case CMD_MIFARE_EML_MEMSET
:
725 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
727 case CMD_MIFARE_EML_MEMGET
:
728 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
730 case CMD_MIFARE_EML_CARDLOAD
:
731 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
736 #ifdef WITH_ISO14443b
737 case CMD_SNOOP_ISO_14443
:
742 #ifdef WITH_ISO14443a
743 case CMD_SNOOP_ISO_14443a
:
748 #ifdef WITH_ISO14443a
749 // Makes use of ISO14443a FPGA Firmware
750 case CMD_SNOOP_ICLASS
:
755 case CMD_SIMULATE_TAG_HF_LISTEN
:
756 SimulateTagHfListen();
759 #ifdef WITH_ISO14443b
760 case CMD_SIMULATE_TAG_ISO_14443
:
761 SimulateIso14443Tag();
765 #ifdef WITH_ISO14443a
766 case CMD_SIMULATE_TAG_ISO_14443a
:
767 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1]); // ## Simulate iso14443a tag - pass tag type & UID
771 case CMD_MEASURE_ANTENNA_TUNING
:
772 MeasureAntennaTuning();
775 case CMD_MEASURE_ANTENNA_TUNING_HF
:
776 MeasureAntennaTuningHf();
779 case CMD_LISTEN_READER_FIELD
:
780 ListenReaderField(c
->arg
[0]);
784 case CMD_HID_DEMOD_FSK
:
785 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
790 case CMD_HID_SIM_TAG
:
791 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
795 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
796 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
798 LED_D_OFF(); // LED D indicates field ON or OFF
802 case CMD_READ_TI_TYPE
:
808 case CMD_WRITE_TI_TYPE
:
809 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
813 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
815 if(c
->cmd
== CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
) {
816 n
.cmd
= CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
;
818 n
.cmd
= CMD_DOWNLOADED_RAW_BITS_TI_TYPE
;
820 n
.arg
[0] = c
->arg
[0];
821 memcpy(n
.d
.asDwords
, BigBuf
+c
->arg
[0], 12*sizeof(uint32_t));
823 UsbSendPacket((uint8_t *)&n
, sizeof(n
));
828 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
829 uint8_t *b
= (uint8_t *)BigBuf
;
830 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
831 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
832 UsbSendPacket((uint8_t*)&ack
, sizeof(ack
));
837 case CMD_SIMULATE_TAG_125K
:
839 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
848 case CMD_SET_LF_DIVISOR
:
849 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
852 case CMD_SET_ADC_MUX
:
854 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
855 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
856 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
857 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
866 case CMD_LF_SIMULATE_BIDIR
:
867 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
879 case CMD_SETUP_WRITE
:
880 case CMD_FINISH_WRITE
:
881 case CMD_HARDWARE_RESET
:
882 USB_D_PLUS_PULLUP_OFF();
885 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
887 // We're going to reset, and the bootrom will take control.
891 case CMD_START_FLASH
:
892 if(common_area
.flags
.bootrom_present
) {
893 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
895 USB_D_PLUS_PULLUP_OFF();
896 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
900 case CMD_DEVICE_INFO
: {
902 c
.cmd
= CMD_DEVICE_INFO
;
903 c
.arg
[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
904 if(common_area
.flags
.bootrom_present
) c
.arg
[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
905 UsbSendPacket((uint8_t*)&c
, sizeof(c
));
909 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
914 void __attribute__((noreturn
)) AppMain(void)
918 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
919 /* Initialize common area */
920 memset(&common_area
, 0, sizeof(common_area
));
921 common_area
.magic
= COMMON_AREA_MAGIC
;
922 common_area
.version
= 1;
924 common_area
.flags
.osimage_present
= 1;
933 // The FPGA gets its clock from us from PCK0 output, so set that up.
934 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
935 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
936 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
937 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
938 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
939 AT91C_PMC_PRES_CLK_4
;
940 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
943 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
945 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
947 // Load the FPGA image, which we have stored in our flash.
956 // test text on different colored backgrounds
957 LCDString(" The quick brown fox ", (char *)&FONT6x8
,1,1+8*0,WHITE
,BLACK
);
958 LCDString(" jumped over the ", (char *)&FONT6x8
,1,1+8*1,BLACK
,WHITE
);
959 LCDString(" lazy dog. ", (char *)&FONT6x8
,1,1+8*2,YELLOW
,RED
);
960 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8
,1,1+8*3,RED
,GREEN
);
961 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8
,1,1+8*4,MAGENTA
,BLUE
);
962 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8
,1,1+8*5,BLUE
,YELLOW
);
963 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8
,1,1+8*6,BLACK
,CYAN
);
964 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8
,1,1+8*7,BLUE
,MAGENTA
);
967 LCDFill(0, 1+8* 8, 132, 8, BLACK
);
968 LCDFill(0, 1+8* 9, 132, 8, WHITE
);
969 LCDFill(0, 1+8*10, 132, 8, RED
);
970 LCDFill(0, 1+8*11, 132, 8, GREEN
);
971 LCDFill(0, 1+8*12, 132, 8, BLUE
);
972 LCDFill(0, 1+8*13, 132, 8, YELLOW
);
973 LCDFill(0, 1+8*14, 132, 8, CYAN
);
974 LCDFill(0, 1+8*15, 132, 8, MAGENTA
);
983 if (BUTTON_HELD(1000) > 0)