// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
+// "hf 14a sniff"
//-----------------------------------------------------------------------------
void RAMFUNC SniffIso14443a(uint8_t param) {
// param:
UartInit(receivedCmd, receivedCmdPar);
// Setup and start DMA.
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
}
} // main cycle
+ if (MF_DBGLEVEL >= 1) {
+ Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+ Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+ }
FpgaDisableSscDma();
- LEDsoff();
-
- Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
- Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
set_tracing(FALSE);
}
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
- //Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2
+ //Here, we collect CUID, NT, NR, AR, CUID, NT2, NR2, AR2
// This can be used in a reader-only attack.
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
uint8_t sak = 0;
-
+ uint32_t cuid = 0;
+ uint32_t nonce = 0;
+
// PACK response to PWD AUTH for EV1/NTAG
uint8_t response8[4] = {0,0,0,0};
// Counter for EV1/NTAG
// For UID size 7,
uint8_t response2a[5] = {0x00};
- if (flags & FLAG_7B_UID_IN_DATA) {
+ if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
response2[0] = 0x88; // Cascade Tag marker
response2[1] = data[0];
response2[2] = data[1];
// Configure the ATQA and SAK accordingly
response1[0] |= 0x40;
sak |= 0x04;
+
+ cuid = bytes_to_num(data+3, 4);
} else {
memcpy(response2, data, 4);
// Configure the ATQA and SAK accordingly
response1[0] &= 0xBF;
sak &= 0xFB;
+ cuid = bytes_to_num(data, 4);
}
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
// TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
+ // the randon nonce
+ nonce = bytes_to_num(response5, 4);
+
// Prepare GET_VERSION (different for UL EV-1 / NTAG)
//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
//uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
DbpString("Button press");
break;
}
-
+
+ // incease nonce at every command recieved
+ nonce++;
+ num_to_bytes(nonce, 4, response5);
+
p_response = NULL;
// Okay, look at the command now.
} else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
- } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request
-
+ } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request
if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
uint8_t emdata[10];
emlGetMemBt( emdata, 0, 8 );
}
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
- if(flags & FLAG_NR_AR_ATTACK ) {
+ if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
if(ar_nr_collected < 2){
- // Avoid duplicates... probably not necessary, nr should vary.
- //if(ar_nr_responses[3] != nr){
- ar_nr_responses[ar_nr_collected*4] = 0;
- ar_nr_responses[ar_nr_collected*4+1] = nonce;
- ar_nr_responses[ar_nr_collected*4+2] = nr;
- ar_nr_responses[ar_nr_collected*4+3] = ar;
- ar_nr_collected++;
- //}
+ ar_nr_responses[ar_nr_collected*4] = cuid;
+ ar_nr_responses[ar_nr_collected*4+1] = nonce;
+ ar_nr_responses[ar_nr_collected*4+2] = nr;
+ ar_nr_responses[ar_nr_collected*4+3] = ar;
+ ar_nr_collected++;
}
-
if(ar_nr_collected > 1 ) {
- if (MF_DBGLEVEL >= 2) {
+ if (MF_DBGLEVEL >= 2 && !(flags & FLAG_INTERACTIVE)) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // CUID
ar_nr_responses[7] // NR2
);
}
- uint8_t len = ar_nr_collected*5*4;
- cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+ uint8_t len = ar_nr_collected*4*4;
+ cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
ar_nr_collected = 0;
memset(ar_nr_responses, 0x00, len);
}
}
+
} else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
} else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
if ( tagType == 7 ) {
// Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; }
+ // comment this limit if you want to simulation longer
+ if (!tracing) {
+ Dbprintf("Trace Full. Simulation stopped.");
+ break;
+ }
// comment this limit if you want to simulation longer
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par);
}
-
- // comment this limit if you want to simulation longer
- if (!tracing) {
- Dbprintf("Trace Full. Simulation stopped.");
- break;
- }
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
// wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
- for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
+ for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
if (AT91C_BASE_SSC->SSC_RHR) break;
}
}
void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
+
CodeIso14443aBitsAsReaderPar(frame, bits, par);
-
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
if(trigger) LED_A_ON();
- // Log reader command in trace buffer
- //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
}
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
- // Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE] = {0x00};
- GetParity(frame, len/8, par);
- ReaderTransmitBitsPar(frame, len, par, timing);
+ // Generate parity and redirect
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(frame, len/8, par);
+ ReaderTransmitBitsPar(frame, len, par, timing);
}
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
- // Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE] = {0x00};
- GetParity(frame, len, par);
- ReaderTransmitBitsPar(frame, len*8, par, timing);
+ // Generate parity and redirect
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(frame, len, par);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
uint32_t nttmp2 = nt2;
for (i = 1; i < (32768/8); ++i) {
- nttmp1 = prng_successor(nttmp1, 1);
- if (nttmp1 == nt2) return i;
- nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
void ReaderMifare(bool first_try, uint8_t block ) {
- //uint8_t mf_auth[] = { MIFARE_AUTH_KEYA,0x00,0xf5,0x7b };
uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
uint16_t unexpected_random = 0;
uint16_t sync_tries = 0;
- // static variables here, is re-used in the next call?
+ // static variables here, is re-used in the next call
static uint32_t nt_attacked = 0;
static uint32_t sync_time = 0;
static uint32_t sync_cycles = 0;
#define PRNG_SEQUENCE_LENGTH (1 << 16)
#define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
#define MAX_SYNC_TRIES 32
- #define MAX_STRATEGY 3
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
mf_nr_ar3 = 0;
nt_attacked = 0;
par_low = 0;
-
- Dbprintf("FIRST: sync_time - %08X", sync_time);
} else {
// we were unsuccessful on a previous call.
// Try another READER nonce (first 3 parity bits remain the same)
mf_nr_ar[3] &= 0x1F;
- if (MF_DBGLEVEL >= 1) Dbprintf("\nNumber of sent auth requestes: %u", i);
+ if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
uint8_t buf[28] = {0x00};
memset(buf, 0x00, sizeof(buf));
uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
- uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k (4b UID)
- uint8_t sak_4[] = {0x08, 0x00, 0x00}; // Mifare Classic
- uint8_t sak_7[] = {0x08, 0x00, 0x00}; // CL2 - 7b uid
- uint8_t sak_10[] = {0x08, 0x00, 0x00}; // CL3 - 10b uid
+ uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k
+ uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
+ uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
+ uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
//uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
//uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
- // Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2
+ // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
// This can be used in a reader-only attack.
- uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0};
+ uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
// Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+ ar_nr_responses[1] = nonce;
//-- Determine the UID
// Can be set from emulator memory or incoming data
// Length: 4,7,or 10 bytes
- if ( flags & FLAG_UID_IN_EMUL ) {
- emlGetMemBt(rUIDBCC1, 0, 4);
- _UID_LEN = 4;
- } else if (flags & FLAG_4B_UID_IN_DATA) {
+ if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
+ emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
+
+ if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
memcpy(rUIDBCC1, datain, 4);
_UID_LEN = 4;
- } else if (flags & FLAG_7B_UID_IN_DATA) {
+ } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
memcpy(&rUIDBCC1[1], datain, 3);
memcpy( rUIDBCC2, datain+3, 4);
_UID_LEN = 7;
- } else if (flags & FLAG_10B_UID_IN_DATA) {
+ } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
memcpy(&rUIDBCC1[1], datain, 3);
- memcpy(&rUIDBCC2[1], datain+3, 4);
- memcpy( rUIDBCC3, datain+7, 4);
+ memcpy(&rUIDBCC2[1], datain+3, 3);
+ memcpy( rUIDBCC3, datain+6, 4);
_UID_LEN = 10;
}
- /*
- * Save cuid to collected response array.
- * Set XOR BCC (fifth byte) and modify the ATQA for 4,7 or 10-byte UID
- atqa[] = 0x04, 0x00;
- sak = 0x08;
- if (flags & FLAG_7B_UID_IN_DATA) {
- atqa[0] |= 0x40;
- sak |= 0x04;
- } else {
- atqa[0] &= 0xBF;
- sak &= 0xFB;
-
- // Prepare the mandatory SAK (for 4 and 7 byte UID)
- uint8_t response3[3] = {sak, 0x00, 0x00};
- ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
- */
switch (_UID_LEN) {
case 4:
- atqa[0] &= 0xBF;
- sak_4[0] &= 0xFB;
- ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
-
+ sak_4[0] &= 0xFB;
// save CUID
ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4);
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- if (MF_DBGLEVEL >= 1) {
+ if (MF_DBGLEVEL >= 2) {
Dbprintf("4B UID: %02x%02x%02x%02x",
rUIDBCC1[0],
rUIDBCC1[1],
break;
case 7:
atqa[0] |= 0x40;
- sak_7[0] |= 0x04;
- ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
-
+ sak_7[0] &= 0xFB;
// save CUID
- ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);
-
- rUIDBCC1[0] = 0x88; // CascadeTag, CT
+ ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);
+ // CascadeTag, CT
+ rUIDBCC1[0] = 0x88;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
- if (MF_DBGLEVEL >= 1) {
+ if (MF_DBGLEVEL >= 2) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
- //rUIDBCC1[0],
rUIDBCC1[1],
rUIDBCC1[2],
rUIDBCC1[3],
}
break;
case 10:
- atqa[0] |= 0x40;
- sak_10[0] |= 0x04;
- ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
-
+ atqa[0] |= 0x80;
+ sak_10[0] &= 0xFB;
// save CUID
ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4);
- rUIDBCC1[0] = 0x88; // CascadeTag, CT
+ // CascadeTag, CT
+ rUIDBCC1[0] = 0x88;
+ rUIDBCC2[0] = 0x88;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
- rUIDBCC2[0] = 0x88; // CascadeTag, CT
- // BCC
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
- if (MF_DBGLEVEL >= 1) {
+
+ if (MF_DBGLEVEL >= 2) {
Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- //rUIDBCC1[0],
rUIDBCC1[1],
rUIDBCC1[2],
rUIDBCC1[3],
- //rUIDBCC2[0],
rUIDBCC2[1],
rUIDBCC2[2],
rUIDBCC2[3],
default:
break;
}
-
+ // calc some crcs
+ ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
+ ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
+ ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
+
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
}
// REQ or WUP request in ANY state and WUP in HALTED state
+ // this if-statement doesn't match the specification above. (iceman)
if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
selTimer = GetTickCount();
EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
crypto1_destroy(pcs);
cardAUTHKEY = 0xff;
LEDsoff();
+ nonce++;
continue;
}
continue;
default:break;
}
- } else {
- cardSTATE_TO_IDLE();
- }
+ }
+ cardSTATE_TO_IDLE();
break;
}
case MFEMUL_SELECT3:{
LED_B_ON();
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
break;
- } else {
- cardSTATE_TO_IDLE();
}
+ cardSTATE_TO_IDLE();
break;
}
case MFEMUL_AUTH1:{
break;
}
- uint32_t ar = bytes_to_num(receivedCmd, 4);
- uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
+ uint32_t nr = bytes_to_num(receivedCmd, 4);
+ uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
//Collect AR/NR
//if(ar_nr_collected < 2 && cardAUTHSC == 2){
- if(ar_nr_collected < 2) {
- if(ar_nr_responses[2] != ar) {
- // Avoid duplicates... probably not necessary, ar should vary.
- //ar_nr_responses[ar_nr_collected*5] = 0;
- //ar_nr_responses[ar_nr_collected*5+1] = 0;
- ar_nr_responses[ar_nr_collected*5+2] = nonce;
- ar_nr_responses[ar_nr_collected*5+3] = nr;
- ar_nr_responses[ar_nr_collected*5+4] = ar;
+ if(ar_nr_collected < 2) {
+ //if(ar_nr_responses[2] != nr) {
+ ar_nr_responses[ar_nr_collected*4] = cuid;
+ ar_nr_responses[ar_nr_collected*4+1] = nonce;
+ ar_nr_responses[ar_nr_collected*4+2] = nr;
+ ar_nr_responses[ar_nr_collected*4+3] = ar;
ar_nr_collected++;
- }
+ //}
+
// Interactive mode flag, means we need to send ACK
- finished = (flags & FLAG_INTERACTIVE && ar_nr_collected == 2);
+ finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2);
}
/*
crypto1_word(pcs, ar , 1);
num_to_bytes(ans, 4, rAUTH_AT);
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
-
+
if (MF_DBGLEVEL >= 4) {
Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
cardAUTHSC,
}
// Interactive mode flag, means we need to send ACK
- if(flags & FLAG_INTERACTIVE) {
+ if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) {
//May just aswell send the collected ar_nr in the response aswell
- uint8_t len = ar_nr_collected*5*4;
+ uint8_t len = ar_nr_collected * 4 * 4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
}
- if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
+ if( ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) && MF_DBGLEVEL >= 1 ) {
if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+ Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // CUID
- ar_nr_responses[1], // NT
- ar_nr_responses[2], // AR1
- ar_nr_responses[3], // NR1
- ar_nr_responses[4], // AR2
- ar_nr_responses[5] // NR2
+ ar_nr_responses[1], // NT1
+ ar_nr_responses[2], // NR1
+ ar_nr_responses[3], // AR1
+ //ar_nr_responses[4], // CUID2
+ ar_nr_responses[5], // NT2
+ ar_nr_responses[6], // NR2
+ ar_nr_responses[7] // AR2
);
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
- if(ar_nr_collected > 0 ) {
- Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+ if(ar_nr_collected == 1 ) {
+ Dbprintf("Only got these: UID=%08x, nonce=%08x, NR1=%08x, AR1=%08x",
ar_nr_responses[0], // CUID
ar_nr_responses[1], // NT
- ar_nr_responses[2], // AR1
- ar_nr_responses[3] // NR1
+ ar_nr_responses[2], // NR1
+ ar_nr_responses[3] // AR1
);
}
}
//
// if no activity for 2sec, it sends the collected data to the client.
//-----------------------------------------------------------------------------
+// "hf mf sniff"
void RAMFUNC SniffMifare(uint8_t param) {
- // param:
- // bit 0 - trigger from first card answer
- // bit 1 - trigger from first reader 7-bit request
+
LEDsoff();
// free eventually allocated BigBuf memory
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
- // set transfer address and number of bytes. Start transfer.
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ // Setup and start DMA.
+ // set transfer address and number of bytes. Start transfer.
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
LED_D_OFF();
maxDataLen = 0;
ReaderIsActive = FALSE;
TagIsActive = FALSE;
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
+ // Setup and start DMA. set transfer address and number of bytes. Start transfer.
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
}
}
data = dmaBuf;
} // main cycle
-
+
+ if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+
FpgaDisableSscDma();
MfSniffEnd();
- if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(FALSE);