//----------------------------------------------------------------------------- // ISO14443-A support for the Proxmark III // Gerhard de Koning Gans, April 2008 //----------------------------------------------------------------------------- // constants for the different modes: `define SNIFFER 3'b000 `define TAGSIM_LISTEN 3'b001 `define TAGSIM_MOD 3'b010 `define READER_LISTEN 3'b011 `define READER_MOD 3'b100 module hi_iso14443a( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, mod_type ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input [2:0] mod_type; wire adc_clk = ck_1356meg; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Reader -> PM3: // detecting and shaping the reader's signal. Reader will modulate the carrier by 100% (signal is either on or off). Use a // hysteresis (Schmitt Trigger) to avoid false triggers during slowly increasing or decreasing carrier amplitudes reg after_hysteresis; reg [11:0] has_been_low_for; always @(negedge adc_clk) begin if(adc_d >= 16) after_hysteresis <= 1'b1; // U >= 1,14V -> after_hysteresis = 1 else if(adc_d < 8) after_hysteresis <= 1'b0; // U < 1,04V -> after_hysteresis = 0 // Note: was >= 3,53V and <= 1,19V. The new trigger values allow more reliable detection of the first bit // (it might not reach 3,53V due to the high time constant of the high pass filter in the analogue RF part). // In addition, the new values are more in line with ISO14443-2: "The PICC shall detect the â€End of Pause†after the field exceeds // 5% of H_INITIAL and before it exceeds 60% of H_INITIAL." Depending on the signal strength, 60% might well be less than 3,53V. // detecting a loss of reader's field (adc_d < 192 for 4096 clock cycles). If this is the case, // set the detected reader signal (after_hysteresis) to '1' (unmodulated) if(adc_d >= 192) begin has_been_low_for <= 12'd0; end else begin if(has_been_low_for == 12'd4095) begin has_been_low_for <= 12'd0; after_hysteresis <= 1'b1; end else begin has_been_low_for <= has_been_low_for + 1; end end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Reader -> PM3 // detect when a reader is active (modulating). We assume that the reader is active, if we see the carrier off for at least 8 // carrier cycles. We assume that the reader is inactive, if the carrier stayed high for at least 256 carrier cycles. reg deep_modulation; reg [2:0] deep_counter; reg [8:0] saw_deep_modulation; always @(negedge adc_clk) begin if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V) begin if(deep_counter == 3'd7) // adc_d == 0 for 8 adc_clk ticks -> deep_modulation (by reader) begin deep_modulation <= 1'b1; saw_deep_modulation <= 8'd0; end else deep_counter <= deep_counter + 1; end else begin deep_counter <= 3'd0; if(saw_deep_modulation == 8'd255) // adc_d != 0 for 256 adc_clk ticks -> deep_modulation is over, probably waiting for tag's response deep_modulation <= 1'b0; else saw_deep_modulation <= saw_deep_modulation + 1; end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Tag -> PM3 // filter the input for a tag's signal. The filter box needs the 4 previous input values and is a gaussian derivative filter // for noise reduction and edge detection. // store 4 previous samples: reg [7:0] input_prev_4, input_prev_3, input_prev_2, input_prev_1; always @(negedge adc_clk) begin input_prev_4 <= input_prev_3; input_prev_3 <= input_prev_2; input_prev_2 <= input_prev_1; input_prev_1 <= adc_d; end // adc_d_filtered = 2*input_prev4 + 1*input_prev3 + 0*input_prev2 - 1*input_prev1 - 2*input // = (2*input_prev4 + input_prev3) - (2*input + input_prev1) wire [8:0] input_prev_4_times_2 = input_prev_4 << 1; wire [8:0] adc_d_times_2 = adc_d << 1; wire [9:0] tmp1 = input_prev_4_times_2 + input_prev_3; wire [9:0] tmp2 = adc_d_times_2 + input_prev_1; // convert intermediate signals to signed and calculate the filter output wire signed [10:0] adc_d_filtered = {1'b0, tmp1} - {1'b0, tmp2}; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // internal FPGA timing. Maximum required period is 128 carrier clock cycles for a full 8 Bit transfer to ARM. (i.e. we need a // 7 bit counter). Adjust its frequency to external reader's clock when simulating a tag or sniffing. reg pre_after_hysteresis; reg [3:0] reader_falling_edge_time; reg [6:0] negedge_cnt; always @(negedge adc_clk) begin // detect a reader signal's falling edge and remember its timing: pre_after_hysteresis <= after_hysteresis; if (pre_after_hysteresis && ~after_hysteresis) begin reader_falling_edge_time[3:0] <= negedge_cnt[3:0]; end // adjust internal timer counter if necessary: if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_LISTEN) && deep_modulation) begin if (reader_falling_edge_time == 4'd1) // reader signal changes right after sampling. Better sample earlier next time. begin negedge_cnt <= negedge_cnt + 2; // time warp end else if (reader_falling_edge_time == 4'd0) // reader signal changes right before sampling. Better sample later next time. begin negedge_cnt <= negedge_cnt; // freeze time end else begin negedge_cnt <= negedge_cnt + 1; // Continue as usual end reader_falling_edge_time[3:0] <= 4'd8; // adjust only once per detected edge end else if (negedge_cnt == 7'd127) // normal operation: count from 0 to 127 begin negedge_cnt <= 0; end else begin negedge_cnt <= negedge_cnt + 1; end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Tag -> PM3: // determine best possible time for starting/resetting the modulation detector. reg [3:0] mod_detect_reset_time; always @(negedge adc_clk) begin if (mod_type == `READER_LISTEN) // (our) reader signal changes at negedge_cnt[3:0]=9, tag response expected to start n*16+4 ticks later, further delayed by // 3 ticks ADC conversion. The maximum filter output (edge detected) will be detected after subcarrier zero crossing (+7 ticks). // To allow some timing variances, we want to have the maximum filter outputs well within the detection window, i.e. // at mod_detect_reset_time+4 and mod_detect_reset_time+12 (-4 ticks). // 9 + 4 + 3 + 7 - 4 = 19. 19 mod 16 = 3 begin mod_detect_reset_time <= 4'd4; end else if (mod_type == `SNIFFER) begin // detect a rising edge of reader's signal and sync modulation detector to the tag's answer: if (~pre_after_hysteresis && after_hysteresis && deep_modulation) // reader signal rising edge detected at negedge_cnt[3:0]. This signal had been delayed // 9 ticks by the RF part + 3 ticks by the A/D converter + 1 tick to assign to after_hysteresis. // Then the same as above. // - 9 - 3 - 1 + 4 + 3 + 7 - 4 = -3 begin mod_detect_reset_time <= negedge_cnt[3:0] - 4'd3; end end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Tag -> PM3: // modulation detector. Looks for the steepest falling and rising edges within a 16 clock period. If there is both a significant // falling and rising edge (in any order), a modulation is detected. reg signed [10:0] rx_mod_falling_edge_max; reg signed [10:0] rx_mod_rising_edge_max; reg curbit; `define EDGE_DETECT_THRESHOLD 5 always @(negedge adc_clk) begin if(negedge_cnt[3:0] == mod_detect_reset_time) begin // detect modulation signal: if modulating, there must have been a falling AND a rising edge if ((rx_mod_falling_edge_max > `EDGE_DETECT_THRESHOLD) && (rx_mod_rising_edge_max < -`EDGE_DETECT_THRESHOLD)) curbit <= 1'b1; // modulation else curbit <= 1'b0; // no modulation // reset modulation detector rx_mod_rising_edge_max <= 0; rx_mod_falling_edge_max <= 0; end else // look for steepest edges (slopes) begin if (adc_d_filtered > 0) begin if (adc_d_filtered > rx_mod_falling_edge_max) rx_mod_falling_edge_max <= adc_d_filtered; end else begin if (adc_d_filtered < rx_mod_rising_edge_max) rx_mod_rising_edge_max <= adc_d_filtered; end end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Tag+Reader -> PM3 // sample 4 bits reader data and 4 bits tag data for sniffing reg [3:0] reader_data; reg [3:0] tag_data; always @(negedge adc_clk) begin if(negedge_cnt[3:0] == 4'd0) begin reader_data[3:0] <= {reader_data[2:0], after_hysteresis}; tag_data[3:0] <= {tag_data[2:0], curbit}; end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PM3 -> Reader: // a delay line to ensure that we send the (emulated) tag's answer at the correct time according to ISO14443-3 reg [31:0] mod_sig_buf; reg [4:0] mod_sig_ptr; reg mod_sig; always @(negedge adc_clk) begin if(negedge_cnt[3:0] == 4'd0) // sample data at rising edge of ssp_clk - ssp_dout changes at the falling edge. begin mod_sig_buf[31:2] <= mod_sig_buf[30:1]; // shift if (~ssp_dout && ~mod_sig_buf[1]) mod_sig_buf[1] <= 1'b0; // delete the correction bit (a single 1 preceded and succeeded by 0) else mod_sig_buf[1] <= mod_sig_buf[0]; mod_sig_buf[0] <= ssp_dout; // add new data to the delay line mod_sig = mod_sig_buf[mod_sig_ptr]; // the delayed signal. end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PM3 -> Reader, internal timing: // a timer for the 1172 cycles fdt (Frame Delay Time). Start the timer with a rising edge of the reader's signal. // set fdt_elapsed when we no longer need to delay data. Set fdt_indicator when we can start sending data. // Note: the FPGA only takes care for the 1172 delay. To achieve an additional 1236-1172=64 ticks delay, the ARM must send // a correction bit (before the start bit). The correction bit will be coded as 00010000, i.e. it adds 4 bits to the // transmission stream, causing the required additional delay. reg [10:0] fdt_counter; reg fdt_indicator, fdt_elapsed; reg [3:0] mod_sig_flip; reg [3:0] sub_carrier_cnt; // we want to achieve a delay of 1172. The RF part already has delayed the reader signals's rising edge // by 9 ticks, the ADC took 3 ticks and there is always a delay of 32 ticks by the mod_sig_buf. Therefore need to // count to 1172 - 9 - 3 - 32 = 1128 `define FDT_COUNT 11'd1128 // The ARM must not send too early, otherwise the mod_sig_buf will overflow, therefore signal that we are ready // with fdt_indicator. The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks. // fdt_indicator could appear at ssp_din after 1 tick, the transfer needs 16 ticks, the ARM can send 128 ticks later. // 1128 - 464 - 1 - 128 - 8 = 535 `define FDT_INDICATOR_COUNT 11'd535 // reset on a pause in listen mode. I.e. the counter starts when the pause is over: assign fdt_reset = ~after_hysteresis && mod_type == `TAGSIM_LISTEN; always @(negedge adc_clk) begin if (fdt_reset) begin fdt_counter <= 11'd0; fdt_elapsed <= 1'b0; fdt_indicator <= 1'b0; end else begin if(fdt_counter == `FDT_COUNT) begin if(~fdt_elapsed) // just reached fdt. begin mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time sub_carrier_cnt <= 4'd0; // subcarrier phase in sync with start of modulation fdt_elapsed <= 1'b1; end else begin sub_carrier_cnt <= sub_carrier_cnt + 1; end end else begin fdt_counter <= fdt_counter + 1; end end if(fdt_counter == `FDT_INDICATOR_COUNT) fdt_indicator <= 1'b1; end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PM3 -> Reader or Tag // assign a modulation signal to the antenna. This signal is either a delayed signal (to achieve fdt when sending to a reader) // or undelayed when sending to a tag reg mod_sig_coil; always @(negedge adc_clk) begin if (mod_type == `TAGSIM_MOD) // need to take care of proper fdt timing begin if(fdt_counter == `FDT_COUNT) begin if(fdt_elapsed) begin if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig; end else begin mod_sig_coil <= mod_sig; // just reached fdt. Immediately assign signal to coil end end end else // other modes: don't delay begin mod_sig_coil <= ssp_dout; end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PM3 -> Reader // determine the required delay in the mod_sig_buf (set mod_sig_ptr). reg temp_buffer_reset; always @(negedge adc_clk) begin if(fdt_reset) begin mod_sig_ptr <= 5'd0; temp_buffer_reset = 1'b0; end else begin if(fdt_counter == `FDT_COUNT && ~fdt_elapsed) // if we just reached fdt if(~(| mod_sig_ptr[4:0])) mod_sig_ptr <= 5'd8; // ... but didn't buffer a 1 yet, delay next 1 by n*128 ticks. else temp_buffer_reset = 1'b1; // else no need for further delays. if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge. begin if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt is reached. if (mod_sig_ptr == 5'd31) mod_sig_ptr <= 5'd0; // buffer overflow - data loss. else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). mod_sig_ptr always points ahead of first 1. else if(fdt_elapsed && ~temp_buffer_reset) begin // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen // at intervals of 8 * 16 = 128 adc_clk ticks (as defined in ISO14443-3) if(ssp_dout) temp_buffer_reset = 1'b1; if(mod_sig_ptr == 5'd1) mod_sig_ptr <= 5'd8; // still nothing received, need to go for the next interval else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer. end end end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // FPGA -> ARM communication: // buffer 8 bits data to be sent to ARM. Shift them out bit by bit. reg [7:0] to_arm; always @(negedge adc_clk) begin if (negedge_cnt[5:0] == 6'd63) // fill the buffer begin if (mod_type == `SNIFFER) begin if(deep_modulation) // a reader is sending (or there's no field at all) begin to_arm <= {reader_data[3:0], 4'b0000}; // don't send tag data end else begin to_arm <= {reader_data[3:0], tag_data[3:0]}; end end else begin to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; // feedback timing information end end if(negedge_cnt[2:0] == 3'b000 && mod_type == `SNIFFER) // shift at double speed begin // Don't shift if we just loaded new data, obviously. if(negedge_cnt[5:0] != 6'd0) begin to_arm[7:1] <= to_arm[6:0]; end end if(negedge_cnt[3:0] == 4'b0000 && mod_type != `SNIFFER) begin // Don't shift if we just loaded new data, obviously. if(negedge_cnt[6:0] != 7'd0) begin to_arm[7:1] <= to_arm[6:0]; end end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // FPGA <-> ARM communication: // generate a ssp clock and ssp frame signal for the synchronous transfer from/to the ARM reg ssp_clk; reg ssp_frame; always @(negedge adc_clk) begin if(mod_type == `SNIFFER) // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)): begin if(negedge_cnt[2:0] == 3'd0) ssp_clk <= 1'b1; if(negedge_cnt[2:0] == 3'd4) ssp_clk <= 1'b0; if(negedge_cnt[5:0] == 6'd0) // ssp_frame rising edge indicates start of frame ssp_frame <= 1'b1; if(negedge_cnt[5:0] == 6'd8) ssp_frame <= 1'b0; end else // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128): begin if(negedge_cnt[3:0] == 4'd0) ssp_clk <= 1'b1; if(negedge_cnt[3:0] == 4'd8) ssp_clk <= 1'b0; if(negedge_cnt[6:0] == 7'd7) // ssp_frame rising edge indicates start of frame ssp_frame <= 1'b1; if(negedge_cnt[6:0] == 7'd23) ssp_frame <= 1'b0; end end //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // FPGA -> ARM communication: // select the data to be sent to ARM reg bit_to_arm; reg sendbit; always @(negedge adc_clk) begin if(negedge_cnt[3:0] == 4'd0) begin // What do we communicate to the ARM if(mod_type == `TAGSIM_LISTEN) sendbit = after_hysteresis; else if(mod_type == `TAGSIM_MOD) /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh? else */ sendbit = fdt_indicator; else if (mod_type == `READER_LISTEN) sendbit = curbit; else sendbit = 1'b0; end if(mod_type == `SNIFFER) // send sampled reader and tag data: bit_to_arm = to_arm[7]; else if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset) // send timing information: bit_to_arm = to_arm[7]; else // send data or fdt_indicator bit_to_arm = sendbit; end assign ssp_din = bit_to_arm; // Subcarrier (adc_clk/16, for TAGSIM_MOD only). wire sub_carrier; assign sub_carrier = ~sub_carrier_cnt[3]; // in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN))); // Enable HF antenna drivers: assign pwr_oe1 = 1'b0; assign pwr_oe3 = 1'b0; // TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil) // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms assign pwr_oe4 = mod_sig_coil & sub_carrier & (mod_type == `TAGSIM_MOD); // This is all LF, so doesn't matter. assign pwr_oe2 = 1'b0; assign pwr_lo = 1'b0; assign dbg = negedge_cnt[3]; endmodule