fee55c926ed87c412fbb9b4e95abf084eeeb11e3
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
15 //to allow debug print calls when used not on device
16 void dummy(char *fmt
, ...){}
20 #include "cmdparser.h"
22 #define prnt PrintAndLog
24 uint8_t g_debugMode
=0;
28 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
30 static const uint8_t THRESHOLD
= 123;
31 //test samples are not just noise
32 uint8_t justNoise1
= 1;
33 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
34 justNoise1
= BitStream
[idx
] < THRESHOLD
;
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
45 // get high and low thresholds
46 for (size_t i
=0; i
< size
; i
++){
47 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
48 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
50 if (*high
< 123) return -1; // just noise
51 *high
= ((*high
-128)*fuzzHi
+ 12800)/100;
52 *low
= ((*low
-128)*fuzzLo
+ 12800)/100;
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
62 for (uint8_t i
= 0; i
< bitLen
; i
++){
63 ans
^= ((bits
>> i
) & 1);
65 if (g_debugMode
) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans
,pType
,bits
);
66 return (ans
== pType
);
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
74 uint32_t parityWd
= 0;
75 size_t j
= 0, bitCnt
= 0;
76 for (int word
= 0; word
< (bLen
); word
+=pLen
) {
77 for (int bit
=0; bit
< pLen
; bit
++) {
78 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
79 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
81 if (word
+pLen
> bLen
) break;
83 j
--; // overwrite parity with next data
84 // if parity fails then return 0
86 case 3: if (BitStream
[j
]==1) {return 0;} break; //should be 0 spacer bit
87 case 2: if (BitStream
[j
]==0) {return 0;} break; //should be 1 spacer bit
88 default: if (parityTest(parityWd
, pLen
, pType
) == 0) {return 0;} break; //test parity
93 // if we got here then all the parities passed
94 //return ID start index and size
99 // takes a array of binary values, length of bits per parity (includes parity bit),
100 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
101 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
102 size_t addParity(uint8_t *BitSource
, uint8_t *dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
104 uint32_t parityWd
= 0;
105 size_t j
= 0, bitCnt
= 0;
106 for (int word
= 0; word
< sourceLen
; word
+=pLen
-1) {
107 for (int bit
=0; bit
< pLen
-1; bit
++){
108 parityWd
= (parityWd
<< 1) | BitSource
[word
+bit
];
109 dest
[j
++] = (BitSource
[word
+bit
]);
111 // if parity fails then return 0
113 case 3: dest
[j
++]=0; break; // marker bit which should be a 0
114 case 2: dest
[j
++]=1; break; // marker bit which should be a 1
116 dest
[j
++] = parityTest(parityWd
, pLen
-1, pType
) ^ 1;
122 // if we got here then all the parities passed
123 //return ID start index and size
127 uint32_t bytebits_to_byte(uint8_t *src
, size_t numbits
)
130 for(int i
= 0 ; i
< numbits
; i
++)
132 num
= (num
<< 1) | (*src
);
138 //least significant bit first
139 uint32_t bytebits_to_byteLSBF(uint8_t *src
, size_t numbits
)
142 for(int i
= 0 ; i
< numbits
; i
++)
144 num
= (num
<< 1) | *(src
+ (numbits
-(i
+1)));
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
153 return (preambleSearchEx(BitStream
, preamble
, pLen
, size
, startIdx
, false)) ? 1 : 0;
156 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone
157 // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
158 bool preambleSearchEx(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
, bool findone
) {
159 // Sanity check. If preamble length is bigger than bitstream length.
160 if ( *size
<= pLen
) return false;
162 uint8_t foundCnt
= 0;
163 for (size_t idx
= 0; idx
< *size
- pLen
; idx
++) {
164 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0) {
168 if (g_debugMode
) prnt("DEBUG: preamble found at %u", idx
);
170 if (findone
) return true;
171 } else if (foundCnt
== 2) {
172 *size
= idx
- *startIdx
;
180 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
181 size_t findModStart(uint8_t dest
[], size_t size
, uint8_t threshold_value
, uint8_t expWaveSize
) {
183 size_t waveSizeCnt
= 0;
184 uint8_t thresholdCnt
= 0;
185 bool isAboveThreshold
= dest
[i
++] >= threshold_value
;
186 for (; i
< size
-20; i
++ ) {
187 if(dest
[i
] < threshold_value
&& isAboveThreshold
) {
189 if (thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+1) break;
190 isAboveThreshold
= false;
192 } else if (dest
[i
] >= threshold_value
&& !isAboveThreshold
) {
194 if (thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+1) break;
195 isAboveThreshold
= true;
200 if (thresholdCnt
> 10) break;
202 if (g_debugMode
== 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i
, thresholdCnt
);
207 //takes 1s and 0s and searches for EM410x format - output EM ID
208 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
211 if (*size
< 64) return 0;
212 if (BitStream
[1]>1) return 0; //allow only 1s and 0s
214 // 111111111 bit pattern represent start of frame
215 // include 0 in front to help get start pos
216 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
218 uint8_t FmtLen
= 10; // sets of 4 bits = end data
220 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
221 if ( errChk
== 0 || (*size
!= 64 && *size
!= 128) ) return 0;
222 if (*size
== 128) FmtLen
= 22; // 22 sets of 4 bits
224 //skip last 4bit parity row for simplicity
225 *size
= removeParity(BitStream
, *startIdx
+ sizeof(preamble
), 5, 0, FmtLen
* 5);
226 if (*size
== 40) { // std em410x format
228 *lo
= ((uint64_t)(bytebits_to_byte(BitStream
, 8)) << 32) | (bytebits_to_byte(BitStream
+ 8, 32));
229 } else if (*size
== 88) { // long em format
230 *hi
= (bytebits_to_byte(BitStream
, 24));
231 *lo
= ((uint64_t)(bytebits_to_byte(BitStream
+ 24, 32)) << 32) | (bytebits_to_byte(BitStream
+ 24 + 32, 32));
239 //demodulates strong heavily clipped samples
240 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
242 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
243 uint8_t waveHigh
= 0;
244 for (size_t i
=0; i
< *size
; i
++){
245 if (BinStream
[i
] >= high
&& waveHigh
){
247 } else if (BinStream
[i
] <= low
&& !waveHigh
){
249 } else { //transition
250 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
251 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
252 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
254 if (g_debugMode
==2) prnt("DEBUG ASK: Modulation Error at: %u", i
);
255 BinStream
[bitCnt
++]=7;
256 } else if (waveHigh
) {
257 BinStream
[bitCnt
++] = invert
;
258 BinStream
[bitCnt
++] = invert
;
259 } else if (!waveHigh
) {
260 BinStream
[bitCnt
++] = invert
^ 1;
261 BinStream
[bitCnt
++] = invert
^ 1;
265 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
267 BinStream
[bitCnt
++] = invert
;
268 } else if (!waveHigh
) {
269 BinStream
[bitCnt
++] = invert
^ 1;
273 } else if (!bitCnt
) {
275 waveHigh
= (BinStream
[i
] >= high
);
279 //transition bit oops
281 } else { //haven't hit new high or new low yet
291 //amplify based on ask edge detection
292 void askAmp(uint8_t *BitStream
, size_t size
)
295 for(size_t i
= 1; i
<size
; i
++){
296 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
298 else if(BitStream
[i
-1]-BitStream
[i
]>=20) //large jump down
301 BitStream
[i
-1] = Last
;
307 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
308 int askdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
310 if (*size
==0) return -1;
311 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
312 if (*clk
==0 || start
< 0) return -3;
313 if (*invert
!= 1) *invert
= 0;
314 if (amp
==1) askAmp(BinStream
, *size
);
315 if (g_debugMode
==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk
, start
, amp
);
317 uint8_t initLoopMax
= 255;
318 if (initLoopMax
> *size
) initLoopMax
= *size
;
319 // Detect high and lows
320 //25% clip in case highs and lows aren't clipped [marshmellow]
322 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
323 return -2; //just noise
326 // if clean clipped waves detected run alternate demod
327 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
328 if (g_debugMode
==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
329 errCnt
= cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
330 if (askType
) //askman
331 return manrawdecode(BinStream
, size
, 0);
335 if (g_debugMode
==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
337 int lastBit
; //set first clock check - can go negative
338 size_t i
, bitnum
= 0; //output counter
340 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
341 if (*clk
<= 32) tol
= 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
342 size_t MaxBits
= 3072; //max bits to collect
343 lastBit
= start
- *clk
;
345 for (i
= start
; i
< *size
; ++i
) {
346 if (i
-lastBit
>= *clk
-tol
){
347 if (BinStream
[i
] >= high
) {
348 BinStream
[bitnum
++] = *invert
;
349 } else if (BinStream
[i
] <= low
) {
350 BinStream
[bitnum
++] = *invert
^ 1;
351 } else if (i
-lastBit
>= *clk
+tol
) {
353 if (g_debugMode
==2) prnt("DEBUG ASK: Modulation Error at: %u", i
);
354 BinStream
[bitnum
++]=7;
357 } else { //in tolerance - looking for peak
362 } else if (i
-lastBit
>= (*clk
/2-tol
) && !midBit
&& !askType
){
363 if (BinStream
[i
] >= high
) {
364 BinStream
[bitnum
++] = *invert
;
365 } else if (BinStream
[i
] <= low
) {
366 BinStream
[bitnum
++] = *invert
^ 1;
367 } else if (i
-lastBit
>= *clk
/2+tol
) {
368 BinStream
[bitnum
] = BinStream
[bitnum
-1];
370 } else { //in tolerance - looking for peak
375 if (bitnum
>= MaxBits
) break;
382 //take 10 and 01 and manchester decode
383 //run through 2 times and take least errCnt
384 int manrawdecode(uint8_t * BitStream
, size_t *size
, uint8_t invert
)
386 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
388 uint16_t bestErr
= 1000, bestRun
= 0;
389 if (*size
< 16) return -1;
390 //find correct start position [alignment]
391 for (ii
=0;ii
<2;++ii
){
392 for (i
=ii
; i
<*size
-3; i
+=2)
393 if (BitStream
[i
]==BitStream
[i
+1])
403 for (i
=bestRun
; i
< *size
-3; i
+=2){
404 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
405 BitStream
[bitnum
++]=invert
;
406 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
407 BitStream
[bitnum
++]=invert
^1;
409 BitStream
[bitnum
++]=7;
411 if(bitnum
>MaxBits
) break;
417 uint32_t manchesterEncode2Bytes(uint16_t datain
) {
420 for (uint8_t i
=0; i
<16; i
++) {
421 curBit
= (datain
>> (15-i
) & 1);
422 output
|= (1<<(((15-i
)*2)+curBit
));
428 //encode binary data into binary manchester
429 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
431 size_t modIdx
=20000, i
=0;
432 if (size
>modIdx
) return -1;
433 for (size_t idx
=0; idx
< size
; idx
++){
434 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
435 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
437 for (; i
<(size
*2); i
++){
438 BitStream
[i
] = BitStream
[i
+20000];
444 //take 01 or 10 = 1 and 11 or 00 = 0
445 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
446 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
447 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
452 uint16_t MaxBits
=512;
453 //if not enough samples - error
454 if (*size
< 51) return -1;
455 //check for phase change faults - skip one sample if faulty
456 uint8_t offsetA
= 1, offsetB
= 1;
458 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
459 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
461 if (!offsetA
&& offsetB
) offset
++;
462 for (i
=offset
; i
<*size
-3; i
+=2){
463 //check for phase error
464 if (BitStream
[i
+1]==BitStream
[i
+2]) {
465 BitStream
[bitnum
++]=7;
468 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
469 BitStream
[bitnum
++]=1^invert
;
470 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
471 BitStream
[bitnum
++]=invert
;
473 BitStream
[bitnum
++]=7;
476 if(bitnum
>MaxBits
) break;
483 // demod gProxIIDemod
484 // error returns as -x
485 // success returns start position in BitStream
486 // BitStream must contain previously askrawdemod and biphasedemoded data
487 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
490 uint8_t preamble
[] = {1,1,1,1,1,0};
492 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
493 if (errChk
== 0) return -3; //preamble not found
494 if (*size
!= 96) return -2; //should have found 96 bits
495 //check first 6 spacer bits to verify format
496 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
497 //confirmed proper separator bits found
498 //return start position
499 return (int) startIdx
;
501 return -5; //spacer bits not found - not a valid gproxII
504 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
505 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
507 size_t last_transition
= 0;
509 if (fchigh
==0) fchigh
=10;
510 if (fclow
==0) fclow
=8;
511 //set the threshold close to 0 (graph) or 128 std to avoid static
512 uint8_t threshold_value
= 123;
513 size_t preLastSample
= 0;
514 size_t LastSample
= 0;
515 size_t currSample
= 0;
516 if ( size
< 1024 ) return 0; // not enough samples
518 //find start of modulating data in trace
519 idx
= findModStart(dest
, size
, threshold_value
, fchigh
);
521 // Need to threshold first sample
522 if(dest
[idx
] < threshold_value
) dest
[0] = 0;
527 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
528 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
529 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
530 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
531 for(; idx
< size
-20; idx
++) {
532 // threshold current value
534 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
537 // Check for 0->1 transition
538 if (dest
[idx
-1] < dest
[idx
]) {
539 preLastSample
= LastSample
;
540 LastSample
= currSample
;
541 currSample
= idx
-last_transition
;
542 if (currSample
< (fclow
-2)) { //0-5 = garbage noise (or 0-3)
543 //do nothing with extra garbage
544 } else if (currSample
< (fchigh
-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
545 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
546 if (LastSample
> (fchigh
-2) && (preLastSample
< (fchigh
-1))){
551 } else if (currSample
> (fchigh
+1) && numBits
< 3) { //12 + and first two bit = unusable garbage
552 //do nothing with beginning garbage and reset.. should be rare..
554 } else if (currSample
== (fclow
+1) && LastSample
== (fclow
-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
556 } else { //9+ = 10 sample waves (or 6+ = 7)
559 last_transition
= idx
;
562 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
565 //translate 11111100000 to 10
566 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
567 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
,
568 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
570 uint8_t lastval
=dest
[0];
574 for( idx
=1; idx
< size
; idx
++) {
576 if (dest
[idx
]==lastval
) continue; //skip until we hit a transition
578 //find out how many bits (n) we collected
579 //if lastval was 1, we have a 1->0 crossing
580 if (dest
[idx
-1]==1) {
581 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
582 } else {// 0->1 crossing
583 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
587 //add to our destination the bits we collected
588 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
593 // if valid extra bits at the end were all the same frequency - add them in
594 if (n
> rfLen
/fchigh
) {
595 if (dest
[idx
-2]==1) {
596 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
598 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
600 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
606 //by marshmellow (from holiman's base)
607 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
608 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
611 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
612 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
);
616 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
617 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
619 if (justNoise(dest
, *size
)) return -1;
621 size_t numStart
=0, size2
=*size
, startIdx
=0;
623 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
624 if (*size
< 96*2) return -2;
625 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
626 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
627 // find bitstring in array
628 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
629 if (errChk
== 0) return -3; //preamble not found
631 numStart
= startIdx
+ sizeof(preamble
);
632 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
633 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
634 if (dest
[idx
] == dest
[idx
+1]){
635 return -4; //not manchester data
637 *hi2
= (*hi2
<<1)|(*hi
>>31);
638 *hi
= (*hi
<<1)|(*lo
>>31);
639 //Then, shift in a 0 or one into low
640 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
645 return (int)startIdx
;
648 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
649 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
651 if (justNoise(dest
, *size
)) return -1;
653 size_t numStart
=0, size2
=*size
, startIdx
=0;
655 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
656 if (*size
< 96) return -2;
658 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
659 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
661 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
662 if (errChk
== 0) return -3; //preamble not found
664 numStart
= startIdx
+ sizeof(preamble
);
665 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
666 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
667 if (dest
[idx
] == dest
[idx
+1])
668 return -4; //not manchester data
669 *hi2
= (*hi2
<<1)|(*hi
>>31);
670 *hi
= (*hi
<<1)|(*lo
>>31);
671 //Then, shift in a 0 or one into low
672 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
677 return (int)startIdx
;
680 int IOdemodFSK(uint8_t *dest
, size_t size
)
682 if (justNoise(dest
, size
)) return -1;
683 //make sure buffer has data
684 if (size
< 66*64) return -2;
686 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
687 if (size
< 65) return -3; //did we get a good demod?
689 //0 10 20 30 40 50 60
691 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
692 //-----------------------------------------------------------------------------
693 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
695 //XSF(version)facility:codeone+codetwo
698 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
699 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
700 if (errChk
== 0) return -4; //preamble not found
702 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
703 //confirmed proper separator bits found
704 //return start position
705 return (int) startIdx
;
711 // find viking preamble 0xF200 in already demoded data
712 int VikingDemod_AM(uint8_t *dest
, size_t *size
) {
713 //make sure buffer has data
714 if (*size
< 64*2) return -2;
717 uint8_t preamble
[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
718 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
719 if (errChk
== 0) return -4; //preamble not found
720 uint32_t checkCalc
= bytebits_to_byte(dest
+startIdx
,8) ^ bytebits_to_byte(dest
+startIdx
+8,8) ^ bytebits_to_byte(dest
+startIdx
+16,8)
721 ^ bytebits_to_byte(dest
+startIdx
+24,8) ^ bytebits_to_byte(dest
+startIdx
+32,8) ^ bytebits_to_byte(dest
+startIdx
+40,8)
722 ^ bytebits_to_byte(dest
+startIdx
+48,8) ^ bytebits_to_byte(dest
+startIdx
+56,8);
723 if ( checkCalc
!= 0xA8 ) return -5;
724 if (*size
!= 64) return -6;
725 //return start position
726 return (int) startIdx
;
729 // find presco preamble 0x10D in already demoded data
730 int PrescoDemod(uint8_t *dest
, size_t *size
) {
731 //make sure buffer has data
732 if (*size
< 64*2) return -2;
735 uint8_t preamble
[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
736 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
737 if (errChk
== 0) return -4; //preamble not found
738 //return start position
739 return (int) startIdx
;
742 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
743 // BitStream must contain previously askrawdemod and biphasedemoded data
744 int FDXBdemodBI(uint8_t *dest
, size_t *size
)
746 //make sure buffer has enough data
747 if (*size
< 128) return -1;
750 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,1};
752 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
753 if (errChk
== 0) return -2; //preamble not found
754 return (int)startIdx
;
758 // FSK Demod then try to locate an AWID ID
759 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
761 //make sure buffer has enough data
762 if (*size
< 96*50) return -1;
764 if (justNoise(dest
, *size
)) return -2;
767 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
768 if (*size
< 96) return -3; //did we get a good demod?
770 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
772 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
773 if (errChk
== 0) return -4; //preamble not found
774 if (*size
!= 96) return -5;
775 return (int)startIdx
;
779 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
780 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
782 //make sure buffer has data
783 if (*size
< 128*50) return -5;
785 //test samples are not just noise
786 if (justNoise(dest
, *size
)) return -1;
789 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
790 if (*size
< 128) return -2; //did we get a good demod?
792 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
794 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
795 if (errChk
== 0) return -4; //preamble not found
796 if (*size
!= 128) return -3;
797 return (int)startIdx
;
801 // to detect a wave that has heavily clipped (clean) samples
802 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
804 bool allArePeaks
= true;
806 size_t loopEnd
= 512+160;
807 if (loopEnd
> size
) loopEnd
= size
;
808 for (size_t i
=160; i
<loopEnd
; i
++){
809 if (dest
[i
]>low
&& dest
[i
]<high
)
815 if (cntPeaks
> 300) return true;
820 // to help detect clocks on heavily clipped samples
821 // based on count of low to low
822 int DetectStrongAskClock(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
824 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
828 // get to first full low to prime loop and skip incomplete first pulse
829 while ((dest
[i
] < high
) && (i
< size
))
831 while ((dest
[i
] > low
) && (i
< size
))
834 // loop through all samples
836 // measure from low to low
837 while ((dest
[i
] > low
) && (i
< size
))
840 while ((dest
[i
] < high
) && (i
< size
))
842 while ((dest
[i
] > low
) && (i
< size
))
844 //get minimum measured distance
845 if (i
-startwave
< minClk
&& i
< size
)
846 minClk
= i
- startwave
;
849 if (g_debugMode
==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk
);
850 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
851 if (minClk
>= fndClk
[clkCnt
]-(fndClk
[clkCnt
]/8) && minClk
<= fndClk
[clkCnt
]+1)
852 return fndClk
[clkCnt
];
858 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
859 // maybe somehow adjust peak trimming value based on samples to fix?
860 // return start index of best starting position for that clock and return clock (by reference)
861 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
864 uint8_t clk
[] = {255,8,16,32,40,50,64,100,128,255};
866 uint8_t loopCnt
= 255; //don't need to loop through entire array...
867 if (size
<= loopCnt
+60) return -1; //not enough samples
868 size
-= 60; //sometimes there is a strange end wave - filter out this....
869 //if we already have a valid clock
872 if (clk
[i
] == *clock
) clockFnd
= i
;
873 //clock found but continue to find best startpos
875 //get high and low peak
877 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
879 //test for large clean peaks
881 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
882 int ans
= DetectStrongAskClock(dest
, size
, peak
, low
);
883 if (g_debugMode
==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans
);
884 for (i
=clkEnd
-1; i
>0; i
--){
888 return 0; // for strong waves i don't use the 'best start position' yet...
889 //break; //clock found but continue to find best startpos [not yet]
895 uint8_t clkCnt
, tol
= 0;
896 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
897 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
899 size_t arrLoc
, loopEnd
;
907 //test each valid clock from smallest to greatest to see which lines up
908 for(; clkCnt
< clkEnd
; clkCnt
++){
909 if (clk
[clkCnt
] <= 32){
914 //if no errors allowed - keep start within the first clock
915 if (!maxErr
&& size
> clk
[clkCnt
]*2 + tol
&& clk
[clkCnt
]<128) loopCnt
=clk
[clkCnt
]*2;
916 bestErr
[clkCnt
]=1000;
917 //try lining up the peaks by moving starting point (try first few clocks)
918 for (ii
=0; ii
< loopCnt
; ii
++){
919 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
922 // now that we have the first one lined up test rest of wave array
923 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
924 for (i
=0; i
< loopEnd
; ++i
){
925 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
926 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
927 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
928 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
929 }else{ //error no peak detected
933 //if we found no errors then we can stop here and a low clock (common clocks)
934 // this is correct one - return this clock
935 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk
[clkCnt
],errCnt
,ii
,i
);
936 if(errCnt
==0 && clkCnt
<7) {
937 if (!clockFnd
) *clock
= clk
[clkCnt
];
940 //if we found errors see if it is lowest so far and save it as best run
941 if(errCnt
<bestErr
[clkCnt
]){
942 bestErr
[clkCnt
]=errCnt
;
943 bestStart
[clkCnt
]=ii
;
949 for (iii
=1; iii
<clkEnd
; ++iii
){
950 if (bestErr
[iii
] < bestErr
[best
]){
951 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
952 // current best bit to error ratio vs new bit to error ratio
953 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
957 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk
[iii
],bestErr
[iii
],clk
[best
],bestStart
[best
]);
959 if (!clockFnd
) *clock
= clk
[best
];
960 return bestStart
[best
];
964 //detect psk clock by reading each phase shift
965 // a phase shift is determined by measuring the sample length of each wave
966 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
968 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
969 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
970 if (size
== 0) return 0;
971 if (size
<loopCnt
) loopCnt
= size
-20;
973 //if we already have a valid clock quit
976 if (clk
[i
] == clock
) return clock
;
978 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
979 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
980 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
981 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
982 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
983 fc
= countFC(dest
, size
, 0);
984 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
985 if (g_debugMode
==2) prnt("DEBUG PSK: FC: %d",fc
);
987 //find first full wave
988 for (i
=160; i
<loopCnt
; i
++){
989 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
990 if (waveStart
== 0) {
992 //prnt("DEBUG: waveStart: %d",waveStart);
995 //prnt("DEBUG: waveEnd: %d",waveEnd);
996 waveLenCnt
= waveEnd
-waveStart
;
997 if (waveLenCnt
> fc
){
998 firstFullWave
= waveStart
;
999 fullWaveLen
=waveLenCnt
;
1006 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave
,fullWaveLen
);
1008 //test each valid clock from greatest to smallest to see which lines up
1009 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
1010 lastClkBit
= firstFullWave
; //set end of wave as clock align
1014 if (g_debugMode
== 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk
[clkCnt
],lastClkBit
);
1016 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
1017 //top edge of wave = start of new wave
1018 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1019 if (waveStart
== 0) {
1024 waveLenCnt
= waveEnd
-waveStart
;
1025 if (waveLenCnt
> fc
){
1026 //if this wave is a phase shift
1027 if (g_debugMode
== 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart
,waveLenCnt
,lastClkBit
+clk
[clkCnt
]-tol
,i
+1,fc
);
1028 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
1030 lastClkBit
+=clk
[clkCnt
];
1031 } else if (i
<lastClkBit
+8){
1032 //noise after a phase shift - ignore
1033 } else { //phase shift before supposed to based on clock
1036 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
1037 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
1046 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
1047 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
1049 //all tested with errors
1050 //return the highest clk with the most peaks found
1052 for (i
=7; i
>=1; i
--){
1053 if (peaksdet
[i
] > peaksdet
[best
]) {
1056 if (g_debugMode
== 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk
[i
],peaksdet
[i
],bestErr
[i
],clk
[best
]);
1061 int DetectStrongNRZClk(uint8_t *dest
, size_t size
, int peak
, int low
){
1062 //find shortest transition from high to low
1064 size_t transition1
= 0;
1065 int lowestTransition
= 255;
1066 bool lastWasHigh
= false;
1068 //find first valid beginning of a high or low wave
1069 while ((dest
[i
] >= peak
|| dest
[i
] <= low
) && (i
< size
))
1071 while ((dest
[i
] < peak
&& dest
[i
] > low
) && (i
< size
))
1073 lastWasHigh
= (dest
[i
] >= peak
);
1075 if (i
==size
) return 0;
1078 for (;i
< size
; i
++) {
1079 if ((dest
[i
] >= peak
&& !lastWasHigh
) || (dest
[i
] <= low
&& lastWasHigh
)) {
1080 lastWasHigh
= (dest
[i
] >= peak
);
1081 if (i
-transition1
< lowestTransition
) lowestTransition
= i
-transition1
;
1085 if (lowestTransition
== 255) lowestTransition
= 0;
1086 if (g_debugMode
==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition
);
1087 return lowestTransition
;
1091 //detect nrz clock by reading #peaks vs no peaks(or errors)
1092 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1095 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
1096 size_t loopCnt
= 4096; //don't need to loop through entire array...
1097 if (size
== 0) return 0;
1098 if (size
<loopCnt
) loopCnt
= size
-20;
1099 //if we already have a valid clock quit
1101 if (clk
[i
] == clock
) return clock
;
1103 //get high and low peak
1105 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return 0;
1107 int lowestTransition
= DetectStrongNRZClk(dest
, size
-20, peak
, low
);
1111 uint16_t smplCnt
= 0;
1112 int16_t peakcnt
= 0;
1113 int16_t peaksdet
[] = {0,0,0,0,0,0,0,0};
1114 uint16_t maxPeak
= 255;
1115 bool firstpeak
= false;
1116 //test for large clipped waves
1117 for (i
=0; i
<loopCnt
; i
++){
1118 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1119 if (!firstpeak
) continue;
1124 if (maxPeak
> smplCnt
){
1126 //prnt("maxPk: %d",maxPeak);
1129 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1134 bool errBitHigh
= 0;
1136 uint8_t ignoreCnt
= 0;
1137 uint8_t ignoreWindow
= 4;
1138 bool lastPeakHigh
= 0;
1141 //test each valid clock from smallest to greatest to see which lines up
1142 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1143 //ignore clocks smaller than smallest peak
1144 if (clk
[clkCnt
] < maxPeak
- (clk
[clkCnt
]/4)) continue;
1145 //try lining up the peaks by moving starting point (try first 256)
1146 for (ii
=20; ii
< loopCnt
; ++ii
){
1147 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1151 lastBit
= ii
-clk
[clkCnt
];
1152 //loop through to see if this start location works
1153 for (i
= ii
; i
< size
-20; ++i
) {
1154 //if we are at a clock bit
1155 if ((i
>= lastBit
+ clk
[clkCnt
] - tol
) && (i
<= lastBit
+ clk
[clkCnt
] + tol
)) {
1157 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
1158 //if same peak don't count it
1159 if ((dest
[i
] >= peak
&& !lastPeakHigh
) || (dest
[i
] <= low
&& lastPeakHigh
)) {
1162 lastPeakHigh
= (dest
[i
] >= peak
);
1165 ignoreCnt
= ignoreWindow
;
1166 lastBit
+= clk
[clkCnt
];
1167 } else if (i
== lastBit
+ clk
[clkCnt
] + tol
) {
1168 lastBit
+= clk
[clkCnt
];
1170 //else if not a clock bit and no peaks
1171 } else if (dest
[i
] < peak
&& dest
[i
] > low
){
1174 if (errBitHigh
==true) peakcnt
--;
1179 // else if not a clock bit but we have a peak
1180 } else if ((dest
[i
]>=peak
|| dest
[i
]<=low
) && (!bitHigh
)) {
1181 //error bar found no clock...
1185 if(peakcnt
>peaksdet
[clkCnt
]) {
1186 peaksdet
[clkCnt
]=peakcnt
;
1193 for (iii
=7; iii
> 0; iii
--){
1194 if ((peaksdet
[iii
] >= (peaksdet
[best
]-1)) && (peaksdet
[iii
] <= peaksdet
[best
]+1) && lowestTransition
) {
1195 if (clk
[iii
] > (lowestTransition
- (clk
[iii
]/8)) && clk
[iii
] < (lowestTransition
+ (clk
[iii
]/8))) {
1198 } else if (peaksdet
[iii
] > peaksdet
[best
]){
1201 if (g_debugMode
==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk
[iii
],peaksdet
[iii
],maxPeak
, clk
[best
], lowestTransition
);
1208 // convert psk1 demod to psk2 demod
1209 // only transition waves are 1s
1210 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1213 uint8_t lastBit
=BitStream
[0];
1214 for (; i
<size
; i
++){
1215 if (BitStream
[i
]==7){
1217 } else if (lastBit
!=BitStream
[i
]){
1218 lastBit
=BitStream
[i
];
1228 // convert psk2 demod to psk1 demod
1229 // from only transition waves are 1s to phase shifts change bit
1230 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1233 for (size_t i
=0; i
<size
; i
++){
1234 if (BitStream
[i
]==1){
1242 // redesigned by marshmellow adjusted from existing decode functions
1243 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1244 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1246 //26 bit 40134 format (don't know other formats)
1247 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1248 uint8_t preamble_i
[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1249 size_t startidx
= 0;
1250 if (!preambleSearch(bitStream
, preamble
, sizeof(preamble
), size
, &startidx
)){
1251 // if didn't find preamble try again inverting
1252 if (!preambleSearch(bitStream
, preamble_i
, sizeof(preamble_i
), size
, &startidx
)) return -1;
1255 if (*size
!= 64 && *size
!= 224) return -2;
1257 for (size_t i
= startidx
; i
< *size
; i
++)
1260 return (int) startidx
;
1263 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1264 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1265 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
){
1266 if (justNoise(dest
, *size
)) return -1;
1267 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1268 if (*clk
==0) return -2;
1269 size_t i
, gLen
= 4096;
1270 if (gLen
>*size
) gLen
= *size
-20;
1272 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1275 //convert wave samples to 1's and 0's
1276 for(i
=20; i
< *size
-20; i
++){
1277 if (dest
[i
] >= high
) bit
= 1;
1278 if (dest
[i
] <= low
) bit
= 0;
1281 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1284 for(i
=21; i
< *size
-20; i
++) {
1285 //if transition detected or large number of same bits - store the passed bits
1286 if (dest
[i
] != dest
[i
-1] || (i
-lastBit
) == (10 * *clk
)) {
1287 memset(dest
+numBits
, dest
[i
-1] ^ *invert
, (i
- lastBit
+ (*clk
/4)) / *clk
);
1288 numBits
+= (i
- lastBit
+ (*clk
/4)) / *clk
;
1297 //detects the bit clock for FSK given the high and low Field Clocks
1298 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1300 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1301 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1302 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1303 uint8_t rfLensFnd
= 0;
1304 uint8_t lastFCcnt
= 0;
1305 uint16_t fcCounter
= 0;
1306 uint16_t rfCounter
= 0;
1307 uint8_t firstBitFnd
= 0;
1309 if (size
== 0) return 0;
1311 uint8_t fcTol
= ((fcHigh
*100 - fcLow
*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1316 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1317 // prime i to first peak / up transition
1318 for (i
= 160; i
< size
-20; i
++)
1319 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1322 for (; i
< size
-20; i
++){
1326 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
1329 // if we got less than the small fc + tolerance then set it to the small fc
1330 // if it is inbetween set it to the last counter
1331 if (fcCounter
< fcHigh
&& fcCounter
> fcLow
)
1332 fcCounter
= lastFCcnt
;
1333 else if (fcCounter
< fcLow
+fcTol
)
1335 else //set it to the large fc
1338 //look for bit clock (rf/xx)
1339 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1340 //not the same size as the last wave - start of new bit sequence
1341 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
1342 for (int ii
=0; ii
<15; ii
++){
1343 if (rfLens
[ii
] >= (rfCounter
-4) && rfLens
[ii
] <= (rfCounter
+4)){
1349 if (rfCounter
> 0 && rfLensFnd
< 15){
1350 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1351 rfCnts
[rfLensFnd
]++;
1352 rfLens
[rfLensFnd
++] = rfCounter
;
1358 lastFCcnt
=fcCounter
;
1362 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1364 for (i
=0; i
<15; i
++){
1365 //get highest 2 RF values (might need to get more values to compare or compare all?)
1366 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1367 rfHighest3
=rfHighest2
;
1368 rfHighest2
=rfHighest
;
1370 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1371 rfHighest3
=rfHighest2
;
1373 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1376 if (g_debugMode
==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens
[i
], rfCnts
[i
]);
1378 // set allowed clock remainder tolerance to be 1 large field clock length+1
1379 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1380 uint8_t tol1
= fcHigh
+1;
1382 if (g_debugMode
==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens
[rfHighest
],rfLens
[rfHighest2
],rfLens
[rfHighest3
]);
1384 // loop to find the highest clock that has a remainder less than the tolerance
1385 // compare samples counted divided by
1386 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1388 for (; ii
>=2; ii
--){
1389 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1390 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1391 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1392 if (g_debugMode
==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk
[ii
]);
1399 if (ii
<2) return 0; // oops we went too far
1405 //countFC is to detect the field clock lengths.
1406 //counts and returns the 2 most common wave lengths
1407 //mainly used for FSK field clock detection
1408 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
)
1410 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1411 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1412 uint8_t fcLensFnd
= 0;
1413 uint8_t lastFCcnt
= 0;
1414 uint8_t fcCounter
= 0;
1416 if (size
< 180) return 0;
1418 // prime i to first up transition
1419 for (i
= 160; i
< size
-20; i
++)
1420 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1423 for (; i
< size
-20; i
++){
1424 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1425 // new up transition
1428 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1429 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1430 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1431 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
1432 // save last field clock count (fc/xx)
1433 lastFCcnt
= fcCounter
;
1435 // find which fcLens to save it to:
1436 for (int ii
=0; ii
<15; ii
++){
1437 if (fcLens
[ii
]==fcCounter
){
1443 if (fcCounter
>0 && fcLensFnd
<15){
1445 fcCnts
[fcLensFnd
]++;
1446 fcLens
[fcLensFnd
++]=fcCounter
;
1455 uint8_t best1
=14, best2
=14, best3
=14;
1457 // go through fclens and find which ones are bigest 2
1458 for (i
=0; i
<15; i
++){
1459 // get the 3 best FC values
1460 if (fcCnts
[i
]>maxCnt1
) {
1465 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1468 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1471 if (g_debugMode
==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens
[i
],fcCnts
[i
],fcLens
[best1
],fcLens
[best2
]);
1473 if (fcLens
[best1
]==0) return 0;
1474 uint8_t fcH
=0, fcL
=0;
1475 if (fcLens
[best1
]>fcLens
[best2
]){
1482 if ((size
-180)/fcH
/3 > fcCnts
[best1
]+fcCnts
[best2
]) {
1483 if (g_debugMode
==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size
-180)/fcH
/3,fcCnts
[best1
]+fcCnts
[best2
]);
1484 return 0; //lots of waves not psk or fsk
1486 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1488 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1489 if (fskAdj
) return fcs
;
1490 return fcLens
[best1
];
1493 //by marshmellow - demodulate PSK1 wave
1494 //uses wave lengths (# Samples)
1495 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1497 if (size
== 0) return -1;
1498 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1499 if (*size
<loopCnt
) loopCnt
= *size
;
1502 uint8_t curPhase
= *invert
;
1503 size_t i
=0, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1504 uint16_t fc
=0, fullWaveLen
=0, tol
=1;
1505 uint16_t errCnt
=0, waveLenCnt
=0, errCnt2
=0;
1506 fc
= countFC(dest
, *size
, 1);
1507 uint8_t fc2
= fc
>> 8;
1508 if (fc2
== 10) return -1; //fsk found - quit
1510 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1511 //PrintAndLog("DEBUG: FC: %d",fc);
1512 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1513 if (*clock
== 0) return -1;
1515 //find start of modulating data in trace
1516 uint8_t threshold_value
= 123; //-5
1517 i
= findModStart(dest
, *size
, threshold_value
, fc
);
1519 //find first phase shift
1520 int avgWaveVal
=0, lastAvgWaveVal
=0;
1522 for (; i
<loopCnt
; i
++) {
1524 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1526 if (g_debugMode
== 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd
, waveStart
);
1527 waveLenCnt
= waveEnd
-waveStart
;
1528 if (waveLenCnt
> fc
&& waveStart
> fc
&& !(waveLenCnt
> fc
+3)){ //not first peak and is a large wave but not out of whack
1529 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1530 firstFullWave
= waveStart
;
1531 fullWaveLen
=waveLenCnt
;
1532 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1533 if (lastAvgWaveVal
> threshold_value
) curPhase
^= 1;
1539 avgWaveVal
+= dest
[i
+2];
1541 if (firstFullWave
== 0) {
1542 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1543 // so skip a little to ensure we are past any Start Signal
1544 firstFullWave
= 160;
1545 memset(dest
, curPhase
, firstFullWave
/ *clock
);
1547 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1550 numBits
+= (firstFullWave
/ *clock
);
1551 //set start of wave as clock align
1552 lastClkBit
= firstFullWave
;
1553 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave
,fullWaveLen
);
1554 if (g_debugMode
==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock
, lastClkBit
,(unsigned int) fc
);
1556 dest
[numBits
++] = curPhase
; //set first read bit
1557 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++){
1558 //top edge of wave = start of new wave
1559 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1560 if (waveStart
== 0) {
1563 avgWaveVal
= dest
[i
+1];
1566 waveLenCnt
= waveEnd
-waveStart
;
1567 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1568 if (waveLenCnt
> fc
){
1569 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1570 //this wave is a phase shift
1571 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1572 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1574 dest
[numBits
++] = curPhase
;
1575 lastClkBit
+= *clock
;
1576 } else if (i
< lastClkBit
+10+fc
){
1577 //noise after a phase shift - ignore
1578 } else { //phase shift before supposed to based on clock
1580 dest
[numBits
++] = 7;
1582 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1583 lastClkBit
+= *clock
; //no phase shift but clock bit
1584 dest
[numBits
++] = curPhase
;
1585 } else if (waveLenCnt
< fc
- 1) { //wave is smaller than field clock (shouldn't happen often)
1587 if(errCnt2
> 101) return errCnt2
;
1593 avgWaveVal
+= dest
[i
+1];
1600 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1601 bool DetectST(uint8_t buffer
[], size_t *size
, int *foundclock
) {
1602 size_t bufsize
= *size
;
1603 //need to loop through all samples and identify our clock, look for the ST pattern
1604 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
1607 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1608 bool complete
= false;
1609 int tmpbuff
[bufsize
/ 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1610 int waveLen
[bufsize
/ 32]; // if clock is larger then we waste memory in array size that is not needed...
1611 size_t testsize
= (bufsize
< 512) ? bufsize
: 512;
1614 memset(tmpbuff
, 0, sizeof(tmpbuff
));
1616 if ( getHiLo(buffer
, testsize
, &high
, &low
, 80, 80) == -1 ) {
1617 if (g_debugMode
==2) prnt("DEBUG STT: just noise detected - quitting");
1618 return false; //just noise
1623 // get to first full low to prime loop and skip incomplete first pulse
1624 while ((buffer
[i
] < high
) && (i
< bufsize
))
1626 while ((buffer
[i
] > low
) && (i
< bufsize
))
1630 // populate tmpbuff buffer with pulse lengths
1631 while (i
< bufsize
) {
1632 // measure from low to low
1633 while ((buffer
[i
] > low
) && (i
< bufsize
))
1636 while ((buffer
[i
] < high
) && (i
< bufsize
))
1638 //first high point for this wave
1640 while ((buffer
[i
] > low
) && (i
< bufsize
))
1642 if (j
>= (bufsize
/32)) {
1645 waveLen
[j
] = i
- waveStart
; //first high to first low
1646 tmpbuff
[j
++] = i
- start
;
1647 if (i
-start
< minClk
&& i
< bufsize
) {
1651 // set clock - might be able to get this externally and remove this work...
1653 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
1654 tol
= fndClk
[clkCnt
]/8;
1655 if (minClk
>= fndClk
[clkCnt
]-tol
&& minClk
<= fndClk
[clkCnt
]+1) {
1660 // clock not found - ERROR
1662 if (g_debugMode
==2) prnt("DEBUG STT: clock not found - quitting");
1669 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1671 for (i
= 0; i
< j
- 4; ++i
) {
1673 if (tmpbuff
[i
] >= clk
*1-tol
&& tmpbuff
[i
] <= (clk
*2)+tol
&& waveLen
[i
] < clk
+tol
) { //1 to 2 clocks depending on 2 bits prior
1674 if (tmpbuff
[i
+1] >= clk
*2-tol
&& tmpbuff
[i
+1] <= clk
*2+tol
&& waveLen
[i
+1] > clk
*3/2-tol
) { //2 clocks and wave size is 1 1/2
1675 if (tmpbuff
[i
+2] >= (clk
*3)/2-tol
&& tmpbuff
[i
+2] <= clk
*2+tol
&& waveLen
[i
+2] > clk
-tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1676 if (tmpbuff
[i
+3] >= clk
*1-tol
&& tmpbuff
[i
+3] <= clk
*2+tol
) { //1 to 2 clocks for end of ST + first bit
1684 // first ST not found - ERROR
1686 if (g_debugMode
==2) prnt("DEBUG STT: first STT not found - quitting");
1689 if (g_debugMode
==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start
, j
);
1691 if (waveLen
[i
+2] > clk
*1+tol
)
1696 // skip over the remainder of ST
1697 skip
+= clk
*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1699 // now do it again to find the end
1701 for (i
+= 3; i
< j
- 4; ++i
) {
1703 if (tmpbuff
[i
] >= clk
*1-tol
&& tmpbuff
[i
] <= (clk
*2)+tol
&& waveLen
[i
] < clk
+tol
) { //1 to 2 clocks depending on 2 bits prior
1704 if (tmpbuff
[i
+1] >= clk
*2-tol
&& tmpbuff
[i
+1] <= clk
*2+tol
&& waveLen
[i
+1] > clk
*3/2-tol
) { //2 clocks and wave size is 1 1/2
1705 if (tmpbuff
[i
+2] >= (clk
*3)/2-tol
&& tmpbuff
[i
+2] <= clk
*2+tol
&& waveLen
[i
+2] > clk
-tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1706 if (tmpbuff
[i
+3] >= clk
*1-tol
&& tmpbuff
[i
+3] <= clk
*2+tol
) { //1 to 2 clocks for end of ST + first bit
1715 //didn't find second ST - ERROR
1717 if (g_debugMode
==2) prnt("DEBUG STT: second STT not found - quitting");
1720 if (g_debugMode
==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip
, end
, end
-skip
, clk
, (end
-skip
)/clk
, phaseoff
);
1721 //now begin to trim out ST so we can use normal demod cmds
1723 size_t datalen
= end
- start
;
1724 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1725 if ( clk
- (datalen
% clk
) <= clk
/8) {
1726 // padd the amount off - could be problematic... but shouldn't happen often
1727 datalen
+= clk
- (datalen
% clk
);
1728 } else if ( (datalen
% clk
) <= clk
/8 ) {
1729 // padd the amount off - could be problematic... but shouldn't happen often
1730 datalen
-= datalen
% clk
;
1732 if (g_debugMode
==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen
, clk
, datalen
% clk
);
1735 // if datalen is less than one t55xx block - ERROR
1736 if (datalen
/clk
< 8*4) {
1737 if (g_debugMode
==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1740 size_t dataloc
= start
;
1741 if (buffer
[dataloc
-(clk
*4)-(clk
/8)] <= low
&& buffer
[dataloc
] <= low
&& buffer
[dataloc
-(clk
*4)] >= high
) {
1742 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1743 for ( i
=0; i
<= (clk
/8); ++i
) {
1744 if ( buffer
[dataloc
- (clk
*4) - i
] <= low
) {
1753 if (g_debugMode
==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc
, datalen
);
1755 // warning - overwriting buffer given with raw wave data with ST removed...
1756 while ( dataloc
< bufsize
-(clk
/2) ) {
1757 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1758 if (buffer
[dataloc
]<high
&& buffer
[dataloc
]>low
&& buffer
[dataloc
+3]<high
&& buffer
[dataloc
+3]>low
) {
1759 for(i
=0; i
< clk
/2-tol
; ++i
) {
1760 buffer
[dataloc
+i
] = high
+5;
1762 } //test for single sample outlier (high between two lows) in the case of very strong waves
1763 if (buffer
[dataloc
] >= high
&& buffer
[dataloc
+2] <= low
) {
1764 buffer
[dataloc
] = buffer
[dataloc
+2];
1765 buffer
[dataloc
+1] = buffer
[dataloc
+2];
1767 for (i
=0; i
<datalen
; ++i
) {
1768 if (i
+newloc
< bufsize
) {
1769 if (i
+newloc
< dataloc
)
1770 buffer
[i
+newloc
] = buffer
[dataloc
];
1776 //skip next ST - we just assume it will be there from now on...
1777 if (g_debugMode
==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc
, dataloc
+(clk
*4));