]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
f9f2d1f1ec3f782b34a7df1c662a54a8c7186041
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
15 //to allow debug print calls when used not on device
16 void dummy ( char * fmt
, ...){}
20 #include "cmdparser.h"
22 #define prnt PrintAndLog
24 uint8_t g_debugMode
= 0 ;
28 uint8_t justNoise ( uint8_t * BitStream
, size_t size
)
30 static const uint8_t THRESHOLD
= 123 ;
31 //test samples are not just noise
32 uint8_t justNoise1
= 1 ;
33 for ( size_t idx
= 0 ; idx
< size
&& justNoise1
; idx
++){
34 justNoise1
= BitStream
[ idx
] < THRESHOLD
;
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
45 // get high and low thresholds
46 for ( size_t i
= 0 ; i
< size
; i
++){
47 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
48 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
50 if (* high
< 123 ) return - 1 ; // just noise
51 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
52 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
62 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
63 ans
^= (( bits
>> i
) & 1 );
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return ( ans
== pType
);
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
74 uint32_t parityWd
= 0 ;
75 size_t j
= 0 , bitCnt
= 0 ;
76 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
77 for ( int bit
= 0 ; bit
< pLen
; bit
++){
78 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
79 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
81 j
--; // overwrite parity with next data
82 // if parity fails then return 0
84 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ;} break ; //should be 0 spacer bit
85 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ;} break ; //should be 1 spacer bit
86 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ;} break ; //test parity
91 // if we got here then all the parities passed
92 //return ID start index and size
97 // takes a array of binary values, length of bits per parity (includes parity bit),
98 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
99 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
100 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
102 uint32_t parityWd
= 0 ;
103 size_t j
= 0 , bitCnt
= 0 ;
104 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
105 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
106 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
107 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
109 // if parity fails then return 0
111 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
112 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
114 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
120 // if we got here then all the parities passed
121 //return ID start index and size
125 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
128 for ( int i
= 0 ; i
< numbits
; i
++)
130 num
= ( num
<< 1 ) | (* src
);
136 //least significant bit first
137 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
140 for ( int i
= 0 ; i
< numbits
; i
++)
142 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
148 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
149 uint8_t preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
)
151 // Sanity check. If preamble length is bigger than bitstream length.
152 if ( * size
<= pLen
) return 0 ;
155 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
156 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
163 * size
= idx
- * startIdx
;
172 //takes 1s and 0s and searches for EM410x format - output EM ID
173 uint8_t Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
175 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
176 // otherwise could be a void with no arguments
179 if ( BitStream
[ 1 ]> 1 ) return 0 ; //allow only 1s and 0s
181 // 111111111 bit pattern represent start of frame
182 // include 0 in front to help get start pos
183 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
185 uint32_t parityBits
= 0 ;
189 errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
);
190 if ( errChk
== 0 || * size
< 64 ) return 0 ;
191 if (* size
> 64 ) FmtLen
= 22 ;
192 * startIdx
+= 1 ; //get rid of 0 from preamble
194 for ( i
= 0 ; i
< FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
195 parityBits
= bytebits_to_byte ( BitStream
+( i
* 5 )+ idx
, 5 );
196 //check even parity - quit if failed
197 if ( parityTest ( parityBits
, 5 , 0 ) == 0 ) return 0 ;
198 //set uint64 with ID from BitStream
199 for ( uint8_t ii
= 0 ; ii
< 4 ; ii
++){
200 * hi
= (* hi
<< 1 ) | (* lo
>> 63 );
201 * lo
= (* lo
<< 1 ) | ( BitStream
[( i
* 5 )+ ii
+ idx
]);
204 if ( errChk
!= 0 ) return 1 ;
205 //skip last 5 bit parity test for simplicity.
211 //demodulates strong heavily clipped samples
212 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
214 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
215 uint8_t waveHigh
= 0 ;
216 for ( size_t i
= 0 ; i
< * size
; i
++){
217 if ( BinStream
[ i
] >= high
&& waveHigh
){
219 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
221 } else { //transition
222 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
223 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
224 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
226 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
227 BinStream
[ bitCnt
++]= 7 ;
228 } else if ( waveHigh
) {
229 BinStream
[ bitCnt
++] = invert
;
230 BinStream
[ bitCnt
++] = invert
;
231 } else if (! waveHigh
) {
232 BinStream
[ bitCnt
++] = invert
^ 1 ;
233 BinStream
[ bitCnt
++] = invert
^ 1 ;
237 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
239 BinStream
[ bitCnt
++] = invert
;
240 } else if (! waveHigh
) {
241 BinStream
[ bitCnt
++] = invert
^ 1 ;
245 } else if (! bitCnt
) {
247 waveHigh
= ( BinStream
[ i
] >= high
);
251 //transition bit oops
253 } else { //haven't hit new high or new low yet
263 void askAmp ( uint8_t * BitStream
, size_t size
)
266 for ( size_t i
= 1 ; i
< size
; i
++){
267 if ( BitStream
[ i
]- BitStream
[ i
- 1 ]>= 30 ) //large jump up
269 else if ( BitStream
[ i
- 1 ]- BitStream
[ i
]>= 20 ) //large jump down
272 BitStream
[ i
- 1 ] = Last
;
278 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
279 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
281 if (* size
== 0 ) return - 1 ;
282 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
283 if (* clk
== 0 || start
< 0 ) return - 3 ;
284 if (* invert
!= 1 ) * invert
= 0 ;
285 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
286 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
288 uint8_t initLoopMax
= 255 ;
289 if ( initLoopMax
> * size
) initLoopMax
= * size
;
290 // Detect high and lows
291 //25% clip in case highs and lows aren't clipped [marshmellow]
293 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
294 return - 2 ; //just noise
297 // if clean clipped waves detected run alternate demod
298 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
299 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
300 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
301 if ( askType
) //askman
302 return manrawdecode ( BinStream
, size
, 0 );
306 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
308 int lastBit
; //set first clock check - can go negative
309 size_t i
, bitnum
= 0 ; //output counter
311 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
312 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
313 size_t MaxBits
= 3072 ; //max bits to collect
314 lastBit
= start
- * clk
;
316 for ( i
= start
; i
< * size
; ++ i
) {
317 if ( i
- lastBit
>= * clk
- tol
){
318 if ( BinStream
[ i
] >= high
) {
319 BinStream
[ bitnum
++] = * invert
;
320 } else if ( BinStream
[ i
] <= low
) {
321 BinStream
[ bitnum
++] = * invert
^ 1 ;
322 } else if ( i
- lastBit
>= * clk
+ tol
) {
324 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
325 BinStream
[ bitnum
++]= 7 ;
328 } else { //in tolerance - looking for peak
333 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
334 if ( BinStream
[ i
] >= high
) {
335 BinStream
[ bitnum
++] = * invert
;
336 } else if ( BinStream
[ i
] <= low
) {
337 BinStream
[ bitnum
++] = * invert
^ 1 ;
338 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
339 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
341 } else { //in tolerance - looking for peak
346 if ( bitnum
>= MaxBits
) break ;
353 //take 10 and 01 and manchester decode
354 //run through 2 times and take least errCnt
355 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
)
357 uint16_t bitnum
= 0 , MaxBits
= 512 , errCnt
= 0 ;
359 uint16_t bestErr
= 1000 , bestRun
= 0 ;
360 if (* size
< 16 ) return - 1 ;
361 //find correct start position [alignment]
362 for ( ii
= 0 ; ii
< 2 ;++ ii
){
363 for ( i
= ii
; i
<* size
- 3 ; i
+= 2 )
364 if ( BitStream
[ i
]== BitStream
[ i
+ 1 ])
374 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
375 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
376 BitStream
[ bitnum
++]= invert
;
377 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
378 BitStream
[ bitnum
++]= invert
^ 1 ;
380 BitStream
[ bitnum
++]= 7 ;
382 if ( bitnum
> MaxBits
) break ;
388 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
391 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
392 curBit
= ( datain
>> ( 15 - i
) & 1 );
393 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
399 //encode binary data into binary manchester
400 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
402 size_t modIdx
= 20000 , i
= 0 ;
403 if ( size
> modIdx
) return - 1 ;
404 for ( size_t idx
= 0 ; idx
< size
; idx
++){
405 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
406 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
408 for (; i
<( size
* 2 ); i
++){
409 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
415 //take 01 or 10 = 1 and 11 or 00 = 0
416 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
417 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
418 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
423 uint16_t MaxBits
= 512 ;
424 //if not enough samples - error
425 if (* size
< 51 ) return - 1 ;
426 //check for phase change faults - skip one sample if faulty
427 uint8_t offsetA
= 1 , offsetB
= 1 ;
429 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
430 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
432 if (! offsetA
&& offsetB
) offset
++;
433 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
434 //check for phase error
435 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
436 BitStream
[ bitnum
++]= 7 ;
439 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
440 BitStream
[ bitnum
++]= 1 ^ invert
;
441 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
442 BitStream
[ bitnum
++]= invert
;
444 BitStream
[ bitnum
++]= 7 ;
447 if ( bitnum
> MaxBits
) break ;
454 // demod gProxIIDemod
455 // error returns as -x
456 // success returns start position in BitStream
457 // BitStream must contain previously askrawdemod and biphasedemoded data
458 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
461 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
463 uint8_t errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
);
464 if ( errChk
== 0 ) return - 3 ; //preamble not found
465 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
466 //check first 6 spacer bits to verify format
467 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
468 //confirmed proper separator bits found
469 //return start position
470 return ( int ) startIdx
;
472 return - 5 ; //spacer bits not found - not a valid gproxII
475 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
476 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
478 size_t last_transition
= 0 ;
481 if ( fchigh
== 0 ) fchigh
= 10 ;
482 if ( fclow
== 0 ) fclow
= 8 ;
483 //set the threshold close to 0 (graph) or 128 std to avoid static
484 uint8_t threshold_value
= 123 ;
485 size_t preLastSample
= 0 ;
486 size_t LastSample
= 0 ;
487 size_t currSample
= 0 ;
488 // sync to first lo-hi transition, and threshold
490 // Need to threshold first sample
491 // skip 160 samples to allow antenna/samples to settle
492 if ( dest
[ 160 ] < threshold_value
) dest
[ 0 ] = 0 ;
496 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
497 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
498 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
499 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
500 for ( idx
= 161 ; idx
< size
- 20 ; idx
++) {
501 // threshold current value
503 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
506 // Check for 0->1 transition
507 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
508 preLastSample
= LastSample
;
509 LastSample
= currSample
;
510 currSample
= idx
- last_transition
;
511 if ( currSample
< ( fclow
- 2 )) { //0-5 = garbage noise (or 0-3)
512 //do nothing with extra garbage
513 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
514 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
515 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ) || preLastSample
== 0 )){
520 } else if ( currSample
> ( fchigh
) && ! numBits
) { //12 + and first bit = unusable garbage
521 //do nothing with beginning garbage
522 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
524 } else { //9+ = 10 sample waves (or 6+ = 7)
527 last_transition
= idx
;
530 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
533 //translate 11111100000 to 10
534 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
535 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
536 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
538 uint8_t lastval
= dest
[ 0 ];
542 for ( idx
= 1 ; idx
< size
; idx
++) {
544 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
546 //find out how many bits (n) we collected
547 //if lastval was 1, we have a 1->0 crossing
548 if ( dest
[ idx
- 1 ]== 1 ) {
549 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
550 } else { // 0->1 crossing
551 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
555 //add to our destination the bits we collected
556 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
561 // if valid extra bits at the end were all the same frequency - add them in
562 if ( n
> rfLen
/ fchigh
) {
563 if ( dest
[ idx
- 2 ]== 1 ) {
564 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
566 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
568 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
574 //by marshmellow (from holiman's base)
575 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
576 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
579 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
580 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
584 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
585 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
587 if ( justNoise ( dest
, * size
)) return - 1 ;
589 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
591 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
592 if (* size
< 96 * 2 ) return - 2 ;
593 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
594 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
595 // find bitstring in array
596 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
597 if ( errChk
== 0 ) return - 3 ; //preamble not found
599 numStart
= startIdx
+ sizeof ( preamble
);
600 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
601 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
602 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
603 return - 4 ; //not manchester data
605 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
606 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
607 //Then, shift in a 0 or one into low
608 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
613 return ( int ) startIdx
;
616 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
617 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
619 if ( justNoise ( dest
, * size
)) return - 1 ;
621 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
623 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
624 if (* size
< 96 ) return - 2 ;
626 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
627 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
629 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
630 if ( errChk
== 0 ) return - 3 ; //preamble not found
632 numStart
= startIdx
+ sizeof ( preamble
);
633 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
634 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
635 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
636 return - 4 ; //not manchester data
637 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
638 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
639 //Then, shift in a 0 or one into low
640 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
645 return ( int ) startIdx
;
648 int IOdemodFSK ( uint8_t * dest
, size_t size
)
650 if ( justNoise ( dest
, size
)) return - 1 ;
651 //make sure buffer has data
652 if ( size
< 66 * 64 ) return - 2 ;
654 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
655 if ( size
< 65 ) return - 3 ; //did we get a good demod?
657 //0 10 20 30 40 50 60
659 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
660 //-----------------------------------------------------------------------------
661 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
663 //XSF(version)facility:codeone+codetwo
666 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
667 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
);
668 if ( errChk
== 0 ) return - 4 ; //preamble not found
670 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
671 //confirmed proper separator bits found
672 //return start position
673 return ( int ) startIdx
;
679 // find viking preamble 0xF200 in already demoded data
680 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
681 //make sure buffer has data
682 if (* size
< 64 * 2 ) return - 2 ;
685 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
686 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
687 if ( errChk
== 0 ) return - 4 ; //preamble not found
688 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 )
689 ^ bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 )
690 ^ bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
691 if ( checkCalc
!= 0xA8 ) return - 5 ;
692 if (* size
!= 64 ) return - 6 ;
693 //return start position
694 return ( int ) startIdx
;
697 // find presco preamble 0x10D in already demoded data
698 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
699 //make sure buffer has data
700 if (* size
< 64 * 2 ) return - 2 ;
703 uint8_t preamble
[] = { 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
704 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
705 if ( errChk
== 0 ) return - 4 ; //preamble not found
706 //return start position
707 return ( int ) startIdx
;
710 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
711 // BitStream must contain previously askrawdemod and biphasedemoded data
712 int FDXBdemodBI ( uint8_t * dest
, size_t * size
)
714 //make sure buffer has enough data
715 if (* size
< 128 ) return - 1 ;
718 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
720 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
721 if ( errChk
== 0 ) return - 2 ; //preamble not found
722 return ( int ) startIdx
;
726 // FSK Demod then try to locate an AWID ID
727 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
729 //make sure buffer has enough data
730 if (* size
< 96 * 50 ) return - 1 ;
732 if ( justNoise ( dest
, * size
)) return - 2 ;
735 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
736 if (* size
< 96 ) return - 3 ; //did we get a good demod?
738 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
740 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
741 if ( errChk
== 0 ) return - 4 ; //preamble not found
742 if (* size
!= 96 ) return - 5 ;
743 return ( int ) startIdx
;
747 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
748 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
750 //make sure buffer has data
751 if (* size
< 128 * 50 ) return - 5 ;
753 //test samples are not just noise
754 if ( justNoise ( dest
, * size
)) return - 1 ;
757 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
758 if (* size
< 128 ) return - 2 ; //did we get a good demod?
760 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
762 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
763 if ( errChk
== 0 ) return - 4 ; //preamble not found
764 if (* size
!= 128 ) return - 3 ;
765 return ( int ) startIdx
;
769 // to detect a wave that has heavily clipped (clean) samples
770 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
772 bool allArePeaks
= true ;
774 size_t loopEnd
= 512 + 160 ;
775 if ( loopEnd
> size
) loopEnd
= size
;
776 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
777 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
783 if ( cntPeaks
> 300 ) return true ;
788 // to help detect clocks on heavily clipped samples
789 // based on count of low to low
790 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
792 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
796 // get to first full low to prime loop and skip incomplete first pulse
797 while (( dest
[ i
] < high
) && ( i
< size
))
799 while (( dest
[ i
] > low
) && ( i
< size
))
802 // loop through all samples
804 // measure from low to low
805 while (( dest
[ i
] > low
) && ( i
< size
))
808 while (( dest
[ i
] < high
) && ( i
< size
))
810 while (( dest
[ i
] > low
) && ( i
< size
))
812 //get minimum measured distance
813 if ( i
- startwave
< minClk
&& i
< size
)
814 minClk
= i
- startwave
;
817 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
818 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
819 if ( minClk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && minClk
<= fndClk
[ clkCnt
]+ 1 )
820 return fndClk
[ clkCnt
];
826 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
827 // maybe somehow adjust peak trimming value based on samples to fix?
828 // return start index of best starting position for that clock and return clock (by reference)
829 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
832 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
834 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
835 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
836 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
837 //if we already have a valid clock
840 if ( clk
[ i
] == * clock
) clockFnd
= i
;
841 //clock found but continue to find best startpos
843 //get high and low peak
845 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
847 //test for large clean peaks
849 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
850 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
);
851 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d" , ans
);
852 for ( i
= clkEnd
- 1 ; i
> 0 ; i
--){
856 return 0 ; // for strong waves i don't use the 'best start position' yet...
857 //break; //clock found but continue to find best startpos [not yet]
863 uint8_t clkCnt
, tol
= 0 ;
864 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
865 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
867 size_t arrLoc
, loopEnd
;
875 //test each valid clock from smallest to greatest to see which lines up
876 for (; clkCnt
< clkEnd
; clkCnt
++){
877 if ( clk
[ clkCnt
] <= 32 ){
882 //if no errors allowed - keep start within the first clock
883 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 ) loopCnt
= clk
[ clkCnt
]* 2 ;
884 bestErr
[ clkCnt
]= 1000 ;
885 //try lining up the peaks by moving starting point (try first few clocks)
886 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
887 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
890 // now that we have the first one lined up test rest of wave array
891 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
892 for ( i
= 0 ; i
< loopEnd
; ++ i
){
893 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
894 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
895 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
896 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
897 } else { //error no peak detected
901 //if we found no errors then we can stop here and a low clock (common clocks)
902 // this is correct one - return this clock
903 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
904 if ( errCnt
== 0 && clkCnt
< 7 ) {
905 if (! clockFnd
) * clock
= clk
[ clkCnt
];
908 //if we found errors see if it is lowest so far and save it as best run
909 if ( errCnt
< bestErr
[ clkCnt
]){
910 bestErr
[ clkCnt
]= errCnt
;
911 bestStart
[ clkCnt
]= ii
;
917 for ( iii
= 1 ; iii
< clkEnd
; ++ iii
){
918 if ( bestErr
[ iii
] < bestErr
[ best
]){
919 if ( bestErr
[ iii
] == 0 ) bestErr
[ iii
]= 1 ;
920 // current best bit to error ratio vs new bit to error ratio
921 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ iii
])/ bestErr
[ iii
] ){
925 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ iii
], bestErr
[ iii
], clk
[ best
], bestStart
[ best
]);
927 if (! clockFnd
) * clock
= clk
[ best
];
928 return bestStart
[ best
];
932 //detect psk clock by reading each phase shift
933 // a phase shift is determined by measuring the sample length of each wave
934 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
)
936 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
937 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
938 if ( size
== 0 ) return 0 ;
939 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
941 //if we already have a valid clock quit
944 if ( clk
[ i
] == clock
) return clock
;
946 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
947 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
948 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
949 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
950 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
951 fc
= countFC ( dest
, size
, 0 );
952 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
953 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
955 //find first full wave
956 for ( i
= 160 ; i
< loopCnt
; i
++){
957 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
958 if ( waveStart
== 0 ) {
960 //prnt("DEBUG: waveStart: %d",waveStart);
963 //prnt("DEBUG: waveEnd: %d",waveEnd);
964 waveLenCnt
= waveEnd
- waveStart
;
965 if ( waveLenCnt
> fc
){
966 firstFullWave
= waveStart
;
967 fullWaveLen
= waveLenCnt
;
974 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
976 //test each valid clock from greatest to smallest to see which lines up
977 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
978 lastClkBit
= firstFullWave
; //set end of wave as clock align
982 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
984 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
985 //top edge of wave = start of new wave
986 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
987 if ( waveStart
== 0 ) {
992 waveLenCnt
= waveEnd
- waveStart
;
993 if ( waveLenCnt
> fc
){
994 //if this wave is a phase shift
995 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
996 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
998 lastClkBit
+= clk
[ clkCnt
];
999 } else if ( i
< lastClkBit
+ 8 ){
1000 //noise after a phase shift - ignore
1001 } else { //phase shift before supposed to based on clock
1004 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1005 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1014 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
1015 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
1017 //all tested with errors
1018 //return the highest clk with the most peaks found
1020 for ( i
= 7 ; i
>= 1 ; i
--){
1021 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
1024 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1029 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1030 //find shortest transition from high to low
1032 size_t transition1
= 0 ;
1033 int lowestTransition
= 255 ;
1034 bool lastWasHigh
= false ;
1036 //find first valid beginning of a high or low wave
1037 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1039 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1041 lastWasHigh
= ( dest
[ i
] >= peak
);
1043 if ( i
== size
) return 0 ;
1046 for (; i
< size
; i
++) {
1047 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1048 lastWasHigh
= ( dest
[ i
] >= peak
);
1049 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1053 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1054 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1055 return lowestTransition
;
1059 //detect nrz clock by reading #peaks vs no peaks(or errors)
1060 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
)
1063 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1064 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1065 if ( size
== 0 ) return 0 ;
1066 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1067 //if we already have a valid clock quit
1069 if ( clk
[ i
] == clock
) return clock
;
1071 //get high and low peak
1073 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1075 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1079 uint16_t smplCnt
= 0 ;
1080 int16_t peakcnt
= 0 ;
1081 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1082 uint16_t maxPeak
= 255 ;
1083 bool firstpeak
= false ;
1084 //test for large clipped waves
1085 for ( i
= 0 ; i
< loopCnt
; i
++){
1086 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1087 if (! firstpeak
) continue ;
1092 if ( maxPeak
> smplCnt
){
1094 //prnt("maxPk: %d",maxPeak);
1097 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1102 bool errBitHigh
= 0 ;
1104 uint8_t ignoreCnt
= 0 ;
1105 uint8_t ignoreWindow
= 4 ;
1106 bool lastPeakHigh
= 0 ;
1109 //test each valid clock from smallest to greatest to see which lines up
1110 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1111 //ignore clocks smaller than smallest peak
1112 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1113 //try lining up the peaks by moving starting point (try first 256)
1114 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1115 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1119 lastBit
= ii
- clk
[ clkCnt
];
1120 //loop through to see if this start location works
1121 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1122 //if we are at a clock bit
1123 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1125 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1126 //if same peak don't count it
1127 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1130 lastPeakHigh
= ( dest
[ i
] >= peak
);
1133 ignoreCnt
= ignoreWindow
;
1134 lastBit
+= clk
[ clkCnt
];
1135 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1136 lastBit
+= clk
[ clkCnt
];
1138 //else if not a clock bit and no peaks
1139 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1142 if ( errBitHigh
== true ) peakcnt
--;
1147 // else if not a clock bit but we have a peak
1148 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1149 //error bar found no clock...
1153 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1154 peaksdet
[ clkCnt
]= peakcnt
;
1161 for ( iii
= 7 ; iii
> 0 ; iii
--){
1162 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1163 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
1166 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
1169 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
1176 // convert psk1 demod to psk2 demod
1177 // only transition waves are 1s
1178 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
)
1181 uint8_t lastBit
= BitStream
[ 0 ];
1182 for (; i
< size
; i
++){
1183 if ( BitStream
[ i
]== 7 ){
1185 } else if ( lastBit
!= BitStream
[ i
]){
1186 lastBit
= BitStream
[ i
];
1196 // convert psk2 demod to psk1 demod
1197 // from only transition waves are 1s to phase shifts change bit
1198 void psk2TOpsk1 ( uint8_t * BitStream
, size_t size
)
1201 for ( size_t i
= 0 ; i
< size
; i
++){
1202 if ( BitStream
[ i
]== 1 ){
1210 // redesigned by marshmellow adjusted from existing decode functions
1211 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1212 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1214 //26 bit 40134 format (don't know other formats)
1215 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1216 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1217 size_t startidx
= 0 ;
1218 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1219 // if didn't find preamble try again inverting
1220 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1223 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1225 for ( size_t i
= startidx
; i
< * size
; i
++)
1228 return ( int ) startidx
;
1231 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1232 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1233 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1234 if ( justNoise ( dest
, * size
)) return - 1 ;
1235 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1236 if (* clk
== 0 ) return - 2 ;
1237 size_t i
, gLen
= 4096 ;
1238 if ( gLen
>* size
) gLen
= * size
- 20 ;
1240 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1243 //convert wave samples to 1's and 0's
1244 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1245 if ( dest
[ i
] >= high
) bit
= 1 ;
1246 if ( dest
[ i
] <= low
) bit
= 0 ;
1249 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1252 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1253 //if transition detected or large number of same bits - store the passed bits
1254 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1255 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1256 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1265 //detects the bit clock for FSK given the high and low Field Clocks
1266 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1268 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1269 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1270 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1271 uint8_t rfLensFnd
= 0 ;
1272 uint8_t lastFCcnt
= 0 ;
1273 uint16_t fcCounter
= 0 ;
1274 uint16_t rfCounter
= 0 ;
1275 uint8_t firstBitFnd
= 0 ;
1277 if ( size
== 0 ) return 0 ;
1279 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1284 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1285 // prime i to first peak / up transition
1286 for ( i
= 160 ; i
< size
- 20 ; i
++)
1287 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1290 for (; i
< size
- 20 ; i
++){
1294 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1297 // if we got less than the small fc + tolerance then set it to the small fc
1298 if ( fcCounter
< fcLow
+ fcTol
)
1300 else //set it to the large fc
1303 //look for bit clock (rf/xx)
1304 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1305 //not the same size as the last wave - start of new bit sequence
1306 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1307 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1308 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1314 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1315 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1316 rfCnts
[ rfLensFnd
]++;
1317 rfLens
[ rfLensFnd
++] = rfCounter
;
1323 lastFCcnt
= fcCounter
;
1327 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1329 for ( i
= 0 ; i
< 15 ; i
++){
1330 //get highest 2 RF values (might need to get more values to compare or compare all?)
1331 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1332 rfHighest3
= rfHighest2
;
1333 rfHighest2
= rfHighest
;
1335 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1336 rfHighest3
= rfHighest2
;
1338 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1341 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1343 // set allowed clock remainder tolerance to be 1 large field clock length+1
1344 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1345 uint8_t tol1
= fcHigh
+ 1 ;
1347 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1349 // loop to find the highest clock that has a remainder less than the tolerance
1350 // compare samples counted divided by
1351 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1353 for (; ii
>= 2 ; ii
--){
1354 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1355 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1356 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1357 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1364 if ( ii
< 0 ) return 0 ; // oops we went too far
1370 //countFC is to detect the field clock lengths.
1371 //counts and returns the 2 most common wave lengths
1372 //mainly used for FSK field clock detection
1373 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1375 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1376 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1377 uint8_t fcLensFnd
= 0 ;
1378 uint8_t lastFCcnt
= 0 ;
1379 uint8_t fcCounter
= 0 ;
1381 if ( size
< 180 ) return 0 ;
1383 // prime i to first up transition
1384 for ( i
= 160 ; i
< size
- 20 ; i
++)
1385 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1388 for (; i
< size
- 20 ; i
++){
1389 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1390 // new up transition
1393 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1394 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1395 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1396 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1397 // save last field clock count (fc/xx)
1398 lastFCcnt
= fcCounter
;
1400 // find which fcLens to save it to:
1401 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1402 if ( fcLens
[ ii
]== fcCounter
){
1408 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1410 fcCnts
[ fcLensFnd
]++;
1411 fcLens
[ fcLensFnd
++]= fcCounter
;
1420 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1422 // go through fclens and find which ones are bigest 2
1423 for ( i
= 0 ; i
< 15 ; i
++){
1424 // get the 3 best FC values
1425 if ( fcCnts
[ i
]> maxCnt1
) {
1430 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1433 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1436 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1438 if ( fcLens
[ best1
]== 0 ) return 0 ;
1439 uint8_t fcH
= 0 , fcL
= 0 ;
1440 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1447 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1448 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1449 return 0 ; //lots of waves not psk or fsk
1451 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1453 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1454 if ( fskAdj
) return fcs
;
1455 return fcLens
[ best1
];
1458 //by marshmellow - demodulate PSK1 wave
1459 //uses wave lengths (# Samples)
1460 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1462 if ( size
== 0 ) return - 1 ;
1463 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1464 if (* size
< loopCnt
) loopCnt
= * size
;
1467 uint8_t curPhase
= * invert
;
1468 size_t i
, waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1469 uint8_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1470 uint16_t errCnt
= 0 , waveLenCnt
= 0 ;
1471 fc
= countFC ( dest
, * size
, 0 );
1472 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1473 //PrintAndLog("DEBUG: FC: %d",fc);
1474 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1475 if (* clock
== 0 ) return - 1 ;
1476 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1477 //find first phase shift
1478 for ( i
= 0 ; i
< loopCnt
; i
++){
1479 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1481 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1482 waveLenCnt
= waveEnd
- waveStart
;
1483 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 2 )){ //not first peak and is a large wave but not out of whack
1484 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1485 firstFullWave
= waveStart
;
1486 fullWaveLen
= waveLenCnt
;
1487 //if average wave value is > graph 0 then it is an up wave or a 1
1488 if ( lastAvgWaveVal
> 123 ) curPhase
^= 1 ; //fudge graph 0 a little 123 vs 128
1494 avgWaveVal
+= dest
[ i
+ 2 ];
1496 if ( firstFullWave
== 0 ) {
1497 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1498 // so skip a little to ensure we are past any Start Signal
1499 firstFullWave
= 160 ;
1500 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1502 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1505 numBits
+= ( firstFullWave
/ * clock
);
1506 //set start of wave as clock align
1507 lastClkBit
= firstFullWave
;
1508 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1509 if ( g_debugMode
== 2 ) prnt ( "DEBUG: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1511 dest
[ numBits
++] = curPhase
; //set first read bit
1512 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1513 //top edge of wave = start of new wave
1514 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1515 if ( waveStart
== 0 ) {
1518 avgWaveVal
= dest
[ i
+ 1 ];
1521 waveLenCnt
= waveEnd
- waveStart
;
1522 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1523 if ( waveLenCnt
> fc
){
1524 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1525 //this wave is a phase shift
1526 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1527 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1529 dest
[ numBits
++] = curPhase
;
1530 lastClkBit
+= * clock
;
1531 } else if ( i
< lastClkBit
+ 10 + fc
){
1532 //noise after a phase shift - ignore
1533 } else { //phase shift before supposed to based on clock
1535 dest
[ numBits
++] = 7 ;
1537 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1538 lastClkBit
+= * clock
; //no phase shift but clock bit
1539 dest
[ numBits
++] = curPhase
;
1545 avgWaveVal
+= dest
[ i
+ 1 ];
1552 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1553 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1554 size_t bufsize
= * size
;
1555 //need to loop through all samples and identify our clock, look for the ST pattern
1556 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1559 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1560 bool complete
= false ;
1561 int tmpbuff
[ bufsize
/ 32 ]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1562 int waveLen
[ bufsize
/ 32 ]; // if clock is larger then we waste memory in array size that is not needed...
1563 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1566 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1568 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1569 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1570 return false ; //just noise
1575 // get to first full low to prime loop and skip incomplete first pulse
1576 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1578 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1582 // populate tmpbuff buffer with pulse lengths
1583 while ( i
< bufsize
) {
1584 // measure from low to low
1585 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1588 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1590 //first high point for this wave
1592 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1594 if ( j
>= ( bufsize
/ 32 )) {
1597 waveLen
[ j
] = i
- waveStart
; //first high to first low
1598 tmpbuff
[ j
++] = i
- start
;
1599 if ( i
- start
< minClk
&& i
< bufsize
) {
1603 // set clock - might be able to get this externally and remove this work...
1605 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1606 tol
= fndClk
[ clkCnt
]/ 8 ;
1607 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1612 // clock not found - ERROR
1614 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1621 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1623 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1625 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1626 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1627 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1628 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1636 // first ST not found - ERROR
1638 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1641 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at: %d, j=%d" , start
, j
);
1643 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1648 // skip over the remainder of ST
1649 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1651 // now do it again to find the end
1653 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1655 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1656 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1657 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1658 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1667 //didn't find second ST - ERROR
1669 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1672 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1673 //now begin to trim out ST so we can use normal demod cmds
1675 size_t datalen
= end
- start
;
1676 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1677 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1678 // padd the amount off - could be problematic... but shouldn't happen often
1679 datalen
+= clk
- ( datalen
% clk
);
1680 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1681 // padd the amount off - could be problematic... but shouldn't happen often
1682 datalen
-= datalen
% clk
;
1684 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1687 // if datalen is less than one t55xx block - ERROR
1688 if ( datalen
/ clk
< 8 * 4 ) {
1689 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1692 size_t dataloc
= start
;
1693 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1694 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1695 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1696 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1705 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1707 // warning - overwriting buffer given with raw wave data with ST removed...
1708 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1709 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1710 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1711 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1712 buffer
[ dataloc
+ i
] = high
+ 5 ;
1715 for ( i
= 0 ; i
< datalen
; ++ i
) {
1716 if ( i
+ newloc
< bufsize
) {
1717 if ( i
+ newloc
< dataloc
)
1718 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1724 //skip next ST - we just assume it will be there from now on...
1725 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));