]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
fae612060b462392bd4e1e99457b4d40577a2b01
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
18 static const uint8_t THRESHOLD
= 123;
19 //test samples are not just noise
20 uint8_t justNoise1
= 1;
21 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
22 justNoise1
= BitStream
[idx
] < THRESHOLD
;
28 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
29 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
33 // get high and low thresholds
34 for (int i
=0; i
< size
; i
++){
35 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
36 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
38 if (*high
< 123) return -1; // just noise
39 *high
= (int)(((*high
-128)*(((float)fuzzHi
)/100))+128);
40 *low
= (int)(((*low
-128)*(((float)fuzzLo
)/100))+128);
45 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
46 // returns 1 if passed
47 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
50 for (uint8_t i
= 0; i
< bitLen
; i
++){
51 ans
^= ((bits
>> i
) & 1);
53 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
54 return (ans
== pType
);
58 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
59 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
62 for (int idx
=0; idx
< *size
- pLen
; idx
++){
63 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
70 *size
= idx
- *startIdx
;
79 //takes 1s and 0s and searches for EM410x format - output EM ID
80 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
82 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
83 // otherwise could be a void with no arguments
86 if (BitStream
[1]>1){ //allow only 1s and 0s
87 // PrintAndLog("no data found");
90 // 111111111 bit pattern represent start of frame
91 // include 0 in front to help get start pos
92 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
94 uint32_t parityBits
= 0;
98 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
99 if (errChk
== 0 || *size
< 64) return 0;
100 if (*size
> 64) FmtLen
= 22;
101 *startIdx
+= 1; //get rid of 0 from preamble
103 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
104 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
106 if (parityTest(parityBits
, 5, 0) == 0){
110 //set uint64 with ID from BitStream
111 for (uint8_t ii
=0; ii
<4; ii
++){
112 *hi
= (*hi
<< 1) | (*lo
>> 63);
113 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
116 if (errChk
!= 0) return 1;
117 //skip last 5 bit parity test for simplicity.
123 //takes 3 arguments - clock, invert, maxErr as integers
124 //attempts to demodulate ask while decoding manchester
125 //prints binary found and saves in graphbuffer for further commands
126 int askmandemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
)
130 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
131 if (*clk
==0) return -3;
132 if (start
< 0) return -3;
133 // if autodetected too low then adjust //MAY NEED ADJUSTMENT
134 //if (clk2==0 && *clk<8) *clk =64;
135 //if (clk2==0 && *clk<32) *clk=32;
136 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
137 uint32_t initLoopMax
= 200;
138 if (initLoopMax
> *size
) initLoopMax
=*size
;
139 // Detect high and lows
140 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
142 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75);
143 if (ans
<1) return -2; //just noise
145 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
146 int lastBit
= 0; //set first clock check
147 uint32_t bitnum
= 0; //output counter
148 int tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
149 if (*clk
<=32) tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
151 uint32_t gLen
= *size
;
152 if (gLen
> 3000) gLen
=3000;
153 //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
154 if (!maxErr
) gLen
=*clk
*2;
156 uint16_t MaxBits
= 500;
157 uint32_t bestStart
= *size
;
158 int bestErrCnt
= maxErr
+1;
159 // PrintAndLog("DEBUG - lastbit - %d",lastBit);
160 // loop to find first wave that works
161 for (iii
=0; iii
< gLen
; ++iii
){
162 if ((BinStream
[iii
] >= high
) || (BinStream
[iii
] <= low
)){
165 // loop through to see if this start location works
166 for (i
= iii
; i
< *size
; ++i
) {
167 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
169 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
170 //low found and we are expecting a bar
173 //mid value found or no bar supposed to be here
174 if ((i
-lastBit
)>(*clk
+tol
)){
175 //should have hit a high or low based on clock!!
178 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
181 lastBit
+=*clk
;//skip over until hit too many errors
182 if (errCnt
>(maxErr
)) break; //allow 1 error for every 1000 samples else start over
185 if ((i
-iii
) >(MaxBits
* *clk
)) break; //got plenty of bits
187 //we got more than 64 good bits and not all errors
188 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
193 break; //great read - finish
195 if (errCnt
<bestErrCnt
){ //set this as new best run
202 if (bestErrCnt
<=maxErr
){
203 //best run is good enough set to best run and set overwrite BinStream
205 lastBit
= bestStart
- *clk
;
207 for (i
= iii
; i
< *size
; ++i
) {
208 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
210 BinStream
[bitnum
] = *invert
;
212 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
213 //low found and we are expecting a bar
215 BinStream
[bitnum
] = 1-*invert
;
218 //mid value found or no bar supposed to be here
219 if ((i
-lastBit
)>(*clk
+tol
)){
220 //should have hit a high or low based on clock!!
223 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
225 BinStream
[bitnum
]=77;
229 lastBit
+=*clk
;//skip over error
232 if (bitnum
>=MaxBits
) break;
244 //encode binary data into binary manchester
245 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
247 size_t modIdx
=20000, i
=0;
248 if (size
>modIdx
) return -1;
249 for (size_t idx
=0; idx
< size
; idx
++){
250 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
251 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
253 for (; i
<(size
*2); i
++){
254 BitStream
[i
] = BitStream
[i
+20000];
260 //take 10 and 01 and manchester decode
261 //run through 2 times and take least errCnt
262 int manrawdecode(uint8_t * BitStream
, size_t *size
)
264 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
266 uint16_t bestErr
= 1000, bestRun
= 0;
267 if (size
== 0) return -1;
268 for (ii
=0;ii
<2;++ii
){
270 for (i
=i
+ii
;i
<*size
-2;i
+=2){
271 if(BitStream
[i
]==1 && (BitStream
[i
+1]==0)){
272 } else if((BitStream
[i
]==0)&& BitStream
[i
+1]==1){
276 if(bitnum
>MaxBits
) break;
288 for (i
=i
+ii
; i
< *size
-2; i
+=2){
289 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
290 BitStream
[bitnum
++]=0;
291 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
292 BitStream
[bitnum
++]=1;
294 BitStream
[bitnum
++]=77;
297 if(bitnum
>MaxBits
) break;
305 //take 01 or 10 = 1 and 11 or 00 = 0
306 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
307 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
308 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
313 uint16_t MaxBits
=512;
314 //if not enough samples - error
315 if (*size
< 51) return -1;
316 //check for phase change faults - skip one sample if faulty
317 uint8_t offsetA
= 1, offsetB
= 1;
319 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
320 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
322 if (!offsetA
&& offsetB
) offset
++;
323 for (i
=offset
; i
<*size
-3; i
+=2){
324 //check for phase error
325 if (BitStream
[i
+1]==BitStream
[i
+2]) {
326 BitStream
[bitnum
++]=77;
329 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
330 BitStream
[bitnum
++]=1^invert
;
331 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
332 BitStream
[bitnum
++]=invert
;
334 BitStream
[bitnum
++]=77;
337 if(bitnum
>MaxBits
) break;
344 void askAmp(uint8_t *BitStream
, size_t size
)
348 for(int i
= 1; i
<size
; i
++){
349 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
351 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
354 shiftedVal
=BitStream
[i
]+shift
;
358 else if (shiftedVal
<0)
360 BitStream
[i
-1] = shiftedVal
;
365 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
367 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
368 uint8_t waveHigh
= 0;
369 //PrintAndLog("clk: %d", clk);
370 for (size_t i
=0; i
< *size
; i
++){
371 if (BinStream
[i
] >= high
&& waveHigh
){
373 } else if (BinStream
[i
] <= low
&& !waveHigh
){
375 } else { //transition
376 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
377 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
378 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
380 BinStream
[bitCnt
++]=77;
381 } else if (waveHigh
) {
382 BinStream
[bitCnt
++] = invert
;
383 BinStream
[bitCnt
++] = invert
;
384 } else if (!waveHigh
) {
385 BinStream
[bitCnt
++] = invert
^ 1;
386 BinStream
[bitCnt
++] = invert
^ 1;
390 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
392 BinStream
[bitCnt
++] = invert
;
393 } else if (!waveHigh
) {
394 BinStream
[bitCnt
++] = invert
^ 1;
398 } else if (!bitCnt
) {
400 waveHigh
= (BinStream
[i
] >= high
);
404 //transition bit oops
406 } else { //haven't hit new high or new low yet
416 //takes 3 arguments - clock, invert and maxErr as integers
417 //attempts to demodulate ask only
418 int askrawdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
)
421 if (*size
==0) return -1;
422 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
423 if (*clk
==0) return -1;
424 if (start
<0) return -1;
425 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
426 if (amp
==1) askAmp(BinStream
, *size
);
428 uint32_t initLoopMax
= 200;
429 if (initLoopMax
> *size
) initLoopMax
=*size
;
430 // Detect high and lows
431 //25% clip in case highs and lows aren't clipped [marshmellow]
434 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, clip
, clip
);
435 if (ans
<1) return -1; //just noise
437 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
438 //PrintAndLog("Clean");
439 return cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
442 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
443 int lastBit
= 0; //set first clock check
444 uint32_t bitnum
= 0; //output counter
445 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock
446 // if they fall + or - this value + clock from last valid wave
447 if (*clk
== 32) tol
=0; //clock tolerance may not be needed anymore currently set to
448 // + or - 1 but could be increased for poor waves or removed entirely
450 uint32_t gLen
= *size
;
451 if (gLen
> 500) gLen
=500;
452 //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
453 if (!maxErr
) gLen
= *clk
* 2;
455 uint32_t bestStart
= *size
;
456 uint32_t bestErrCnt
= maxErr
; //(*size/1000);
458 uint16_t MaxBits
=1000;
460 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
461 //loop to find first wave that works
462 for (iii
=start
; iii
< gLen
; ++iii
){
463 if ((BinStream
[iii
]>=high
) || (BinStream
[iii
]<=low
)){
466 //loop through to see if this start location works
467 for (i
= iii
; i
< *size
; ++i
) {
468 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
471 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
472 //low found and we are expecting a bar
475 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
478 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
481 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
485 //mid value found or no bar supposed to be here
487 if ((i
-lastBit
)>(*clk
+tol
)){
488 //should have hit a high or low based on clock!!
490 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
493 lastBit
+=*clk
;//skip over until hit too many errors
494 if (errCnt
> maxErr
){
500 if ((i
-iii
)>(MaxBits
* *clk
)) break; //got enough bits
502 //we got more than 64 good bits and not all errors
503 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
508 break; //great read - finish
510 if (errCnt
<bestErrCnt
){ //set this as new best run
517 if (bestErrCnt
<=maxErr
){
518 //best run is good enough - set to best run and overwrite BinStream
520 lastBit
= bestStart
- *clk
;
522 for (i
= iii
; i
< *size
; ++i
) {
523 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
525 BinStream
[bitnum
] = *invert
;
528 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
529 //low found and we are expecting a bar
531 BinStream
[bitnum
] = 1 - *invert
;
534 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
537 BinStream
[bitnum
] = 1 - *invert
;
539 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
542 BinStream
[bitnum
] = *invert
;
544 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
547 if (bitnum
!=0) BinStream
[bitnum
] = BinStream
[bitnum
-1];
551 //mid value found or no bar supposed to be here
552 if ((i
-lastBit
)>(*clk
+tol
)){
553 //should have hit a high or low based on clock!!
556 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
558 BinStream
[bitnum
]=77;
561 lastBit
+=*clk
;//skip over error
564 if (bitnum
>= MaxBits
) break;
575 // demod gProxIIDemod
576 // error returns as -x
577 // success returns start position in BitStream
578 // BitStream must contain previously askrawdemod and biphasedemoded data
579 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
582 uint8_t preamble
[] = {1,1,1,1,1,0};
584 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
585 if (errChk
== 0) return -3; //preamble not found
586 if (*size
!= 96) return -2; //should have found 96 bits
587 //check first 6 spacer bits to verify format
588 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
589 //confirmed proper separator bits found
590 //return start position
591 return (int) startIdx
;
596 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
597 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
599 uint32_t last_transition
= 0;
602 if (fchigh
==0) fchigh
=10;
603 if (fclow
==0) fclow
=8;
604 //set the threshold close to 0 (graph) or 128 std to avoid static
605 uint8_t threshold_value
= 123;
607 // sync to first lo-hi transition, and threshold
609 // Need to threshold first sample
611 if(dest
[0] < threshold_value
) dest
[0] = 0;
615 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
616 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
617 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
618 for(idx
= 1; idx
< size
; idx
++) {
619 // threshold current value
621 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
624 // Check for 0->1 transition
625 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
626 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
627 //do nothing with extra garbage
628 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
630 } else if ((idx
-last_transition
) > (fchigh
+1) && !numBits
) { //12 + and first bit = garbage
631 //do nothing with beginning garbage
632 } else { //9+ = 10 waves
635 last_transition
= idx
;
639 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
642 uint32_t myround2(float f
)
644 if (f
>= 2000) return 2000;//something bad happened
645 return (uint32_t) (f
+ (float)0.5);
648 //translate 11111100000 to 10
649 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
,
650 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
652 uint8_t lastval
=dest
[0];
656 float lowWaves
= (((float)(rfLen
))/((float)fclow
));
657 float highWaves
= (((float)(rfLen
))/((float)fchigh
));
658 for( idx
=1; idx
< size
; idx
++) {
660 if (dest
[idx
]==lastval
) {
665 //if lastval was 1, we have a 1->0 crossing
666 if (dest
[idx
-1]==1) {
667 if (!numBits
&& n
< (uint8_t)lowWaves
) {
672 n
=myround2(((float)n
)/lowWaves
);
673 } else {// 0->1 crossing
674 //test first bitsample too small
675 if (!numBits
&& n
< (uint8_t)highWaves
) {
680 n
= myround2(((float)n
)/highWaves
); //-1 for fudge factor
684 if(n
< maxConsequtiveBits
) //Consecutive
686 if(invert
==0){ //invert bits
687 memset(dest
+numBits
, dest
[idx
-1] , n
);
689 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
697 // if valid extra bits at the end were all the same frequency - add them in
698 if (n
> lowWaves
&& n
> highWaves
) {
699 if (dest
[idx
-2]==1) {
700 n
=myround2((float)(n
+1)/((float)(rfLen
)/(float)fclow
));
702 n
=myround2((float)(n
+1)/((float)(rfLen
-1)/(float)fchigh
)); //-1 for fudge factor
704 memset(dest
, dest
[idx
-1]^invert
, n
);
709 //by marshmellow (from holiman's base)
710 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
711 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
714 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
715 size
= aggregate_bits(dest
, size
, rfLen
, 192, invert
, fchigh
, fclow
);
719 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
720 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
722 if (justNoise(dest
, *size
)) return -1;
724 size_t numStart
=0, size2
=*size
, startIdx
=0;
726 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
727 if (*size
< 96) return -2;
728 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
729 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
730 // find bitstring in array
731 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
732 if (errChk
== 0) return -3; //preamble not found
734 numStart
= startIdx
+ sizeof(preamble
);
735 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
736 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
737 if (dest
[idx
] == dest
[idx
+1]){
738 return -4; //not manchester data
740 *hi2
= (*hi2
<<1)|(*hi
>>31);
741 *hi
= (*hi
<<1)|(*lo
>>31);
742 //Then, shift in a 0 or one into low
743 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
748 return (int)startIdx
;
751 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
752 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
754 if (justNoise(dest
, *size
)) return -1;
756 size_t numStart
=0, size2
=*size
, startIdx
=0;
758 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
759 if (*size
< 96) return -2;
761 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
762 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
764 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
765 if (errChk
== 0) return -3; //preamble not found
767 numStart
= startIdx
+ sizeof(preamble
);
768 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
769 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
770 if (dest
[idx
] == dest
[idx
+1])
771 return -4; //not manchester data
772 *hi2
= (*hi2
<<1)|(*hi
>>31);
773 *hi
= (*hi
<<1)|(*lo
>>31);
774 //Then, shift in a 0 or one into low
775 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
780 return (int)startIdx
;
783 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
786 for(int i
= 0 ; i
< numbits
; i
++)
788 num
= (num
<< 1) | (*src
);
794 int IOdemodFSK(uint8_t *dest
, size_t size
)
796 if (justNoise(dest
, size
)) return -1;
797 //make sure buffer has data
798 if (size
< 66*64) return -2;
800 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
801 if (size
< 65) return -3; //did we get a good demod?
803 //0 10 20 30 40 50 60
805 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
806 //-----------------------------------------------------------------------------
807 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
809 //XSF(version)facility:codeone+codetwo
812 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
813 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
814 if (errChk
== 0) return -4; //preamble not found
816 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
817 //confirmed proper separator bits found
818 //return start position
819 return (int) startIdx
;
825 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
826 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
827 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
829 uint32_t parityWd
= 0;
830 size_t j
= 0, bitCnt
= 0;
831 for (int word
= 0; word
< (bLen
); word
+=pLen
){
832 for (int bit
=0; bit
< pLen
; bit
++){
833 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
834 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
837 // if parity fails then return 0
838 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
842 // if we got here then all the parities passed
843 //return ID start index and size
848 // FSK Demod then try to locate an AWID ID
849 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
851 //make sure buffer has enough data
852 if (*size
< 96*50) return -1;
854 if (justNoise(dest
, *size
)) return -2;
857 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
858 if (*size
< 96) return -3; //did we get a good demod?
860 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
862 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
863 if (errChk
== 0) return -4; //preamble not found
864 if (*size
!= 96) return -5;
865 return (int)startIdx
;
869 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
870 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
872 //make sure buffer has data
873 if (*size
< 128*50) return -5;
875 //test samples are not just noise
876 if (justNoise(dest
, *size
)) return -1;
879 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
880 if (*size
< 128) return -2; //did we get a good demod?
882 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
884 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
885 if (errChk
== 0) return -4; //preamble not found
886 if (*size
!= 128) return -3;
887 return (int)startIdx
;
891 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, int high
, int low
)
895 size_t loopEnd
= 572;
896 if (loopEnd
> size
) loopEnd
= size
;
897 for (size_t i
=60; i
<loopEnd
; i
++){
898 if (dest
[i
]>low
&& dest
[i
]<high
)
904 if (cntPeaks
> 300) return 1;
909 int DetectStrongAskClock(uint8_t dest
[], size_t size
)
911 int clk
[]={0,8,16,32,40,50,64,100,128,256};
917 for (;idx
< size
; idx
++){
922 if (highCnt
!= 0) highCnt2
= highCnt
;
924 } else if (cnt
> highCnt2
) {
931 } else if (dest
[idx
] <= 128){
935 if (highCnt
!= 0) highCnt2
= highCnt
;
937 } else if (cnt
> highCnt2
) {
947 for (idx
=8; idx
>0; idx
--){
949 if (clk
[idx
] >= highCnt
- tol
&& clk
[idx
] <= highCnt
+ tol
)
951 if (clk
[idx
] >= highCnt2
- tol
&& clk
[idx
] <= highCnt2
+ tol
)
958 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
959 // maybe somehow adjust peak trimming value based on samples to fix?
960 // return start index of best starting position for that clock and return clock (by reference)
961 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
964 int clk
[]={8,16,32,40,50,64,100,128,256};
965 int loopCnt
= 256; //don't need to loop through entire array...
966 if (size
== 0) return -1;
967 if (size
<loopCnt
) loopCnt
= size
;
968 //if we already have a valid clock quit
971 if (clk
[i
] == *clock
) return 0;
973 //get high and low peak
975 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
977 //test for large clean peaks
978 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
979 int ans
= DetectStrongAskClock(dest
, size
);
990 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
991 int bestStart
[]={0,0,0,0,0,0,0,0,0};
993 //test each valid clock from smallest to greatest to see which lines up
994 for(clkCnt
=0; clkCnt
< 8; clkCnt
++){
995 if (clk
[clkCnt
] == 32){
1000 if (!maxErr
) loopCnt
=clk
[clkCnt
]*2;
1001 bestErr
[clkCnt
]=1000;
1002 //try lining up the peaks by moving starting point (try first 256)
1003 for (ii
=0; ii
< loopCnt
; ii
++){
1004 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1006 // now that we have the first one lined up test rest of wave array
1007 for (i
=0; i
<((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
1008 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
1009 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
1010 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
1011 }else{ //error no peak detected
1015 //if we found no errors then we can stop here
1016 // this is correct one - return this clock
1017 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
1018 if(errCnt
==0 && clkCnt
<6) {
1019 *clock
= clk
[clkCnt
];
1022 //if we found errors see if it is lowest so far and save it as best run
1023 if(errCnt
<bestErr
[clkCnt
]){
1024 bestErr
[clkCnt
]=errCnt
;
1025 bestStart
[clkCnt
]=ii
;
1032 for (iii
=0; iii
<8; ++iii
){
1033 if (bestErr
[iii
]<bestErr
[best
]){
1034 if (bestErr
[iii
]==0) bestErr
[iii
]=1;
1035 // current best bit to error ratio vs new bit to error ratio
1036 if (((size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
]) ){
1041 if (bestErr
[best
]>maxErr
) return -1;
1043 return bestStart
[best
];
1047 //detect psk clock by reading each phase shift
1048 // a phase shift is determined by measuring the sample length of each wave
1049 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
1051 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
1052 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1053 if (size
== 0) return 0;
1054 if (size
<loopCnt
) loopCnt
= size
;
1056 //if we already have a valid clock quit
1059 if (clk
[i
] == clock
) return clock
;
1061 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1062 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
1063 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
1064 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
1065 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
1066 countFC(dest
, size
, &fc
);
1067 //PrintAndLog("DEBUG: FC: %d",fc);
1069 //find first full wave
1070 for (i
=0; i
<loopCnt
; i
++){
1071 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1072 if (waveStart
== 0) {
1074 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
1077 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1078 waveLenCnt
= waveEnd
-waveStart
;
1079 if (waveLenCnt
> fc
){
1080 firstFullWave
= waveStart
;
1081 fullWaveLen
=waveLenCnt
;
1088 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1090 //test each valid clock from greatest to smallest to see which lines up
1091 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
1092 lastClkBit
= firstFullWave
; //set end of wave as clock align
1096 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1098 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
1099 //top edge of wave = start of new wave
1100 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1101 if (waveStart
== 0) {
1106 waveLenCnt
= waveEnd
-waveStart
;
1107 if (waveLenCnt
> fc
){
1108 //if this wave is a phase shift
1109 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
1110 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
1112 lastClkBit
+=clk
[clkCnt
];
1113 } else if (i
<lastClkBit
+8){
1114 //noise after a phase shift - ignore
1115 } else { //phase shift before supposed to based on clock
1118 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
1119 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
1128 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
1129 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
1131 //all tested with errors
1132 //return the highest clk with the most peaks found
1134 for (i
=7; i
>=1; i
--){
1135 if (peaksdet
[i
] > peaksdet
[best
]) {
1138 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1144 //detect nrz clock by reading #peaks vs no peaks(or errors)
1145 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1148 int clk
[]={8,16,32,40,50,64,100,128,256};
1149 int loopCnt
= 4096; //don't need to loop through entire array...
1150 if (size
== 0) return 0;
1151 if (size
<loopCnt
) loopCnt
= size
;
1153 //if we already have a valid clock quit
1155 if (clk
[i
] == clock
) return clock
;
1157 //get high and low peak
1159 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
1161 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
1166 int peaksdet
[]={0,0,0,0,0,0,0,0};
1168 //test for large clipped waves
1169 for (i
=0; i
<loopCnt
; i
++){
1170 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1173 if (peakcnt
>0 && maxPeak
< peakcnt
){
1180 //test each valid clock from smallest to greatest to see which lines up
1181 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1182 //ignore clocks smaller than largest peak
1183 if (clk
[clkCnt
]<maxPeak
) continue;
1185 //try lining up the peaks by moving starting point (try first 256)
1186 for (ii
=0; ii
< loopCnt
; ++ii
){
1187 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1189 // now that we have the first one lined up test rest of wave array
1190 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
1191 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
1195 if(peakcnt
>peaksdet
[clkCnt
]) {
1196 peaksdet
[clkCnt
]=peakcnt
;
1203 for (iii
=7; iii
> 0; iii
--){
1204 if (peaksdet
[iii
] > peaksdet
[best
]){
1207 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1213 // convert psk1 demod to psk2 demod
1214 // only transition waves are 1s
1215 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1218 uint8_t lastBit
=BitStream
[0];
1219 for (; i
<size
; i
++){
1220 if (BitStream
[i
]==77){
1222 } else if (lastBit
!=BitStream
[i
]){
1223 lastBit
=BitStream
[i
];
1233 // convert psk2 demod to psk1 demod
1234 // from only transition waves are 1s to phase shifts change bit
1235 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1238 for (size_t i
=0; i
<size
; i
++){
1239 if (BitStream
[i
]==1){
1247 // redesigned by marshmellow adjusted from existing decode functions
1248 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1249 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1251 //26 bit 40134 format (don't know other formats)
1253 int long_wait
=29;//29 leading zeros in format
1259 // Finding the start of a UID
1260 for (start
= 0; start
<= *size
- 250; start
++) {
1261 first
= bitStream
[start
];
1262 for (i
= start
; i
< start
+ long_wait
; i
++) {
1263 if (bitStream
[i
] != first
) {
1267 if (i
== (start
+ long_wait
)) {
1271 if (start
== *size
- 250 + 1) {
1272 // did not find start sequence
1275 // Inverting signal if needed
1277 for (i
= start
; i
< *size
; i
++) {
1278 bitStream
[i
] = !bitStream
[i
];
1284 //found start once now test length by finding next one
1285 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
1286 first2
= bitStream
[ii
];
1287 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1288 if (bitStream
[iii
] != first2
) {
1292 if (iii
== (ii
+ long_wait
)) {
1296 if (ii
== *size
- 250 + 1){
1297 // did not find second start sequence
1304 for (ii
= 0; ii
< bitCnt
; ii
++) {
1305 bitStream
[ii
] = bitStream
[i
++];
1311 // by marshmellow - demodulate NRZ wave (both similar enough)
1312 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1313 // there probably is a much simpler way to do this....
1314 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int maxErr
)
1316 if (justNoise(dest
, *size
)) return -1;
1317 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1318 if (*clk
==0) return -2;
1320 uint32_t gLen
= 4096;
1321 if (gLen
>*size
) gLen
= *size
;
1323 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1324 int lastBit
= 0; //set first clock check
1325 uint32_t bitnum
= 0; //output counter
1326 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1329 uint16_t MaxBits
= 1000;
1330 uint32_t bestErrCnt
= maxErr
+1;
1331 uint32_t bestPeakCnt
= 0;
1332 uint32_t bestPeakStart
=0;
1333 uint8_t bestFirstPeakHigh
=0;
1334 uint8_t firstPeakHigh
=0;
1337 uint8_t errBitHigh
=0;
1339 uint8_t ignoreWindow
=4;
1340 uint8_t ignoreCnt
=ignoreWindow
; //in case of noice near peak
1341 //loop to find first wave that works - align to clock
1342 for (iii
=0; iii
< gLen
; ++iii
){
1343 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1344 if (dest
[iii
]>=high
) firstPeakHigh
=1;
1345 else firstPeakHigh
=0;
1350 //loop through to see if this start location works
1351 for (i
= iii
; i
< *size
; ++i
) {
1352 //if we found a high bar and we are at a clock bit
1353 if ((dest
[i
]>=high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1359 ignoreCnt
=ignoreWindow
;
1360 //else if low bar found and we are at a clock point
1361 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1367 ignoreCnt
=ignoreWindow
;
1368 //else if no bars found
1369 }else if(dest
[i
] < high
&& dest
[i
] > low
) {
1379 //if we are past a clock point
1380 if (i
>= lastBit
+*clk
+tol
){ //clock val
1384 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1385 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (i
<lastBit
+*clk
-tol
|| i
>lastBit
+*clk
+tol
) && (bitHigh
==0)){
1386 //error bar found no clock...
1389 if (bitnum
>=MaxBits
) break;
1391 //we got more than 64 good bits and not all errors
1392 if (bitnum
> (64) && (errCnt
<= (maxErr
))) {
1393 //possible good read
1396 bestFirstPeakHigh
=firstPeakHigh
;
1397 bestErrCnt
= errCnt
;
1398 bestPeakCnt
= peakCnt
;
1399 bestPeakStart
= iii
;
1400 break; //great read - finish
1402 if (errCnt
< bestErrCnt
){ //set this as new best run
1403 bestErrCnt
= errCnt
;
1406 if (peakCnt
> bestPeakCnt
){
1407 bestFirstPeakHigh
=firstPeakHigh
;
1408 bestPeakCnt
=peakCnt
;
1414 //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
1415 if (bestErrCnt
<= maxErr
){
1416 //best run is good enough set to best run and set overwrite BinStream
1418 lastBit
=bestPeakStart
-*clk
;
1420 memset(dest
, bestFirstPeakHigh
^1, bestPeakStart
/ *clk
);
1421 bitnum
+= (bestPeakStart
/ *clk
);
1422 for (i
= iii
; i
< *size
; ++i
) {
1423 //if we found a high bar and we are at a clock bit
1424 if ((dest
[i
] >= high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1428 dest
[bitnum
]=curBit
;
1431 ignoreCnt
=ignoreWindow
;
1432 //else if low bar found and we are at a clock point
1433 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1437 dest
[bitnum
]=curBit
;
1440 ignoreCnt
=ignoreWindow
;
1441 //else if no bars found
1442 }else if(dest
[i
]<high
&& dest
[i
]>low
) {
1445 //if peak is done was it an error peak?
1455 //if we are past a clock point
1456 if (i
>=lastBit
+*clk
+tol
){ //clock val
1458 dest
[bitnum
]=curBit
;
1461 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1462 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && ((i
<lastBit
+*clk
-tol
) || (i
>lastBit
+*clk
+tol
)) && (bitHigh
==0)){
1463 //error bar found no clock...
1466 if (bitnum
>= MaxBits
) break;
1481 //detects the bit clock for FSK given the high and low Field Clocks
1482 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1484 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1485 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1486 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1487 uint8_t rfLensFnd
= 0;
1488 uint8_t lastFCcnt
=0;
1489 uint32_t fcCounter
= 0;
1490 uint16_t rfCounter
= 0;
1491 uint8_t firstBitFnd
= 0;
1493 if (size
== 0) return 0;
1495 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1500 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1501 // prime i to first up transition
1502 for (i
= 1; i
< size
-1; i
++)
1503 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1506 for (; i
< size
-1; i
++){
1507 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1]){
1511 // if we got less than the small fc + tolerance then set it to the small fc
1512 if (fcCounter
< fcLow
+fcTol
)
1514 else //set it to the large fc
1517 //look for bit clock (rf/xx)
1518 if ((fcCounter
<lastFCcnt
|| fcCounter
>lastFCcnt
)){
1519 //not the same size as the last wave - start of new bit sequence
1521 if (firstBitFnd
>1){ //skip first wave change - probably not a complete bit
1522 for (int ii
=0; ii
<15; ii
++){
1523 if (rfLens
[ii
]==rfCounter
){
1529 if (rfCounter
>0 && rfLensFnd
<15){
1530 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1531 rfCnts
[rfLensFnd
]++;
1532 rfLens
[rfLensFnd
++]=rfCounter
;
1538 lastFCcnt
=fcCounter
;
1547 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1549 for (i
=0; i
<15; i
++){
1550 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1551 //get highest 2 RF values (might need to get more values to compare or compare all?)
1552 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1553 rfHighest3
=rfHighest2
;
1554 rfHighest2
=rfHighest
;
1556 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1557 rfHighest3
=rfHighest2
;
1559 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1563 // set allowed clock remainder tolerance to be 1 large field clock length+1
1564 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1565 uint8_t tol1
= fcHigh
+1;
1567 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1569 // loop to find the highest clock that has a remainder less than the tolerance
1570 // compare samples counted divided by
1572 for (; ii
>=0; ii
--){
1573 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1574 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1575 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1582 if (ii
<0) return 0; // oops we went too far
1588 //countFC is to detect the field clock lengths.
1589 //counts and returns the 2 most common wave lengths
1590 //mainly used for FSK field clock detection
1591 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t *mostFC
)
1593 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1594 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1595 uint8_t fcLensFnd
= 0;
1596 uint8_t lastFCcnt
=0;
1597 uint32_t fcCounter
= 0;
1599 if (size
== 0) return 0;
1601 // prime i to first up transition
1602 for (i
= 1; i
< size
-1; i
++)
1603 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1606 for (; i
< size
-1; i
++){
1607 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1608 // new up transition
1611 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1612 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1613 //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
1614 if ((fcCounter
==9 && fcCounter
& 1) || fcCounter
==4) fcCounter
++;
1616 // save last field clock count (fc/xx)
1617 // find which fcLens to save it to:
1618 for (int ii
=0; ii
<10; ii
++){
1619 if (fcLens
[ii
]==fcCounter
){
1625 if (fcCounter
>0 && fcLensFnd
<10){
1627 fcCnts
[fcLensFnd
]++;
1628 fcLens
[fcLensFnd
++]=fcCounter
;
1637 uint8_t best1
=9, best2
=9, best3
=9;
1639 // go through fclens and find which ones are bigest 2
1640 for (i
=0; i
<10; i
++){
1641 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1642 // get the 3 best FC values
1643 if (fcCnts
[i
]>maxCnt1
) {
1648 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1651 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1655 uint8_t fcH
=0, fcL
=0;
1656 if (fcLens
[best1
]>fcLens
[best2
]){
1664 *mostFC
=fcLens
[best1
];
1665 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1667 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1668 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
1674 //countPSK_FC is to detect the psk carrier clock length.
1675 //counts and returns the 1 most common wave length
1676 uint8_t countPSK_FC(uint8_t *BitStream
, size_t size
)
1678 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1679 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1680 uint8_t fcLensFnd
= 0;
1681 uint32_t fcCounter
= 0;
1683 if (size
== 0) return 0;
1685 // prime i to first up transition
1686 for (i
= 1; i
< size
-1; i
++)
1687 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1690 for (; i
< size
-1; i
++){
1691 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1692 // new up transition
1695 // save last field clock count (fc/xx)
1696 // find which fcLens to save it to:
1697 for (int ii
=0; ii
<10; ii
++){
1698 if (fcLens
[ii
]==fcCounter
){
1704 if (fcCounter
>0 && fcLensFnd
<10){
1706 fcCnts
[fcLensFnd
]++;
1707 fcLens
[fcLensFnd
++]=fcCounter
;
1718 // go through fclens and find which ones are bigest
1719 for (i
=0; i
<10; i
++){
1720 //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
1721 // get the best FC value
1722 if (fcCnts
[i
]>maxCnt1
) {
1727 return fcLens
[best1
];
1730 //by marshmellow - demodulate PSK1 wave
1731 //uses wave lengths (# Samples)
1732 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1734 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1735 if (size
== 0) return -1;
1736 if (*size
<loopCnt
) loopCnt
= *size
;
1738 uint8_t curPhase
= *invert
;
1739 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1740 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1741 uint16_t errCnt
=0, waveLenCnt
=0;
1742 fc
= countPSK_FC(dest
, *size
);
1743 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1744 //PrintAndLog("DEBUG: FC: %d",fc);
1745 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1746 if (*clock
==0) return -1;
1747 int avgWaveVal
=0, lastAvgWaveVal
=0;
1748 //find first phase shift
1749 for (i
=0; i
<loopCnt
; i
++){
1750 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1752 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1753 waveLenCnt
= waveEnd
-waveStart
;
1754 if (waveLenCnt
> fc
&& waveStart
> fc
){ //not first peak and is a large wave
1755 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1756 firstFullWave
= waveStart
;
1757 fullWaveLen
=waveLenCnt
;
1758 //if average wave value is > graph 0 then it is an up wave or a 1
1759 if (lastAvgWaveVal
> 123) curPhase
^=1; //fudge graph 0 a little 123 vs 128
1765 avgWaveVal
+=dest
[i
+2];
1767 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1768 lastClkBit
= firstFullWave
; //set start of wave as clock align
1769 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1774 memset(dest
,curPhase
^1,firstFullWave
/ *clock
);
1775 numBits
+= (firstFullWave
/ *clock
);
1776 dest
[numBits
++] = curPhase
; //set first read bit
1777 for (i
= firstFullWave
+fullWaveLen
-1; i
< *size
-3; i
++){
1778 //top edge of wave = start of new wave
1779 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1780 if (waveStart
== 0) {
1783 avgWaveVal
= dest
[i
+1];
1786 waveLenCnt
= waveEnd
-waveStart
;
1787 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1788 if (waveLenCnt
> fc
){
1789 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1790 //if this wave is a phase shift
1791 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1792 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1794 dest
[numBits
++] = curPhase
;
1795 lastClkBit
+= *clock
;
1796 } else if (i
<lastClkBit
+10+fc
){
1797 //noise after a phase shift - ignore
1798 } else { //phase shift before supposed to based on clock
1800 dest
[numBits
++] = 77;
1802 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1803 lastClkBit
+= *clock
; //no phase shift but clock bit
1804 dest
[numBits
++] = curPhase
;
1810 avgWaveVal
+=dest
[i
+1];