//-----------------------------------------------------------------------------
// Copyright (C) 2015 piwi
// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
+// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <pthread.h>
-#include <locale.h>
-#include <math.h>
-#include "proxmark3.h"
-#include "cmdmain.h"
-#include "ui.h"
-#include "util.h"
-#include "nonce2key/crapto1.h"
-#include "nonce2key/crypto1_bs.h"
-#include "parity.h"
-#ifdef __WIN32
- #include <windows.h>
-#endif
-// don't include for APPLE/mac which has malloc stuff elsewhere.
-#ifndef __APPLE__
- #include <malloc.h>
-#endif
-#include <assert.h>
+#include "cmdhfmfhard.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
-#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
+#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
+#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
+#define CRACKING_THRESHOLD 38.00f // as 2^38
#define END_OF_LIST_MARKER 0xFFFFFFFF
static partial_indexed_statelist_t statelist_bitflip;
static statelist_t *candidates = NULL;
+bool field_off = false;
+
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
if (k > K || p_K[K] == 0.0) return 0.0;
double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+ if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
+
double p_S_is_K = p_K[K];
double p_T_is_k = 0;
for (uint16_t i = 0; i <= 256; i++) {
p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
}
}
+ if (p_T_is_k == 0.0) return 0.0;
return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
}
-
static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
{
static const uint_fast8_t common_bits_LUT[256] = {
}
}
best_first_bytes[j] = i;
- }
+ }
// determine how many are above the CONFIDENCE_THRESHOLD
uint16_t num_good_nonces = 0;
}
// swap best possible first byte to the pole position
+ if (best_first_byte != 0) {
uint16_t temp = best_first_bytes[0];
best_first_bytes[0] = best_first_bytes[best_first_byte];
best_first_bytes[best_first_byte] = temp;
+ }
}
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
- total_num_nonces,
+ total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
{
clock_t time1 = clock();
bool initialize = true;
- bool field_off = false;
bool finished = false;
bool filter_flip_checked = false;
uint32_t flags = 0;
uint32_t idx = 1;
FILE *fnonces = NULL;
UsbCommand resp;
-
- printf("Acquiring nonces...\n");
+ field_off = false;
+ UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 0}};
+ memcpy(c.d.asBytes, key, 6);
- clearCommandBuffer();
-
+ printf("Acquiring nonces...\n");
do {
flags = 0;
flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
- UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
- memcpy(c.d.asBytes, key, 6);
-
+ c.arg[2] = flags;
+ clearCommandBuffer();
SendCommand(&c);
- if (field_off) finished = true;
-
- if (initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
- if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+ if (field_off) break;
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
+ if (fnonces) fclose(fnonces);
+ return 1;
+ }
+ if (resp.arg[0]) {
+ if (fnonces) fclose(fnonces);
+ return resp.arg[0]; // error during nested_hard
+ }
+
+ if (initialize) {
+ // global var CUID
cuid = resp.arg[1];
- // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
if (nonce_file_write && fnonces == NULL) {
if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
PrintAndLog("Could not create file nonces.bin");
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
fwrite(&trgKeyType, 1, 1, fnonces);
+ fflush(fnonces);
}
+ initialize = false;
}
-
- if (!initialize) {
- uint32_t nt_enc1, nt_enc2;
- uint8_t par_enc;
- uint16_t num_acquired_nonces = resp.arg[2];
- uint8_t *bufp = resp.d.asBytes;
- for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
- nt_enc1 = bytes_to_num(bufp, 4);
- nt_enc2 = bytes_to_num(bufp+4, 4);
- par_enc = bytes_to_num(bufp+8, 1);
-
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
- total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
- total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
-
- if (nonce_file_write) {
- fwrite(bufp, 1, 9, fnonces);
- }
-
- bufp += 9;
+
+ uint32_t nt_enc1, nt_enc2;
+ uint8_t par_enc;
+ uint16_t num_acquired_nonces = resp.arg[2];
+ uint8_t *bufp = resp.d.asBytes;
+ for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
+ nt_enc1 = bytes_to_num(bufp, 4);
+ nt_enc2 = bytes_to_num(bufp+4, 4);
+ par_enc = bytes_to_num(bufp+8, 1);
+
+ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
+ total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
+ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
+ total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+
+ if (nonce_file_write && fnonces) {
+ fwrite(bufp, 1, 9, fnonces);
+ fflush(fnonces);
}
-
- total_num_nonces += num_acquired_nonces;
+ bufp += 9;
}
-
- if (first_byte_num == 256 ) {
- // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+ total_num_nonces += num_acquired_nonces;
+
+ if (first_byte_num == 256) {
+
if (!filter_flip_checked) {
Check_for_FilterFlipProperties();
filter_flip_checked = true;
}
+
num_good_first_bytes = estimate_second_byte_sum();
+
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
- total_num_nonces,
+ printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). #bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
total_added_nonces,
+ NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
-
- if (total_added_nonces > (2500*idx)) {
- clock_t time1 = clock();
- field_off = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
- if (known_target_key != -1) brute_force();
- idx++;
- }
- }
- if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
- field_off = true; // switch off field with next SendCommand and then finish
}
- if (field_off) {
- field_off = finished = brute_force();
- }
- }
-
- if (!initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
- fclose(fnonces);
- return 1;
- }
- if (resp.arg[0]) {
- fclose(fnonces);
- return resp.arg[0]; // error during nested_hard
+ if (total_added_nonces >= (NONCES_THRESHOLD * idx) && num_good_first_bytes > 0 ) {
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ if (cracking || known_target_key != -1) {
+ field_off = brute_force(); // switch off field with next SendCommand and then finish
+ }
+ idx++;
}
}
- initialize = false;
-
} while (!finished);
-
- if (nonce_file_write) {
+ if (nonce_file_write && fnonces)
fclose(fnonces);
- }
time1 = clock() - time1;
if ( time1 > 0 ) {
static int init_partial_statelists(void)
{
const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
- const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+ const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
printf("Allocating memory for partial statelists...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
uint32_t search_mask = 0x000ffff0;
uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
- if (p2 != NULL) {
+ if (p1 != NULL && p2 != NULL) {
while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
|| !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
} else {
new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
}
+ if (!new_candidates) return NULL;
+
new_candidates->next = NULL;
new_candidates->len[ODD_STATE] = 0;
new_candidates->len[EVEN_STATE] = 0;
uint32_t state_odd = pcs->odd & 0x00ffffff;
uint32_t state_even = pcs->even & 0x00ffffff;
//printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
-
+ printf("Validating keysearch space\n");
uint64_t count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) {
bool found_odd = false;
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
- PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
+ PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
count,
log(count)/log(2),
maximum_states,
}
}
- printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
init_statelist_cache();
for (uint16_t p = 0; p <= 16; p += 2) {
for (uint16_t q = 0; q <= 16; q += 2) {
if (p*(16-q) + (16-p)*q == sum_a0) {
- printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
- p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+ // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
+ // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
for (uint16_t r = 0; r <= 16; r += 2) {
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
current_candidates = add_more_candidates(current_candidates);
+ if (current_candidates != NULL) {
// check for the smallest partial statelist. Try this first - it might give 0 candidates
// and eliminate the need to calculate the other part
if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
< MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
- add_matching_states(current_candidates, p, r, ODD_STATE);
+ add_matching_states(current_candidates, p, r, ODD_STATE);
if(current_candidates->len[ODD_STATE]) {
- add_matching_states(current_candidates, q, s, EVEN_STATE);
+ add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[EVEN_STATE] = 0;
uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
}
}
}
+ }
maximum_states = 0;
- for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+ unsigned int n = 0;
+ for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
- float kcalc = log(maximum_states)/log(2.0);
+
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ float kcalc = log(maximum_states)/log(2);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
if (maximum_states != 0) {
fprintf(fstats, "%1.1f;", 0.0);
}
}
- if (kcalc < 39.00f) return true;
+ if (kcalc < CRACKING_THRESHOLD) return true;
return false;
}
}
}
+#define MAX_BUCKETS 128
uint64_t foundkey = 0;
size_t keys_found = 0;
size_t bucket_count = 0;
-statelist_t* buckets[128];
+statelist_t* buckets[MAX_BUCKETS];
size_t total_states_tested = 0;
size_t thread_count = 4;
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
- bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
+ const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
size_t state_idx;
// set even bits
for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
return NULL;
}
-static bool brute_force(void)
-{
+static bool brute_force(void) {
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
ret = TestIfKeyExists(known_target_key);
} else {
PrintAndLog("Brute force phase starting.");
- time_t start, end;
- time(&start);
+
+ clock_t time1 = clock();
keys_found = 0;
foundkey = 0;
crypto1_bs_init();
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
- PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
// convert to 32 bit little-endian
crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
// count number of states to go
bucket_count = 0;
- for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
buckets[bucket_count] = p;
bucket_count++;
}
+ buckets[bucket_count] = NULL;
#ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF);
pthread_join(threads[i], 0);
}
- time(&end);
- double elapsed_time = difftime(end, start);
-
- if(keys_found){
- PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
+ time1 = clock() - time1;
+ PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
+
+ if (keys_found && TestIfKeyExists(foundkey)) {
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
- known_target_key = foundkey;
-
- ret = TestIfKeyExists(known_target_key);
-
- PrintAndLog("Check if key is found in the keyspace: %d", ret);
-
ret = true;
- } else {
- PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time);
- }
-
+ }
// reset this counter for the next call
nonces_to_bruteforce = 0;
}
-
return ret;
}
candidates = NULL;
}
fclose(fstats);
+ fstats = NULL;
} else {
init_nonce_memory();
- if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
if (read_nonce_file() != 0) {
return 3;
}
Check_for_FilterFlipProperties();
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
- } else { // acquire nonces.
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ clock_t time1 = clock();
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if (time1 > 0)
+ PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
+
+ if (cracking || known_target_key != -1) {
+ brute_force();
+ }
+
+ } else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
return is_OK;
}
//Tests();
-
- //PrintAndLog("");
- //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
- // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
- // best_first_bytes[0],
- // best_first_bytes[1],
- // best_first_bytes[2],
- // best_first_bytes[3],
- // best_first_bytes[4],
- // best_first_bytes[5],
- // best_first_bytes[6],
- // best_first_bytes[7],
- // best_first_bytes[8],
- // best_first_bytes[9] );
-
- //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
- //clock_t time1 = clock();
- //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- //time1 = clock() - time1;
- //if ( time1 > 0 )
- //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
- //brute_force();
-
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
}
return 0;
}
-
-