1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
28 // the block number for the ISO14443-4 PCB
29 static uint8_t iso14_pcb_blocknum
= 0;
34 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
35 #define REQUEST_GUARD_TIME (7000/16 + 1)
36 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
37 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
38 // bool LastCommandWasRequest = FALSE;
41 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43 // When the PM acts as reader and is receiving tag data, it takes
44 // 3 ticks delay in the AD converter
45 // 16 ticks until the modulation detector completes and sets curbit
46 // 8 ticks until bit_to_arm is assigned from curbit
47 // 8*16 ticks for the transfer from FPGA to ARM
48 // 4*16 ticks until we measure the time
49 // - 8*16 ticks because we measure the time of the previous transfer
50 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
52 // When the PM acts as a reader and is sending, it takes
53 // 4*16 ticks until we can write data to the sending hold register
54 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
55 // 8 ticks until the first transfer starts
56 // 8 ticks later the FPGA samples the data
57 // 1 tick to assign mod_sig_coil
58 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60 // When the PM acts as tag and is receiving it takes
61 // 2 ticks delay in the RF part (for the first falling edge),
62 // 3 ticks for the A/D conversion,
63 // 8 ticks on average until the start of the SSC transfer,
64 // 8 ticks until the SSC samples the first data
65 // 7*16 ticks to complete the transfer from FPGA to ARM
66 // 8 ticks until the next ssp_clk rising edge
67 // 4*16 ticks until we measure the time
68 // - 8*16 ticks because we measure the time of the previous transfer
69 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
71 // The FPGA will report its internal sending delay in
72 uint16_t FpgaSendQueueDelay
;
73 // the 5 first bits are the number of bits buffered in mod_sig_buf
74 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
75 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77 // When the PM acts as tag and is sending, it takes
78 // 4*16 ticks until we can write data to the sending hold register
79 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
80 // 8 ticks until the first transfer starts
81 // 8 ticks later the FPGA samples the data
82 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
83 // + 1 tick to assign mod_sig_coil
84 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
86 // When the PM acts as sniffer and is receiving tag data, it takes
87 // 3 ticks A/D conversion
88 // 14 ticks to complete the modulation detection
89 // 8 ticks (on average) until the result is stored in to_arm
90 // + the delays in transferring data - which is the same for
91 // sniffing reader and tag data and therefore not relevant
92 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
94 // When the PM acts as sniffer and is receiving reader data, it takes
95 // 2 ticks delay in analogue RF receiver (for the falling edge of the
96 // start bit, which marks the start of the communication)
97 // 3 ticks A/D conversion
98 // 8 ticks on average until the data is stored in to_arm.
99 // + the delays in transferring data - which is the same for
100 // sniffing reader and tag data and therefore not relevant
101 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
103 //variables used for timing purposes:
104 //these are in ssp_clk cycles:
105 static uint32_t NextTransferTime
;
106 static uint32_t LastTimeProxToAirStart
;
107 static uint32_t LastProxToAirDuration
;
111 // CARD TO READER - manchester
112 // Sequence D: 11110000 modulation with subcarrier during first half
113 // Sequence E: 00001111 modulation with subcarrier during second half
114 // Sequence F: 00000000 no modulation with subcarrier
115 // READER TO CARD - miller
116 // Sequence X: 00001100 drop after half a period
117 // Sequence Y: 00000000 no drop
118 // Sequence Z: 11000000 drop at start
126 const uint8_t OddByteParity
[256] = {
127 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145 void iso14a_set_trigger(bool enable
) {
149 void iso14a_clear_trace() {
150 uint8_t *trace
= BigBuf_get_addr();
151 memset(trace
, 0x44, TRACE_SIZE
);
155 void iso14a_set_tracing(bool enable
) {
159 void iso14a_set_timeout(uint32_t timeout
) {
160 iso14a_timeout
= timeout
;
163 //-----------------------------------------------------------------------------
164 // Generate the parity value for a byte sequence
166 //-----------------------------------------------------------------------------
167 byte_t
oddparity (const byte_t bt
)
169 return OddByteParity
[bt
];
172 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
174 uint16_t paritybit_cnt
= 0;
175 uint16_t paritybyte_cnt
= 0;
176 uint8_t parityBits
= 0;
178 for (uint16_t i
= 0; i
< iLen
; i
++) {
179 // Generate the parity bits
180 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
181 if (paritybit_cnt
== 7) {
182 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
183 parityBits
= 0; // and advance to next Parity Byte
191 // save remaining parity bits
192 par
[paritybyte_cnt
] = parityBits
;
196 void AppendCrc14443a(uint8_t* data
, int len
)
198 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
201 // The function LogTrace() is also used by the iClass implementation in iClass.c
202 bool RAMFUNC
LogTrace(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
)
204 if (!tracing
) return FALSE
;
206 uint8_t *trace
= BigBuf_get_addr();
207 uint16_t num_paritybytes
= (iLen
-1)/8 + 1; // number of valid paritybytes in *parity
208 uint16_t duration
= timestamp_end
- timestamp_start
;
210 // Return when trace is full
211 if (traceLen
+ sizeof(iLen
) + sizeof(timestamp_start
) + sizeof(duration
) + num_paritybytes
+ iLen
>= TRACE_SIZE
) {
212 tracing
= FALSE
; // don't trace any more
217 // 32 bits timestamp (little endian)
218 // 16 bits duration (little endian)
219 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
221 // x Bytes parity (one byte per 8 bytes data)
224 trace
[traceLen
++] = ((timestamp_start
>> 0) & 0xff);
225 trace
[traceLen
++] = ((timestamp_start
>> 8) & 0xff);
226 trace
[traceLen
++] = ((timestamp_start
>> 16) & 0xff);
227 trace
[traceLen
++] = ((timestamp_start
>> 24) & 0xff);
230 trace
[traceLen
++] = ((duration
>> 0) & 0xff);
231 trace
[traceLen
++] = ((duration
>> 8) & 0xff);
234 trace
[traceLen
++] = ((iLen
>> 0) & 0xff);
235 trace
[traceLen
++] = ((iLen
>> 8) & 0xff);
239 trace
[traceLen
- 1] |= 0x80;
243 if (btBytes
!= NULL
&& iLen
!= 0) {
244 memcpy(trace
+ traceLen
, btBytes
, iLen
);
249 if (parity
!= NULL
&& iLen
!= 0) {
250 memcpy(trace
+ traceLen
, parity
, num_paritybytes
);
252 traceLen
+= num_paritybytes
;
257 //=============================================================================
258 // ISO 14443 Type A - Miller decoder
259 //=============================================================================
261 // This decoder is used when the PM3 acts as a tag.
262 // The reader will generate "pauses" by temporarily switching of the field.
263 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
264 // The FPGA does a comparison with a threshold and would deliver e.g.:
265 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
266 // The Miller decoder needs to identify the following sequences:
267 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
268 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
269 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
270 // Note 1: the bitstream may start at any time. We therefore need to sync.
271 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
272 //-----------------------------------------------------------------------------
275 // Lookup-Table to decide if 4 raw bits are a modulation.
276 // We accept two or three consecutive "0" in any position with the rest "1"
277 const bool Mod_Miller_LUT
[] = {
278 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
279 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
281 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
282 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
286 Uart
.state
= STATE_UNSYNCD
;
288 Uart
.len
= 0; // number of decoded data bytes
289 Uart
.parityLen
= 0; // number of decoded parity bytes
290 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
291 Uart
.parityBits
= 0; // holds 8 parity bits
292 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
298 void UartInit(uint8_t *data
, uint8_t *parity
)
301 Uart
.parity
= parity
;
305 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
306 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
309 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
311 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
313 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
314 if (Uart
.twoBits
== 0xffff) {
320 Uart
.syncBit
= 0xFFFF; // not set
321 // look for 00xx1111 (the start bit)
322 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
323 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
324 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
325 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
326 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
327 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
328 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
329 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
330 if (Uart
.syncBit
!= 0xFFFF) {
331 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
332 Uart
.startTime
-= Uart
.syncBit
;
333 Uart
.endTime
= Uart
.startTime
;
334 Uart
.state
= STATE_START_OF_COMMUNICATION
;
340 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
341 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
344 } else { // Modulation in first half = Sequence Z = logic "0"
345 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
350 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
351 Uart
.state
= STATE_MILLER_Z
;
352 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
353 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
354 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
355 Uart
.parityBits
<<= 1; // make room for the parity bit
356 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
359 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
360 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
367 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
369 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
370 Uart
.state
= STATE_MILLER_X
;
371 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
372 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
373 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
374 Uart
.parityBits
<<= 1; // make room for the new parity bit
375 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
378 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
379 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
383 } else { // no modulation in both halves - Sequence Y
384 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
385 Uart
.state
= STATE_UNSYNCD
;
386 Uart
.bitCount
--; // last "0" was part of EOC sequence
387 Uart
.shiftReg
<<= 1; // drop it
388 if(Uart
.bitCount
> 0) { // if we decoded some bits
389 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
390 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
391 Uart
.parityBits
<<= 1; // add a (void) parity bit
392 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
393 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
395 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
396 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
397 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
400 return TRUE
; // we are finished with decoding the raw data sequence
402 UartReset(); // Nothing receiver - start over
405 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
408 } else { // a logic "0"
410 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
411 Uart
.state
= STATE_MILLER_Y
;
412 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
413 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
414 Uart
.parityBits
<<= 1; // make room for the parity bit
415 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
418 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
419 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
429 return FALSE
; // not finished yet, need more data
434 //=============================================================================
435 // ISO 14443 Type A - Manchester decoder
436 //=============================================================================
438 // This decoder is used when the PM3 acts as a reader.
439 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
440 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
441 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
442 // The Manchester decoder needs to identify the following sequences:
443 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
444 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
445 // 8 ticks unmodulated: Sequence F = end of communication
446 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
447 // Note 1: the bitstream may start at any time. We therefore need to sync.
448 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
451 // Lookup-Table to decide if 4 raw bits are a modulation.
452 // We accept three or four "1" in any position
453 const bool Mod_Manchester_LUT
[] = {
454 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
455 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
458 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
459 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
464 Demod
.state
= DEMOD_UNSYNCD
;
465 Demod
.len
= 0; // number of decoded data bytes
467 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
468 Demod
.parityBits
= 0; //
469 Demod
.collisionPos
= 0; // Position of collision bit
470 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
476 void DemodInit(uint8_t *data
, uint8_t *parity
)
479 Demod
.parity
= parity
;
483 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
484 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
487 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
489 if (Demod
.state
== DEMOD_UNSYNCD
) {
491 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
492 if (Demod
.twoBits
== 0x0000) {
498 Demod
.syncBit
= 0xFFFF; // not set
499 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
500 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
501 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
502 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
503 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
504 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
505 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
506 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
507 if (Demod
.syncBit
!= 0xFFFF) {
508 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
509 Demod
.startTime
-= Demod
.syncBit
;
510 Demod
.bitCount
= offset
; // number of decoded data bits
511 Demod
.state
= DEMOD_MANCHESTER_DATA
;
517 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
518 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
519 if (!Demod
.collisionPos
) {
520 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
522 } // modulation in first half only - Sequence D = 1
524 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
525 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
526 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
527 Demod
.parityBits
<<= 1; // make room for the parity bit
528 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
531 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
532 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
533 Demod
.parityBits
= 0;
536 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
537 } else { // no modulation in first half
538 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
540 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
541 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
542 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
543 Demod
.parityBits
<<= 1; // make room for the new parity bit
544 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
547 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
548 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
549 Demod
.parityBits
= 0;
552 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
553 } else { // no modulation in both halves - End of communication
554 if(Demod
.bitCount
> 0) { // there are some remaining data bits
555 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
556 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
557 Demod
.parityBits
<<= 1; // add a (void) parity bit
558 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
559 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
561 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
562 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
563 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
566 return TRUE
; // we are finished with decoding the raw data sequence
567 } else { // nothing received. Start over
575 return FALSE
; // not finished yet, need more data
578 //=============================================================================
579 // Finally, a `sniffer' for ISO 14443 Type A
580 // Both sides of communication!
581 //=============================================================================
583 //-----------------------------------------------------------------------------
584 // Record the sequence of commands sent by the reader to the tag, with
585 // triggering so that we start recording at the point that the tag is moved
587 //-----------------------------------------------------------------------------
588 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
590 // bit 0 - trigger from first card answer
591 // bit 1 - trigger from first reader 7-bit request
595 iso14a_clear_trace();
596 iso14a_set_tracing(TRUE
);
598 // We won't start recording the frames that we acquire until we trigger;
599 // a good trigger condition to get started is probably when we see a
600 // response from the tag.
601 // triggered == FALSE -- to wait first for card
602 bool triggered
= !(param
& 0x03);
604 // The command (reader -> tag) that we're receiving.
605 // The length of a received command will in most cases be no more than 18 bytes.
606 // So 32 should be enough!
607 uint8_t *receivedCmd
= BigBuf_get_addr() + RECV_CMD_OFFSET
;
608 uint8_t *receivedCmdPar
= BigBuf_get_addr() + RECV_CMD_PAR_OFFSET
;
610 // The response (tag -> reader) that we're receiving.
611 uint8_t *receivedResponse
= BigBuf_get_addr() + RECV_RESP_OFFSET
;
612 uint8_t *receivedResponsePar
= BigBuf_get_addr() + RECV_RESP_PAR_OFFSET
;
614 // As we receive stuff, we copy it from receivedCmd or receivedResponse
615 // into trace, along with its length and other annotations.
616 //uint8_t *trace = (uint8_t *)BigBuf;
618 // The DMA buffer, used to stream samples from the FPGA
619 uint8_t *dmaBuf
= BigBuf_get_addr() + DMA_BUFFER_OFFSET
;
620 uint8_t *data
= dmaBuf
;
621 uint8_t previous_data
= 0;
624 bool TagIsActive
= FALSE
;
625 bool ReaderIsActive
= FALSE
;
627 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
629 // Set up the demodulator for tag -> reader responses.
630 DemodInit(receivedResponse
, receivedResponsePar
);
632 // Set up the demodulator for the reader -> tag commands
633 UartInit(receivedCmd
, receivedCmdPar
);
635 // Setup and start DMA.
636 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
638 // And now we loop, receiving samples.
639 for(uint32_t rsamples
= 0; TRUE
; ) {
642 DbpString("cancelled by button");
649 int register readBufDataP
= data
- dmaBuf
;
650 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
651 if (readBufDataP
<= dmaBufDataP
){
652 dataLen
= dmaBufDataP
- readBufDataP
;
654 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
656 // test for length of buffer
657 if(dataLen
> maxDataLen
) {
658 maxDataLen
= dataLen
;
660 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
664 if(dataLen
< 1) continue;
666 // primary buffer was stopped( <-- we lost data!
667 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
668 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
669 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
670 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
672 // secondary buffer sets as primary, secondary buffer was stopped
673 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
674 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
675 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
680 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
682 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
683 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
684 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
687 // check - if there is a short 7bit request from reader
688 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
691 if (!LogTrace(receivedCmd
,
693 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
694 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
698 /* And ready to receive another command. */
700 /* And also reset the demod code, which might have been */
701 /* false-triggered by the commands from the reader. */
705 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
708 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
709 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
710 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
713 if (!LogTrace(receivedResponse
,
715 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
716 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
720 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
722 // And ready to receive another response.
726 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
730 previous_data
= *data
;
733 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
738 DbpString("COMMAND FINISHED");
741 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
742 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
746 //-----------------------------------------------------------------------------
747 // Prepare tag messages
748 //-----------------------------------------------------------------------------
749 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
753 // Correction bit, might be removed when not needed
758 ToSendStuffBit(1); // 1
764 ToSend
[++ToSendMax
] = SEC_D
;
765 LastProxToAirDuration
= 8 * ToSendMax
- 4;
767 for(uint16_t i
= 0; i
< len
; i
++) {
771 for(uint16_t j
= 0; j
< 8; j
++) {
773 ToSend
[++ToSendMax
] = SEC_D
;
775 ToSend
[++ToSendMax
] = SEC_E
;
780 // Get the parity bit
781 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
782 ToSend
[++ToSendMax
] = SEC_D
;
783 LastProxToAirDuration
= 8 * ToSendMax
- 4;
785 ToSend
[++ToSendMax
] = SEC_E
;
786 LastProxToAirDuration
= 8 * ToSendMax
;
791 ToSend
[++ToSendMax
] = SEC_F
;
793 // Convert from last byte pos to length
797 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
799 uint8_t par
[MAX_PARITY_SIZE
];
801 GetParity(cmd
, len
, par
);
802 CodeIso14443aAsTagPar(cmd
, len
, par
);
806 static void Code4bitAnswerAsTag(uint8_t cmd
)
812 // Correction bit, might be removed when not needed
817 ToSendStuffBit(1); // 1
823 ToSend
[++ToSendMax
] = SEC_D
;
826 for(i
= 0; i
< 4; i
++) {
828 ToSend
[++ToSendMax
] = SEC_D
;
829 LastProxToAirDuration
= 8 * ToSendMax
- 4;
831 ToSend
[++ToSendMax
] = SEC_E
;
832 LastProxToAirDuration
= 8 * ToSendMax
;
838 ToSend
[++ToSendMax
] = SEC_F
;
840 // Convert from last byte pos to length
844 //-----------------------------------------------------------------------------
845 // Wait for commands from reader
846 // Stop when button is pressed
847 // Or return TRUE when command is captured
848 //-----------------------------------------------------------------------------
849 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
851 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
852 // only, since we are receiving, not transmitting).
853 // Signal field is off with the appropriate LED
855 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
857 // Now run a `software UART' on the stream of incoming samples.
858 UartInit(received
, parity
);
861 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
866 if(BUTTON_PRESS()) return FALSE
;
868 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
869 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
870 if(MillerDecoding(b
, 0)) {
878 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
879 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
880 int EmSend4bit(uint8_t resp
);
881 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
882 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
883 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
884 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
885 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
886 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
888 static uint8_t* free_buffer_pointer
;
895 uint32_t ProxToAirDuration
;
896 } tag_response_info_t
;
898 void reset_free_buffer() {
899 free_buffer_pointer
= BigBuf_get_addr() + FREE_BUFFER_OFFSET
;
902 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
903 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
904 // This will need the following byte array for a modulation sequence
905 // 144 data bits (18 * 8)
908 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
909 // 1 just for the case
911 // 166 bytes, since every bit that needs to be send costs us a byte
914 // Prepare the tag modulation bits from the message
915 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
917 // Make sure we do not exceed the free buffer space
918 if (ToSendMax
> max_buffer_size
) {
919 Dbprintf("Out of memory, when modulating bits for tag answer:");
920 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
924 // Copy the byte array, used for this modulation to the buffer position
925 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
927 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
928 response_info
->modulation_n
= ToSendMax
;
929 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
934 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
935 // Retrieve and store the current buffer index
936 response_info
->modulation
= free_buffer_pointer
;
938 // Determine the maximum size we can use from our buffer
939 size_t max_buffer_size
= BigBuf_get_addr() + FREE_BUFFER_OFFSET
+ FREE_BUFFER_SIZE
- free_buffer_pointer
;
941 // Forward the prepare tag modulation function to the inner function
942 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
943 // Update the free buffer offset
944 free_buffer_pointer
+= ToSendMax
;
951 //-----------------------------------------------------------------------------
952 // Main loop of simulated tag: receive commands from reader, decide what
953 // response to send, and send it.
954 //-----------------------------------------------------------------------------
955 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
957 // Enable and clear the trace
958 iso14a_clear_trace();
959 iso14a_set_tracing(TRUE
);
963 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
964 uint8_t response1
[2];
967 case 1: { // MIFARE Classic
968 // Says: I am Mifare 1k - original line
973 case 2: { // MIFARE Ultralight
974 // Says: I am a stupid memory tag, no crypto
979 case 3: { // MIFARE DESFire
980 // Says: I am a DESFire tag, ph33r me
985 case 4: { // ISO/IEC 14443-4
986 // Says: I am a javacard (JCOP)
991 case 5: { // MIFARE TNP3XXX
998 Dbprintf("Error: unkown tagtype (%d)",tagType
);
1003 // The second response contains the (mandatory) first 24 bits of the UID
1004 uint8_t response2
[5] = {0x00};
1006 // Check if the uid uses the (optional) part
1007 uint8_t response2a
[5] = {0x00};
1010 response2
[0] = 0x88;
1011 num_to_bytes(uid_1st
,3,response2
+1);
1012 num_to_bytes(uid_2nd
,4,response2a
);
1013 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1015 // Configure the ATQA and SAK accordingly
1016 response1
[0] |= 0x40;
1019 num_to_bytes(uid_1st
,4,response2
);
1020 // Configure the ATQA and SAK accordingly
1021 response1
[0] &= 0xBF;
1025 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1026 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1028 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1029 uint8_t response3
[3] = {0x00};
1031 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1033 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1034 uint8_t response3a
[3] = {0x00};
1035 response3a
[0] = sak
& 0xFB;
1036 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1038 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1039 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1040 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1041 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1042 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1043 // TC(1) = 0x02: CID supported, NAD not supported
1044 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1046 #define TAG_RESPONSE_COUNT 7
1047 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1048 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1049 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1050 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1051 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1052 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1053 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1054 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1057 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1058 // Such a response is less time critical, so we can prepare them on the fly
1059 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1060 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1061 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1062 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1063 tag_response_info_t dynamic_response_info
= {
1064 .response
= dynamic_response_buffer
,
1066 .modulation
= dynamic_modulation_buffer
,
1070 // Reset the offset pointer of the free buffer
1071 reset_free_buffer();
1073 // Prepare the responses of the anticollision phase
1074 // there will be not enough time to do this at the moment the reader sends it REQA
1075 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1076 prepare_allocated_tag_modulation(&responses
[i
]);
1081 // To control where we are in the protocol
1085 // Just to allow some checks
1090 // We need to listen to the high-frequency, peak-detected path.
1091 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1093 // buffers used on software Uart:
1094 uint8_t *receivedCmd
= BigBuf_get_addr() + RECV_CMD_OFFSET
;
1095 uint8_t *receivedCmdPar
= BigBuf_get_addr() + RECV_CMD_PAR_OFFSET
;
1098 tag_response_info_t
* p_response
;
1102 // Clean receive command buffer
1104 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1105 DbpString("Button press");
1111 // Okay, look at the command now.
1113 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1114 p_response
= &responses
[0]; order
= 1;
1115 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1116 p_response
= &responses
[0]; order
= 6;
1117 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1118 p_response
= &responses
[1]; order
= 2;
1119 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1120 p_response
= &responses
[2]; order
= 20;
1121 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1122 p_response
= &responses
[3]; order
= 3;
1123 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1124 p_response
= &responses
[4]; order
= 30;
1125 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1126 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1127 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1128 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1130 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1133 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1136 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1137 p_response
= &responses
[5]; order
= 7;
1138 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1139 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1140 EmSend4bit(CARD_NACK_NA
);
1143 p_response
= &responses
[6]; order
= 70;
1145 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1147 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1149 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1150 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1151 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1153 // Check for ISO 14443A-4 compliant commands, look at left nibble
1154 switch (receivedCmd
[0]) {
1157 case 0x0A: { // IBlock (command)
1158 dynamic_response_info
.response
[0] = receivedCmd
[0];
1159 dynamic_response_info
.response
[1] = 0x00;
1160 dynamic_response_info
.response
[2] = 0x90;
1161 dynamic_response_info
.response
[3] = 0x00;
1162 dynamic_response_info
.response_n
= 4;
1166 case 0x1B: { // Chaining command
1167 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1168 dynamic_response_info
.response_n
= 2;
1173 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1174 dynamic_response_info
.response_n
= 2;
1178 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1179 dynamic_response_info
.response_n
= 2;
1183 case 0xC2: { // Readers sends deselect command
1184 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1185 dynamic_response_info
.response_n
= 2;
1189 // Never seen this command before
1191 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1193 Dbprintf("Received unknown command (len=%d):",len
);
1194 Dbhexdump(len
,receivedCmd
,false);
1196 dynamic_response_info
.response_n
= 0;
1200 if (dynamic_response_info
.response_n
> 0) {
1201 // Copy the CID from the reader query
1202 dynamic_response_info
.response
[1] = receivedCmd
[1];
1204 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1205 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1206 dynamic_response_info
.response_n
+= 2;
1208 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1209 Dbprintf("Error preparing tag response");
1211 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1215 p_response
= &dynamic_response_info
;
1219 // Count number of wakeups received after a halt
1220 if(order
== 6 && lastorder
== 5) { happened
++; }
1222 // Count number of other messages after a halt
1223 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1225 if(cmdsRecvd
> 999) {
1226 DbpString("1000 commands later...");
1231 if (p_response
!= NULL
) {
1232 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1233 // do the tracing for the previous reader request and this tag answer:
1234 uint8_t par
[MAX_PARITY_SIZE
];
1235 GetParity(p_response
->response
, p_response
->response_n
, par
);
1237 EmLogTrace(Uart
.output
,
1239 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1240 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1242 p_response
->response
,
1243 p_response
->response_n
,
1244 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1245 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1250 Dbprintf("Trace Full. Simulation stopped.");
1255 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1260 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1261 // of bits specified in the delay parameter.
1262 void PrepareDelayedTransfer(uint16_t delay
)
1264 uint8_t bitmask
= 0;
1265 uint8_t bits_to_shift
= 0;
1266 uint8_t bits_shifted
= 0;
1270 for (uint16_t i
= 0; i
< delay
; i
++) {
1271 bitmask
|= (0x01 << i
);
1273 ToSend
[ToSendMax
++] = 0x00;
1274 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1275 bits_to_shift
= ToSend
[i
] & bitmask
;
1276 ToSend
[i
] = ToSend
[i
] >> delay
;
1277 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1278 bits_shifted
= bits_to_shift
;
1284 //-------------------------------------------------------------------------------------
1285 // Transmit the command (to the tag) that was placed in ToSend[].
1286 // Parameter timing:
1287 // if NULL: transfer at next possible time, taking into account
1288 // request guard time and frame delay time
1289 // if == 0: transfer immediately and return time of transfer
1290 // if != 0: delay transfer until time specified
1291 //-------------------------------------------------------------------------------------
1292 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1295 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1297 uint32_t ThisTransferTime
= 0;
1300 if(*timing
== 0) { // Measure time
1301 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1303 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1305 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1306 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1307 LastTimeProxToAirStart
= *timing
;
1309 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1310 while(GetCountSspClk() < ThisTransferTime
);
1311 LastTimeProxToAirStart
= ThisTransferTime
;
1315 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1319 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1320 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1328 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1332 //-----------------------------------------------------------------------------
1333 // Prepare reader command (in bits, support short frames) to send to FPGA
1334 //-----------------------------------------------------------------------------
1335 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1343 // Start of Communication (Seq. Z)
1344 ToSend
[++ToSendMax
] = SEC_Z
;
1345 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1348 size_t bytecount
= nbytes(bits
);
1349 // Generate send structure for the data bits
1350 for (i
= 0; i
< bytecount
; i
++) {
1351 // Get the current byte to send
1353 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1355 for (j
= 0; j
< bitsleft
; j
++) {
1358 ToSend
[++ToSendMax
] = SEC_X
;
1359 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1364 ToSend
[++ToSendMax
] = SEC_Z
;
1365 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1368 ToSend
[++ToSendMax
] = SEC_Y
;
1375 // Only transmit parity bit if we transmitted a complete byte
1377 // Get the parity bit
1378 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1380 ToSend
[++ToSendMax
] = SEC_X
;
1381 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1386 ToSend
[++ToSendMax
] = SEC_Z
;
1387 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1390 ToSend
[++ToSendMax
] = SEC_Y
;
1397 // End of Communication: Logic 0 followed by Sequence Y
1400 ToSend
[++ToSendMax
] = SEC_Z
;
1401 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1404 ToSend
[++ToSendMax
] = SEC_Y
;
1407 ToSend
[++ToSendMax
] = SEC_Y
;
1409 // Convert to length of command:
1413 //-----------------------------------------------------------------------------
1414 // Prepare reader command to send to FPGA
1415 //-----------------------------------------------------------------------------
1416 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1418 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1421 //-----------------------------------------------------------------------------
1422 // Wait for commands from reader
1423 // Stop when button is pressed (return 1) or field was gone (return 2)
1424 // Or return 0 when command is captured
1425 //-----------------------------------------------------------------------------
1426 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1430 uint32_t timer
= 0, vtime
= 0;
1434 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1435 // only, since we are receiving, not transmitting).
1436 // Signal field is off with the appropriate LED
1438 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1440 // Set ADC to read field strength
1441 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1442 AT91C_BASE_ADC
->ADC_MR
=
1443 ADC_MODE_PRESCALE(32) |
1444 ADC_MODE_STARTUP_TIME(16) |
1445 ADC_MODE_SAMPLE_HOLD_TIME(8);
1446 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1448 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1450 // Now run a 'software UART' on the stream of incoming samples.
1451 UartInit(received
, parity
);
1454 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1459 if (BUTTON_PRESS()) return 1;
1461 // test if the field exists
1462 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1464 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1465 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1466 if (analogCnt
>= 32) {
1467 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1468 vtime
= GetTickCount();
1469 if (!timer
) timer
= vtime
;
1470 // 50ms no field --> card to idle state
1471 if (vtime
- timer
> 50) return 2;
1473 if (timer
) timer
= 0;
1479 // receive and test the miller decoding
1480 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1481 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1482 if(MillerDecoding(b
, 0)) {
1492 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1496 uint32_t ThisTransferTime
;
1498 // Modulate Manchester
1499 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1501 // include correction bit if necessary
1502 if (Uart
.parityBits
& 0x01) {
1503 correctionNeeded
= TRUE
;
1505 if(correctionNeeded
) {
1506 // 1236, so correction bit needed
1512 // clear receiving shift register and holding register
1513 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1514 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1515 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1516 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1518 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1519 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1520 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1521 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1524 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1527 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1530 for(; i
<= respLen
; ) {
1531 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1532 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1533 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1536 if(BUTTON_PRESS()) {
1541 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1542 for (i
= 0; i
< 2 ; ) {
1543 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1544 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1545 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1550 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1555 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1556 Code4bitAnswerAsTag(resp
);
1557 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1558 // do the tracing for the previous reader request and this tag answer:
1560 GetParity(&resp
, 1, par
);
1561 EmLogTrace(Uart
.output
,
1563 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1564 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1568 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1569 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1574 int EmSend4bit(uint8_t resp
){
1575 return EmSend4bitEx(resp
, false);
1578 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1579 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1580 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1581 // do the tracing for the previous reader request and this tag answer:
1582 EmLogTrace(Uart
.output
,
1584 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1585 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1589 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1590 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1595 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1596 uint8_t par
[MAX_PARITY_SIZE
];
1597 GetParity(resp
, respLen
, par
);
1598 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1601 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1602 uint8_t par
[MAX_PARITY_SIZE
];
1603 GetParity(resp
, respLen
, par
);
1604 return EmSendCmdExPar(resp
, respLen
, false, par
);
1607 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1608 return EmSendCmdExPar(resp
, respLen
, false, par
);
1611 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1612 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1615 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1616 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1617 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1618 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1619 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1620 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1621 reader_EndTime
= tag_StartTime
- exact_fdt
;
1622 reader_StartTime
= reader_EndTime
- reader_modlen
;
1623 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1625 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1631 //-----------------------------------------------------------------------------
1632 // Wait a certain time for tag response
1633 // If a response is captured return TRUE
1634 // If it takes too long return FALSE
1635 //-----------------------------------------------------------------------------
1636 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1640 // Set FPGA mode to "reader listen mode", no modulation (listen
1641 // only, since we are receiving, not transmitting).
1642 // Signal field is on with the appropriate LED
1644 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1646 // Now get the answer from the card
1647 DemodInit(receivedResponse
, receivedResponsePar
);
1650 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1656 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1657 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1658 if(ManchesterDecoding(b
, offset
, 0)) {
1659 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1661 } else if (c
++ > iso14a_timeout
) {
1668 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1670 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1672 // Send command to tag
1673 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1677 // Log reader command in trace buffer
1679 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1683 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1685 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1688 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1690 // Generate parity and redirect
1691 uint8_t par
[MAX_PARITY_SIZE
];
1692 GetParity(frame
, len
/8, par
);
1693 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1696 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1698 // Generate parity and redirect
1699 uint8_t par
[MAX_PARITY_SIZE
];
1700 GetParity(frame
, len
, par
);
1701 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1704 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1706 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1708 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1713 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1715 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1717 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1722 /* performs iso14443a anticollision procedure
1723 * fills the uid pointer unless NULL
1724 * fills resp_data unless NULL */
1725 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1726 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1727 uint8_t sel_all
[] = { 0x93,0x20 };
1728 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1729 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1730 uint8_t *resp
= BigBuf_get_addr() + RECV_RESP_OFFSET
;
1731 uint8_t *resp_par
= BigBuf_get_addr() + RECV_RESP_PAR_OFFSET
;
1733 size_t uid_resp_len
;
1735 uint8_t sak
= 0x04; // cascade uid
1736 int cascade_level
= 0;
1739 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1740 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1743 if(!ReaderReceive(resp
, resp_par
)) return 0;
1746 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1747 p_hi14a_card
->uidlen
= 0;
1748 memset(p_hi14a_card
->uid
,0,10);
1753 memset(uid_ptr
,0,10);
1756 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1757 // which case we need to make a cascade 2 request and select - this is a long UID
1758 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1759 for(; sak
& 0x04; cascade_level
++) {
1760 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1761 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1764 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1765 if (!ReaderReceive(resp
, resp_par
)) return 0;
1767 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1768 memset(uid_resp
, 0, 4);
1769 uint16_t uid_resp_bits
= 0;
1770 uint16_t collision_answer_offset
= 0;
1771 // anti-collision-loop:
1772 while (Demod
.collisionPos
) {
1773 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1774 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1775 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1776 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1778 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1780 // construct anticollosion command:
1781 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1782 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1783 sel_uid
[2+i
] = uid_resp
[i
];
1785 collision_answer_offset
= uid_resp_bits
%8;
1786 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1787 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1789 // finally, add the last bits and BCC of the UID
1790 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1791 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1792 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1795 } else { // no collision, use the response to SELECT_ALL as current uid
1796 memcpy(uid_resp
, resp
, 4);
1800 // calculate crypto UID. Always use last 4 Bytes.
1802 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1805 // Construct SELECT UID command
1806 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1807 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1808 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1809 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1810 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1813 if (!ReaderReceive(resp
, resp_par
)) return 0;
1816 // Test if more parts of the uid are coming
1817 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1818 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1819 // http://www.nxp.com/documents/application_note/AN10927.pdf
1820 uid_resp
[0] = uid_resp
[1];
1821 uid_resp
[1] = uid_resp
[2];
1822 uid_resp
[2] = uid_resp
[3];
1828 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1832 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1833 p_hi14a_card
->uidlen
+= uid_resp_len
;
1838 p_hi14a_card
->sak
= sak
;
1839 p_hi14a_card
->ats_len
= 0;
1842 // non iso14443a compliant tag
1843 if( (sak
& 0x20) == 0) return 2;
1845 // Request for answer to select
1846 AppendCrc14443a(rats
, 2);
1847 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1849 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1853 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1854 p_hi14a_card
->ats_len
= len
;
1857 // reset the PCB block number
1858 iso14_pcb_blocknum
= 0;
1862 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1863 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1864 // Set up the synchronous serial port
1866 // connect Demodulated Signal to ADC:
1867 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1869 // Signal field is on with the appropriate LED
1870 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1871 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1876 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1883 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1884 iso14a_set_timeout(1050); // 10ms default
1887 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1888 uint8_t parity
[MAX_PARITY_SIZE
];
1889 uint8_t real_cmd
[cmd_len
+4];
1890 real_cmd
[0] = 0x0a; //I-Block
1891 // put block number into the PCB
1892 real_cmd
[0] |= iso14_pcb_blocknum
;
1893 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1894 memcpy(real_cmd
+2, cmd
, cmd_len
);
1895 AppendCrc14443a(real_cmd
,cmd_len
+2);
1897 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1898 size_t len
= ReaderReceive(data
, parity
);
1899 uint8_t *data_bytes
= (uint8_t *) data
;
1901 return 0; //DATA LINK ERROR
1902 // if we received an I- or R(ACK)-Block with a block number equal to the
1903 // current block number, toggle the current block number
1904 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1905 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1906 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1907 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1909 iso14_pcb_blocknum
^= 1;
1915 //-----------------------------------------------------------------------------
1916 // Read an ISO 14443a tag. Send out commands and store answers.
1918 //-----------------------------------------------------------------------------
1919 void ReaderIso14443a(UsbCommand
*c
)
1921 iso14a_command_t param
= c
->arg
[0];
1922 uint8_t *cmd
= c
->d
.asBytes
;
1923 size_t len
= c
->arg
[1];
1924 size_t lenbits
= c
->arg
[2];
1926 byte_t buf
[USB_CMD_DATA_SIZE
];
1927 uint8_t par
[MAX_PARITY_SIZE
];
1929 if(param
& ISO14A_CONNECT
) {
1930 iso14a_clear_trace();
1933 iso14a_set_tracing(TRUE
);
1935 if(param
& ISO14A_REQUEST_TRIGGER
) {
1936 iso14a_set_trigger(TRUE
);
1939 if(param
& ISO14A_CONNECT
) {
1940 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1941 if(!(param
& ISO14A_NO_SELECT
)) {
1942 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1943 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1944 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1948 if(param
& ISO14A_SET_TIMEOUT
) {
1949 iso14a_set_timeout(c
->arg
[2]);
1952 if(param
& ISO14A_APDU
) {
1953 arg0
= iso14_apdu(cmd
, len
, buf
);
1954 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1957 if(param
& ISO14A_RAW
) {
1958 if(param
& ISO14A_APPEND_CRC
) {
1959 AppendCrc14443a(cmd
,len
);
1961 if (lenbits
) lenbits
+= 16;
1964 GetParity(cmd
, lenbits
/8, par
);
1965 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
);
1967 ReaderTransmit(cmd
,len
, NULL
);
1969 arg0
= ReaderReceive(buf
, par
);
1970 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1973 if(param
& ISO14A_REQUEST_TRIGGER
) {
1974 iso14a_set_trigger(FALSE
);
1977 if(param
& ISO14A_NO_DISCONNECT
) {
1981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1986 // Determine the distance between two nonces.
1987 // Assume that the difference is small, but we don't know which is first.
1988 // Therefore try in alternating directions.
1989 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1992 uint32_t nttmp1
, nttmp2
;
1994 if (nt1
== nt2
) return 0;
1999 for (i
= 1; i
< 32768; i
++) {
2000 nttmp1
= prng_successor(nttmp1
, 1);
2001 if (nttmp1
== nt2
) return i
;
2002 nttmp2
= prng_successor(nttmp2
, 1);
2003 if (nttmp2
== nt1
) return -i
;
2006 return(-99999); // either nt1 or nt2 are invalid nonces
2010 //-----------------------------------------------------------------------------
2011 // Recover several bits of the cypher stream. This implements (first stages of)
2012 // the algorithm described in "The Dark Side of Security by Obscurity and
2013 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2014 // (article by Nicolas T. Courtois, 2009)
2015 //-----------------------------------------------------------------------------
2016 void ReaderMifare(bool first_try
)
2019 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2020 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2021 static uint8_t mf_nr_ar3
;
2023 uint8_t* receivedAnswer
= BigBuf_get_addr() + RECV_RESP_OFFSET
;
2024 uint8_t* receivedAnswerPar
= BigBuf_get_addr() + RECV_RESP_PAR_OFFSET
;
2026 iso14a_clear_trace();
2027 iso14a_set_tracing(TRUE
);
2030 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2031 static byte_t par_low
= 0;
2033 uint8_t uid
[10] ={0};
2037 uint32_t previous_nt
= 0;
2038 static uint32_t nt_attacked
= 0;
2039 byte_t par_list
[8] = {0x00};
2040 byte_t ks_list
[8] = {0x00};
2042 static uint32_t sync_time
;
2043 static uint32_t sync_cycles
;
2044 int catch_up_cycles
= 0;
2045 int last_catch_up
= 0;
2046 uint16_t consecutive_resyncs
= 0;
2051 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2052 sync_time
= GetCountSspClk() & 0xfffffff8;
2053 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2059 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2061 mf_nr_ar
[3] = mf_nr_ar3
;
2070 for(uint16_t i
= 0; TRUE
; i
++) {
2074 // Test if the action was cancelled
2075 if(BUTTON_PRESS()) {
2081 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2082 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2086 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2087 catch_up_cycles
= 0;
2089 // if we missed the sync time already, advance to the next nonce repeat
2090 while(GetCountSspClk() > sync_time
) {
2091 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2094 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2095 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2097 // Receive the (4 Byte) "random" nonce
2098 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2099 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2104 nt
= bytes_to_num(receivedAnswer
, 4);
2106 // Transmit reader nonce with fake par
2107 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2109 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2110 int nt_distance
= dist_nt(previous_nt
, nt
);
2111 if (nt_distance
== 0) {
2115 if (nt_distance
== -99999) { // invalid nonce received, try again
2118 sync_cycles
= (sync_cycles
- nt_distance
);
2119 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2124 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2125 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2126 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2127 catch_up_cycles
= 0;
2130 if (catch_up_cycles
== last_catch_up
) {
2131 consecutive_resyncs
++;
2134 last_catch_up
= catch_up_cycles
;
2135 consecutive_resyncs
= 0;
2137 if (consecutive_resyncs
< 3) {
2138 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2141 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2142 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2147 consecutive_resyncs
= 0;
2149 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2150 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2152 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2156 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2160 if(led_on
) LED_B_ON(); else LED_B_OFF();
2162 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2163 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2165 // Test if the information is complete
2166 if (nt_diff
== 0x07) {
2171 nt_diff
= (nt_diff
+ 1) & 0x07;
2172 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2175 if (nt_diff
== 0 && first_try
)
2179 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2185 mf_nr_ar
[3] &= 0x1F;
2188 memcpy(buf
+ 0, uid
, 4);
2189 num_to_bytes(nt
, 4, buf
+ 4);
2190 memcpy(buf
+ 8, par_list
, 8);
2191 memcpy(buf
+ 16, ks_list
, 8);
2192 memcpy(buf
+ 24, mf_nr_ar
, 4);
2194 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2197 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2200 iso14a_set_tracing(FALSE
);
2204 *MIFARE 1K simulate.
2207 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2208 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2209 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2210 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2211 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2213 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2215 int cardSTATE
= MFEMUL_NOFIELD
;
2217 int vHf
= 0; // in mV
2219 uint32_t selTimer
= 0;
2220 uint32_t authTimer
= 0;
2222 uint8_t cardWRBL
= 0;
2223 uint8_t cardAUTHSC
= 0;
2224 uint8_t cardAUTHKEY
= 0xff; // no authentication
2225 uint32_t cardRr
= 0;
2227 //uint32_t rn_enc = 0;
2229 uint32_t cardINTREG
= 0;
2230 uint8_t cardINTBLOCK
= 0;
2231 struct Crypto1State mpcs
= {0, 0};
2232 struct Crypto1State
*pcs
;
2234 uint32_t numReads
= 0;//Counts numer of times reader read a block
2235 uint8_t* receivedCmd
= get_bigbufptr_recvcmdbuf();
2236 uint8_t* receivedCmd_par
= receivedCmd
+ MAX_FRAME_SIZE
;
2237 uint8_t* response
= get_bigbufptr_recvrespbuf();
2238 uint8_t* response_par
= response
+ MAX_FRAME_SIZE
;
2240 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2241 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2242 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2243 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2244 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2246 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2247 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2249 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2250 // This can be used in a reader-only attack.
2251 // (it can also be retrieved via 'hf 14a list', but hey...
2252 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2253 uint8_t ar_nr_collected
= 0;
2256 iso14a_clear_trace();
2257 iso14a_set_tracing(TRUE
);
2259 // Authenticate response - nonce
2260 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2262 //-- Determine the UID
2263 // Can be set from emulator memory, incoming data
2264 // and can be 7 or 4 bytes long
2265 if (flags
& FLAG_4B_UID_IN_DATA
)
2267 // 4B uid comes from data-portion of packet
2268 memcpy(rUIDBCC1
,datain
,4);
2269 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2271 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2272 // 7B uid comes from data-portion of packet
2273 memcpy(&rUIDBCC1
[1],datain
,3);
2274 memcpy(rUIDBCC2
, datain
+3, 4);
2277 // get UID from emul memory
2278 emlGetMemBt(receivedCmd
, 7, 1);
2279 _7BUID
= !(receivedCmd
[0] == 0x00);
2280 if (!_7BUID
) { // ---------- 4BUID
2281 emlGetMemBt(rUIDBCC1
, 0, 4);
2282 } else { // ---------- 7BUID
2283 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2284 emlGetMemBt(rUIDBCC2
, 3, 4);
2289 * Regardless of what method was used to set the UID, set fifth byte and modify
2290 * the ATQA for 4 or 7-byte UID
2292 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2296 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2299 // We need to listen to the high-frequency, peak-detected path.
2300 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2303 if (MF_DBGLEVEL
>= 1) {
2305 Dbprintf("4B UID: %02x%02x%02x%02x",
2306 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2308 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2309 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2310 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2314 bool finished
= FALSE
;
2315 while (!BUTTON_PRESS() && !finished
) {
2318 // find reader field
2319 // Vref = 3300mV, and an 10:1 voltage divider on the input
2320 // can measure voltages up to 33000 mV
2321 if (cardSTATE
== MFEMUL_NOFIELD
) {
2322 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2323 if (vHf
> MF_MINFIELDV
) {
2324 cardSTATE_TO_IDLE();
2328 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2332 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2333 if (res
== 2) { //Field is off!
2334 cardSTATE
= MFEMUL_NOFIELD
;
2337 } else if (res
== 1) {
2338 break; //return value 1 means button press
2341 // REQ or WUP request in ANY state and WUP in HALTED state
2342 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2343 selTimer
= GetTickCount();
2344 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2345 cardSTATE
= MFEMUL_SELECT1
;
2347 // init crypto block
2350 crypto1_destroy(pcs
);
2355 switch (cardSTATE
) {
2356 case MFEMUL_NOFIELD
:
2359 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2362 case MFEMUL_SELECT1
:{
2364 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2365 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2366 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2370 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2372 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2376 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2377 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2378 cuid
= bytes_to_num(rUIDBCC1
, 4);
2380 cardSTATE
= MFEMUL_WORK
;
2382 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2385 cardSTATE
= MFEMUL_SELECT2
;
2393 cardSTATE_TO_IDLE();
2394 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2397 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2398 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2401 if(ar_nr_collected
< 2){
2402 if(ar_nr_responses
[2] != ar
)
2403 {// Avoid duplicates... probably not necessary, ar should vary.
2404 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2405 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2406 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2407 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2413 crypto1_word(pcs
, ar
, 1);
2414 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2417 if (cardRr
!= prng_successor(nonce
, 64)){
2418 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2419 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2420 cardRr
, prng_successor(nonce
, 64));
2421 // Shouldn't we respond anything here?
2422 // Right now, we don't nack or anything, which causes the
2423 // reader to do a WUPA after a while. /Martin
2424 // -- which is the correct response. /piwi
2425 cardSTATE_TO_IDLE();
2426 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2430 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2432 num_to_bytes(ans
, 4, rAUTH_AT
);
2434 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2436 cardSTATE
= MFEMUL_WORK
;
2437 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2438 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2439 GetTickCount() - authTimer
);
2442 case MFEMUL_SELECT2
:{
2444 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2447 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2448 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2454 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2455 EmSendCmd(rSAK
, sizeof(rSAK
));
2456 cuid
= bytes_to_num(rUIDBCC2
, 4);
2457 cardSTATE
= MFEMUL_WORK
;
2459 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2463 // i guess there is a command). go into the work state.
2465 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2468 cardSTATE
= MFEMUL_WORK
;
2470 //intentional fall-through to the next case-stmt
2475 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2479 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2481 if(encrypted_data
) {
2483 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2486 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2487 authTimer
= GetTickCount();
2488 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2489 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2490 crypto1_destroy(pcs
);//Added by martin
2491 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2493 if (!encrypted_data
) { // first authentication
2494 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2496 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2497 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2498 } else { // nested authentication
2499 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2500 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2501 num_to_bytes(ans
, 4, rAUTH_AT
);
2503 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2504 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2505 cardSTATE
= MFEMUL_AUTH1
;
2509 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2510 // BUT... ACK --> NACK
2511 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2512 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2516 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2517 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2518 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2523 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2527 if(receivedCmd
[0] == 0x30 // read block
2528 || receivedCmd
[0] == 0xA0 // write block
2529 || receivedCmd
[0] == 0xC0 // inc
2530 || receivedCmd
[0] == 0xC1 // dec
2531 || receivedCmd
[0] == 0xC2 // restore
2532 || receivedCmd
[0] == 0xB0) { // transfer
2533 if (receivedCmd
[1] >= 16 * 4) {
2534 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2535 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2539 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2540 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2541 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2546 if (receivedCmd
[0] == 0x30) {
2547 if (MF_DBGLEVEL
>= 4) {
2548 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2550 emlGetMem(response
, receivedCmd
[1], 1);
2551 AppendCrc14443a(response
, 16);
2552 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2553 EmSendCmdPar(response
, 18, response_par
);
2555 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2556 Dbprintf("%d reads done, exiting", numReads
);
2562 if (receivedCmd
[0] == 0xA0) {
2563 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2564 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2565 cardSTATE
= MFEMUL_WRITEBL2
;
2566 cardWRBL
= receivedCmd
[1];
2569 // increment, decrement, restore
2570 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2571 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2572 if (emlCheckValBl(receivedCmd
[1])) {
2573 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2574 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2577 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2578 if (receivedCmd
[0] == 0xC1)
2579 cardSTATE
= MFEMUL_INTREG_INC
;
2580 if (receivedCmd
[0] == 0xC0)
2581 cardSTATE
= MFEMUL_INTREG_DEC
;
2582 if (receivedCmd
[0] == 0xC2)
2583 cardSTATE
= MFEMUL_INTREG_REST
;
2584 cardWRBL
= receivedCmd
[1];
2588 if (receivedCmd
[0] == 0xB0) {
2589 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2590 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2591 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2593 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2597 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2600 cardSTATE
= MFEMUL_HALTED
;
2601 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2602 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2606 if (receivedCmd
[0] == 0xe0) {//RATS
2607 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2610 // command not allowed
2611 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2612 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2615 case MFEMUL_WRITEBL2
:{
2617 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2618 emlSetMem(receivedCmd
, cardWRBL
, 1);
2619 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2620 cardSTATE
= MFEMUL_WORK
;
2622 cardSTATE_TO_IDLE();
2623 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2628 case MFEMUL_INTREG_INC
:{
2629 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2630 memcpy(&ans
, receivedCmd
, 4);
2631 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2632 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2633 cardSTATE_TO_IDLE();
2636 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2637 cardINTREG
= cardINTREG
+ ans
;
2638 cardSTATE
= MFEMUL_WORK
;
2641 case MFEMUL_INTREG_DEC
:{
2642 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2643 memcpy(&ans
, receivedCmd
, 4);
2644 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2645 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2646 cardSTATE_TO_IDLE();
2649 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2650 cardINTREG
= cardINTREG
- ans
;
2651 cardSTATE
= MFEMUL_WORK
;
2654 case MFEMUL_INTREG_REST
:{
2655 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2656 memcpy(&ans
, receivedCmd
, 4);
2657 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2658 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2659 cardSTATE_TO_IDLE();
2662 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2663 cardSTATE
= MFEMUL_WORK
;
2669 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2672 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2674 //May just aswell send the collected ar_nr in the response aswell
2675 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2678 if(flags
& FLAG_NR_AR_ATTACK
)
2680 if(ar_nr_collected
> 1) {
2681 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2682 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2683 ar_nr_responses
[0], // UID
2684 ar_nr_responses
[1], //NT
2685 ar_nr_responses
[2], //AR1
2686 ar_nr_responses
[3], //NR1
2687 ar_nr_responses
[6], //AR2
2688 ar_nr_responses
[7] //NR2
2691 Dbprintf("Failed to obtain two AR/NR pairs!");
2692 if(ar_nr_collected
>0) {
2693 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2694 ar_nr_responses
[0], // UID
2695 ar_nr_responses
[1], //NT
2696 ar_nr_responses
[2], //AR1
2697 ar_nr_responses
[3] //NR1
2702 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2707 //-----------------------------------------------------------------------------
2710 //-----------------------------------------------------------------------------
2711 void RAMFUNC
SniffMifare(uint8_t param
) {
2713 // bit 0 - trigger from first card answer
2714 // bit 1 - trigger from first reader 7-bit request
2716 // C(red) A(yellow) B(green)
2718 // init trace buffer
2719 iso14a_clear_trace();
2720 iso14a_set_tracing(TRUE
);
2722 // The command (reader -> tag) that we're receiving.
2723 // The length of a received command will in most cases be no more than 18 bytes.
2724 // So 32 should be enough!
2725 uint8_t *receivedCmd
= BigBuf_get_addr() + RECV_CMD_OFFSET
;
2726 uint8_t *receivedCmdPar
= BigBuf_get_addr() + RECV_CMD_PAR_OFFSET
;
2727 // The response (tag -> reader) that we're receiving.
2728 uint8_t *receivedResponse
= BigBuf_get_addr() + RECV_RESP_OFFSET
;
2729 uint8_t *receivedResponsePar
= BigBuf_get_addr() + RECV_RESP_PAR_OFFSET
;
2731 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2732 // into trace, along with its length and other annotations.
2733 //uint8_t *trace = (uint8_t *)BigBuf;
2735 // The DMA buffer, used to stream samples from the FPGA
2736 uint8_t *dmaBuf
= BigBuf_get_addr() + DMA_BUFFER_OFFSET
;
2737 uint8_t *data
= dmaBuf
;
2738 uint8_t previous_data
= 0;
2741 bool ReaderIsActive
= FALSE
;
2742 bool TagIsActive
= FALSE
;
2744 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2746 // Set up the demodulator for tag -> reader responses.
2747 DemodInit(receivedResponse
, receivedResponsePar
);
2749 // Set up the demodulator for the reader -> tag commands
2750 UartInit(receivedCmd
, receivedCmdPar
);
2752 // Setup for the DMA.
2753 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2760 // And now we loop, receiving samples.
2761 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2763 if(BUTTON_PRESS()) {
2764 DbpString("cancelled by button");
2771 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2772 // check if a transaction is completed (timeout after 2000ms).
2773 // if yes, stop the DMA transfer and send what we have so far to the client
2774 if (MfSniffSend(2000)) {
2775 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2779 ReaderIsActive
= FALSE
;
2780 TagIsActive
= FALSE
;
2781 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2785 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2786 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2787 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2788 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2790 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2792 // test for length of buffer
2793 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2794 maxDataLen
= dataLen
;
2796 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2800 if(dataLen
< 1) continue;
2802 // primary buffer was stopped ( <-- we lost data!
2803 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2804 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2805 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2806 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2808 // secondary buffer sets as primary, secondary buffer was stopped
2809 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2810 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2811 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2816 if (sniffCounter
& 0x01) {
2818 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2819 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2820 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2822 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2824 /* And ready to receive another command. */
2827 /* And also reset the demod code */
2830 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2833 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2834 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2835 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2838 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2840 // And ready to receive another response.
2843 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2847 previous_data
= *data
;
2850 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2856 DbpString("COMMAND FINISHED");
2858 FpgaDisableSscDma();
2861 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);