// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <pthread.h>
-#include <locale.h>
-#include <math.h>
-#include "proxmark3.h"
-#include "cmdmain.h"
-#include "ui.h"
-#include "util.h"
-#include "nonce2key/crapto1.h"
-#include "nonce2key/crypto1_bs.h"
-#include "parity.h"
-#ifdef __WIN32
- #include <windows.h>
-#endif
-// don't include for APPLE/mac which has malloc stuff elsewhere.
-#ifndef __APPLE__
- #include <malloc.h>
-#endif
-#include <assert.h>
+#include "cmdhfmfhard.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
-#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
-#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
+#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
+#define CRACKING_THRESHOLD 39.00f // as 2^39
#define END_OF_LIST_MARKER 0xFFFFFFFF
float score1, score2;
} noncelist_t;
-typedef struct check_args {
- uint32_t next_fivehundred;
- uint32_t total_num_nonces;
- uint32_t total_added_nonces;
- uint32_t idx;
-} check_args_t;
-
static size_t nonces_to_bruteforce = 0;
static noncelistentry_t *brute_force_nonces[256];
static uint32_t cuid = 0;
static partial_indexed_statelist_t statelist_bitflip;
static statelist_t *candidates = NULL;
-bool thread_check_started = false;
-bool thread_check_done = false;
-bool cracking = false;
bool field_off = false;
-pthread_t thread_check;
-check_args_t cargs;
-
-static void* check_thread(void*);
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
double p_T_is_k = 0;
for (uint16_t i = 0; i <= 256; i++) {
if (p_K[i] != 0.0) {
- p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
+ double tmp = p_hypergeometric(N, i, n, k);
+ if (tmp != 0.0)
+ p_T_is_k += p_K[i] * tmp;
}
}
return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
}
}
best_first_bytes[j] = i;
- }
+ }
// determine how many are above the CONFIDENCE_THRESHOLD
uint16_t num_good_nonces = 0;
}
// swap best possible first byte to the pole position
+ if (best_first_byte != 0) {
uint16_t temp = best_first_bytes[0];
best_first_bytes[0] = best_first_bytes[best_first_byte];
best_first_bytes[best_first_byte] = temp;
+ }
}
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
- total_num_nonces,
+ total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
UsbCommand resp;
field_off = false;
- cracking = false;
- thread_check_started = false;
- thread_check_done = false;
printf("Acquiring nonces...\n");
- clearCommandBuffer();
-
do {
- if (cracking) {
- sleep(3);
- continue;
- }
-
flags = 0;
flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
memcpy(c.d.asBytes, key, 6);
+ clearCommandBuffer();
SendCommand(&c);
if (field_off) finished = true;
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
fwrite(&trgKeyType, 1, 1, fnonces);
+ fflush(fnonces);
}
}
if (nonce_file_write && fnonces) {
fwrite(bufp, 1, 9, fnonces);
+ fflush(fnonces);
}
-
+
bufp += 9;
}
total_num_nonces += num_acquired_nonces;
}
-
+
if (first_byte_num == 256 && !field_off) {
// printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
if (!filter_flip_checked) {
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
- total_num_nonces,
+ printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
total_added_nonces,
+ NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
}
- if (thread_check_started) {
- if (thread_check_done) {
- //printf ("Detect check thread end ..\n");
- pthread_join (thread_check, 0);
- idx = cargs.idx;
- thread_check_started = thread_check_done = false;
- }
- } else {
- //printf ("Starting check thread ...\n");
- memset (&cargs, 0, sizeof (cargs));
+ if (total_added_nonces >= (NONCES_THRESHOLD * idx))
+ {
+ num_good_first_bytes = estimate_second_byte_sum();
+ clock_t time1 = clock();
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
- // set arguments
- cargs.next_fivehundred = next_fivehundred;
- cargs.total_num_nonces = total_num_nonces;
- cargs.total_added_nonces = total_added_nonces;
- cargs.idx = idx;
+ if (cracking || known_target_key != -1) {
+ field_off = brute_force(); // switch off field with next SendCommand and then finish
+ }
- pthread_create (&thread_check, NULL, check_thread, (void *)&cargs);
- thread_check_started = true;
+ idx++;
+ }
}
- }
if (!initialize) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
- if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
- fclose(fnonces);
- fnonces = NULL;
- }
+ if (fnonces) fclose(fnonces);
return 1;
}
if (resp.arg[0]) {
- if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
- fclose(fnonces);
- fnonces = NULL;
- }
+ if (fnonces) fclose(fnonces);
return resp.arg[0]; // error during nested_hard
}
}
} while (!finished);
- if (nonce_file_write && fnonces) {
+ if (nonce_file_write && fnonces)
fclose(fnonces);
- fnonces = NULL;
- }
time1 = clock() - time1;
if ( time1 > 0 ) {
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
- PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
+ PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
count,
log(count)/log(2),
maximum_states,
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
- printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+ printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
init_statelist_cache();
for (uint16_t p = 0; p <= 16; p += 2) {
for (uint16_t q = 0; q <= 16; q += 2) {
if (p*(16-q) + (16-p)*q == sum_a0) {
- printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
- p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+ // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
+ // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
for (uint16_t r = 0; r <= 16; r += 2) {
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
current_candidates = add_more_candidates(current_candidates);
+ if (current_candidates) {
// check for the smallest partial statelist. Try this first - it might give 0 candidates
// and eliminate the need to calculate the other part
if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
< MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
- add_matching_states(current_candidates, p, r, ODD_STATE);
+ add_matching_states(current_candidates, p, r, ODD_STATE);
if(current_candidates->len[ODD_STATE]) {
- add_matching_states(current_candidates, q, s, EVEN_STATE);
+ add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[EVEN_STATE] = 0;
uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
}
}
}
+ }
maximum_states = 0;
- for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+ unsigned int n = 0;
+ for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
- float kcalc = log(maximum_states)/log(2.0);
+ float kcalc = log(maximum_states)/log(2);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
if (maximum_states != 0) {
fprintf(fstats, "%1.1f;", 0.0);
}
}
- if (kcalc < 39.00f) return true;
+ if (kcalc < CRACKING_THRESHOLD) return true;
return false;
}
return key;
}
-static void* check_thread(void* x)
-{
- check_args_t *cargs = (check_args_t *)x;
-
- // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
- num_good_first_bytes = estimate_second_byte_sum();
-
- if (cargs->total_added_nonces > MIN_NONCES_REQUIRED)
- {
- if (cargs->total_added_nonces > (NONCES_TRIGGER*cargs->idx) || num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
- clock_t time1 = clock();
- cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
- if (known_target_key != -1) brute_force();
- cargs->idx++;
- }
-
- if (cracking) {
- field_off = brute_force(); // switch off field with next SendCommand and then finish
- cracking = false;
- }
- }
-
- thread_check_done = true;
-
- return (void *) NULL;
-}
-
static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id;
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
PrintAndLog("Brute force phase starting.");
- time_t start, end;
- time(&start);
+
+ clock_t time1 = clock();
keys_found = 0;
foundkey = 0;
crypto1_bs_init();
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
- PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
// convert to 32 bit little-endian
crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
// count number of states to go
bucket_count = 0;
- for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ for (statelist_t *p = candidates; p != NULL && bucket_count < 128; p = p->next) {
buckets[bucket_count] = p;
bucket_count++;
}
+ buckets[bucket_count] = NULL;
#ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF);
pthread_join(threads[i], 0);
}
- time(&end);
- double elapsed_time = difftime(end, start);
-
+ time1 = clock() - time1;
+ if ( time1 < 0 ) time1 = -1;
+
if (keys_found && TestIfKeyExists(foundkey)) {
- PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
+ PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC);
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
ret = true;
} else {
- PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time);
+ PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC);
}
// reset this counter for the next call
fstats = NULL;
} else {
init_nonce_memory();
- if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
if (read_nonce_file() != 0) {
return 3;
}
Check_for_FilterFlipProperties();
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
- } else { // acquire nonces.
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ clock_t time1 = clock();
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if (time1 > 0)
+ PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
+
+ if (cracking || known_target_key != -1) {
+ brute_force();
+ }
+
+ } else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
return is_OK;
// best_first_bytes[8],
// best_first_bytes[9] );
- //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
- //clock_t time1 = clock();
- //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- //time1 = clock() - time1;
- //if ( time1 > 0 )
- //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
- //brute_force();
-
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
}
return 0;
}
-
-