]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/lfops.c
Updated CHANGELOG to new release 3.0.0
[proxmark3-svn] / armsrc / lfops.c
index 397ea8475e8af050eab2670bece8f59b1555c0ac..566ba1d40982ce2a2cb2e368383b5dc533787d80 100644 (file)
 #include "hitag2.h"
 #include "crc16.h"
 #include "string.h"
 #include "hitag2.h"
 #include "crc16.h"
 #include "string.h"
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k_internal(bool silent)
-{
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int n = sizeof(BigBuf);
-       int i;
-
-       memset(dest, 0, n);
-       i = 0;
-       for(;;) {
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-                       AT91C_BASE_SSC->SSC_THR = 0x43;
-                       LED_D_ON();
-               }
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-                       dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       i++;
-                       LED_D_OFF();
-                       if (i >= n) break;
-               }
-       }
-       if( ! silent)
-       {
-               Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-                               dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-       }
-}
-
-void DoAcquisition125k(void)
-{
-       DoAcquisition125k_internal(false);
-}
-
-void SetupToAcquireRawAdcSamples(int divisor)
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
 {
 {
-       if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       else if (divisor == 0)
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       else
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 
 
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-}
+       int divisor_used = 95; // 125 KHz
+       // see if 'h' was specified
 
 
-void AcquireRawAdcSamples125k(int divisor)
-{
-       SetupToAcquireRawAdcSamples(divisor);
-       // Now call the acquisition routine
-       DoAcquisition125k_internal(false);
-}
+       if (command[strlen((char *) command) - 1] == 'h')
+               divisor_used = 88; // 134.8 KHz
 
 
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
-{
-       int at134khz;
+       sample_config sc = { 0,0,1, divisor_used, 0};
+       setSamplingConfig(&sc);
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
 
        /* Make sure the tag is reset */
 
        /* Make sure the tag is reset */
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        SpinDelay(2500);
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        SpinDelay(2500);
 
-       // see if 'h' was specified
-       if (command[strlen((char *) command) - 1] == 'h')
-               at134khz = TRUE;
-       else
-               at134khz = FALSE;
+       LFSetupFPGAForADC(sc.divisor, 1);
 
 
-       if (at134khz)
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       else
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
        // And a little more time for the tag to fully power up
        SpinDelay(2000);
 
        // And a little more time for the tag to fully power up
        SpinDelay(2000);
 
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
        // now modulate the reader field
        while(*command != '\0' && *command != ' ') {
                FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                LED_D_OFF();
                SpinDelayUs(delay_off);
        // now modulate the reader field
        while(*command != '\0' && *command != ' ') {
                FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                LED_D_OFF();
                SpinDelayUs(delay_off);
-               if (at134khz)
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               else
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
 
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
                LED_D_ON();
                if(*(command++) == '0')
                        SpinDelayUs(period_0);
                LED_D_ON();
                if(*(command++) == '0')
                        SpinDelayUs(period_0);
@@ -125,15 +67,12 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LED_D_OFF();
        SpinDelayUs(delay_off);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LED_D_OFF();
        SpinDelayUs(delay_off);
-       if (at134khz)
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       else
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
 
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
        // now do the read
 
        // now do the read
-       DoAcquisition125k();
+       DoAcquisition_config(false, 0);
 }
 
 /* blank r/w tag data stream
 }
 
 /* blank r/w tag data stream
@@ -151,15 +90,12 @@ void ReadTItag(void)
        // when we read a TI tag we sample the zerocross line at 2Mhz
        // TI tags modulate a 1 as 16 cycles of 123.2Khz
        // TI tags modulate a 0 as 16 cycles of 134.2Khz
        // when we read a TI tag we sample the zerocross line at 2Mhz
        // TI tags modulate a 1 as 16 cycles of 123.2Khz
        // TI tags modulate a 0 as 16 cycles of 134.2Khz
-       #define FSAMPLE 2000000
-       #define FREQLO 123200
-       #define FREQHI 134200
-
-       signed char *dest = (signed char *)BigBuf;
-       int n = sizeof(BigBuf);
-//     int *dest = GraphBuffer;
-//     int n = GraphTraceLen;
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
 
 
+       signed char *dest = (signed char *)BigBuf_get_addr();
+       uint16_t n = BigBuf_max_traceLen();
        // 128 bit shift register [shift3:shift2:shift1:shift0]
        uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
 
        // 128 bit shift register [shift3:shift2:shift1:shift0]
        uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
 
@@ -170,6 +106,7 @@ void ReadTItag(void)
        uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
 
        // TI tags charge at 134.2Khz
        uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
 
        // TI tags charge at 134.2Khz
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
 
        // Place FPGA in passthrough mode, in this mode the CROSS_LO line
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
 
        // Place FPGA in passthrough mode, in this mode the CROSS_LO line
@@ -194,10 +131,10 @@ void ReadTItag(void)
 
                                // TI bits are coming to us lsb first so shift them
                                // right through our 128 bit right shift register
 
                                // TI bits are coming to us lsb first so shift them
                                // right through our 128 bit right shift register
-                         shift0 = (shift0>>1) | (shift1 << 31);
-                         shift1 = (shift1>>1) | (shift2 << 31);
-                         shift2 = (shift2>>1) | (shift3 << 31);
-                         shift3 >>= 1;
+                               shift0 = (shift0>>1) | (shift1 << 31);
+                               shift1 = (shift1>>1) | (shift2 << 31);
+                               shift2 = (shift2>>1) | (shift3 << 31);
+                               shift3 >>= 1;
 
                                // check if the cycles fall close to the number
                                // expected for either the low or high frequency
 
                                // check if the cycles fall close to the number
                                // expected for either the low or high frequency
@@ -232,18 +169,18 @@ void ReadTItag(void)
        if (cycles!=0xF0B) {
                DbpString("Info: No valid tag detected.");
        } else {
        if (cycles!=0xF0B) {
                DbpString("Info: No valid tag detected.");
        } else {
-         // put 64 bit data into shift1 and shift0
-         shift0 = (shift0>>24) | (shift1 << 8);
-         shift1 = (shift1>>24) | (shift2 << 8);
+               // put 64 bit data into shift1 and shift0
+               shift0 = (shift0>>24) | (shift1 << 8);
+               shift1 = (shift1>>24) | (shift2 << 8);
 
                // align 16 bit crc into lower half of shift2
 
                // align 16 bit crc into lower half of shift2
-         shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+               shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
 
                // if r/w tag, check ident match
 
                // if r/w tag, check ident match
-               if ( shift3&(1<<15) ) {
+               if (shift3 & (1<<15) ) {
                        DbpString("Info: TI tag is rewriteable");
                        // only 15 bits compare, last bit of ident is not valid
                        DbpString("Info: TI tag is rewriteable");
                        // only 15 bits compare, last bit of ident is not valid
-                       if ( ((shift3>>16)^shift0)&0x7fff ) {
+                       if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
                                DbpString("Error: Ident mismatch!");
                        } else {
                                DbpString("Info: TI tag ident is valid");
                                DbpString("Error: Ident mismatch!");
                        } else {
                                DbpString("Info: TI tag ident is valid");
@@ -258,7 +195,7 @@ void ReadTItag(void)
                // calculate CRC
                uint32_t crc=0;
 
                // calculate CRC
                uint32_t crc=0;
 
-               crc = update_crc16(crc, (shift0)&0xff);
+               crc = update_crc16(crc, (shift0)&0xff);
                crc = update_crc16(crc, (shift0>>8)&0xff);
                crc = update_crc16(crc, (shift0>>16)&0xff);
                crc = update_crc16(crc, (shift0>>24)&0xff);
                crc = update_crc16(crc, (shift0>>8)&0xff);
                crc = update_crc16(crc, (shift0>>16)&0xff);
                crc = update_crc16(crc, (shift0>>24)&0xff);
@@ -268,7 +205,7 @@ void ReadTItag(void)
                crc = update_crc16(crc, (shift1>>24)&0xff);
 
                Dbprintf("Info: Tag data: %x%08x, crc=%x",
                crc = update_crc16(crc, (shift1>>24)&0xff);
 
                Dbprintf("Info: Tag data: %x%08x, crc=%x",
-                       (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+                                (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
                if (crc != (shift2&0xffff)) {
                        Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
                } else {
                if (crc != (shift2&0xffff)) {
                        Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
                } else {
@@ -307,10 +244,11 @@ void AcquireTiType(void)
        int i, j, n;
        // tag transmission is <20ms, sampling at 2M gives us 40K samples max
        // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
        int i, j, n;
        // tag transmission is <20ms, sampling at 2M gives us 40K samples max
        // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
      #define TIBUFLEN 1250
+ #define TIBUFLEN 1250
 
        // clear buffer
 
        // clear buffer
-       memset(BigBuf,0,sizeof(BigBuf));
+       uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+       BigBuf_Clear_ext(false);
 
        // Set up the synchronous serial port
        AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
 
        // Set up the synchronous serial port
        AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
@@ -358,7 +296,7 @@ void AcquireTiType(void)
        AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
 
        AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
 
-       char *dest = (char *)BigBuf;
+       char *dest = (char *)BigBuf_get_addr();
        n = TIBUFLEN*32;
        // unpack buffer
        for (i=TIBUFLEN-1; i>=0; i--) {
        n = TIBUFLEN*32;
        // unpack buffer
        for (i=TIBUFLEN-1; i>=0; i--) {
@@ -377,8 +315,9 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        if(crc == 0) {
        if(crc == 0) {
-               crc = update_crc16(crc, (idlo)&0xff);
+               crc = update_crc16(crc, (idlo)&0xff);
                crc = update_crc16(crc, (idlo>>8)&0xff);
                crc = update_crc16(crc, (idlo>>16)&0xff);
                crc = update_crc16(crc, (idlo>>24)&0xff);
                crc = update_crc16(crc, (idlo>>8)&0xff);
                crc = update_crc16(crc, (idlo>>16)&0xff);
                crc = update_crc16(crc, (idlo>>24)&0xff);
@@ -388,7 +327,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
                crc = update_crc16(crc, (idhi>>24)&0xff);
        }
        Dbprintf("Writing to tag: %x%08x, crc=%x",
                crc = update_crc16(crc, (idhi>>24)&0xff);
        }
        Dbprintf("Writing to tag: %x%08x, crc=%x",
-               (unsigned int) idhi, (unsigned int) idlo, crc);
+                       (unsigned int) idhi, (unsigned int) idlo, crc);
 
        // TI tags charge at 134.2Khz
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
 
        // TI tags charge at 134.2Khz
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
@@ -440,61 +379,66 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
        AcquireTiType();
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        AcquireTiType();
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       DbpString("Now use tiread to check");
+       DbpString("Now use `lf ti read` to check");
 }
 
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
        int i;
 }
 
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
        int i;
-       uint8_t *tab = (uint8_t *)BigBuf;
-    
+       uint8_t *tab = BigBuf_get_addr();
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-    
+
        AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
        AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-    
+
        AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
        AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-    
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()            HIGH(GPIO_SSC_DOUT)
-    
+
+ #define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)
+
        i = 0;
        for(;;) {
        i = 0;
        for(;;) {
+               //wait until SSC_CLK goes HIGH
                while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
                while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-                       if(BUTTON_PRESS()) {
+                       if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
+                               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                                DbpString("Stopped");
                                return;
                        }
                        WDT_HIT();
                }
                                DbpString("Stopped");
                                return;
                        }
                        WDT_HIT();
                }
-        
                if (ledcontrol)
                        LED_D_ON();
                if (ledcontrol)
                        LED_D_ON();
-        
+
                if(tab[i])
                        OPEN_COIL();
                else
                        SHORT_COIL();
                if(tab[i])
                        OPEN_COIL();
                else
                        SHORT_COIL();
-        
+
                if (ledcontrol)
                        LED_D_OFF();
                if (ledcontrol)
                        LED_D_OFF();
-        
+               //wait until SSC_CLK goes LOW
                while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
                while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
-                       if(BUTTON_PRESS()) {
+                       if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
                                DbpString("Stopped");
                                DbpString("Stopped");
+                               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                                return;
                        }
                        WDT_HIT();
                }
                                return;
                        }
                        WDT_HIT();
                }
-        
+
                i++;
                if(i == period) {
                i++;
                if(i == period) {
+
                        i = 0;
                        if (gap) {
                                SHORT_COIL();
                                SpinDelayUs(gap);
                        }
                }
                        i = 0;
                        if (gap) {
                                SHORT_COIL();
                                SpinDelayUs(gap);
                        }
                }
+
        }
 }
 
        }
 }
 
@@ -503,29 +447,31 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 {
 }
 
 {
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-       uint8_t *dest = (uint8_t *)BigBuf;
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+       uint8_t *dest = BigBuf_get_addr();
        int idx;
 
        // for when we want an fc8 pattern every 4 logical bits
        if(c==0) {
                dest[((*n)++)]=1;
                dest[((*n)++)]=1;
        int idx;
 
        // for when we want an fc8 pattern every 4 logical bits
        if(c==0) {
                dest[((*n)++)]=1;
                dest[((*n)++)]=1;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=1;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
        }
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
        }
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
+
+       //      an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
        if(c==8) {
                for (idx=0; idx<6; idx++) {
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
        if(c==8) {
                for (idx=0; idx<6; idx++) {
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
@@ -533,9 +479,11 @@ static void fc(int c, int *n) {
                }
        }
 
                }
        }
 
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+       //      an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
        if(c==10) {
                for (idx=0; idx<5; idx++) {
        if(c==10) {
                for (idx=0; idx<5; idx++) {
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
@@ -544,11 +492,39 @@ static void fc(int c, int *n) {
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
                }
        }
 }
                }
        }
 }
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) 
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfFC = fc/2;
+       uint8_t wavesPerClock = clock/fc;
+       uint8_t mod = clock % fc;    //modifier
+       uint8_t modAdj = fc/mod;     //how often to apply modifier
+       bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+       // loop through clock - step field clock
+       for (uint8_t idx=0; idx < wavesPerClock; idx++){
+               // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+               memset(dest+(*n), 0, fc-halfFC);  //in case of odd number use extra here
+               memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+               *n += fc;
+       }
+       if (mod>0) (*modCnt)++;
+       if ((mod>0) && modAdjOk){  //fsk2 
+               if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+                       memset(dest+(*n), 0, fc-halfFC);
+                       memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+                       *n += fc;
+               }
+       }
+       if (mod>0 && !modAdjOk){  //fsk1
+               memset(dest+(*n), 0, mod-(mod/2));
+               memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+               *n += mod;
+       }
+}
 
 // prepare a waveform pattern in the buffer based on the ID given then
 // simulate a HID tag until the button is pressed
 
 // prepare a waveform pattern in the buffer based on the ID given then
 // simulate a HID tag until the button is pressed
@@ -566,12 +542,12 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
        */
 
        if (hi>0xFFF) {
        */
 
        if (hi>0xFFF) {
-               DbpString("Tags can only have 44 bits.");
+               DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
                return;
        }
        fc(0,&n);
        // special start of frame marker containing invalid bit sequences
                return;
        }
        fc(0,&n);
        // special start of frame marker containing invalid bit sequences
-       fc(8,  &n);     fc(8,  &n);     // invalid
+       fc(8,  &n);     fc(8,  &n); // invalid
        fc(8,  &n);     fc(10, &n); // logical 0
        fc(10, &n);     fc(10, &n); // invalid
        fc(8,  &n);     fc(10, &n); // logical 0
        fc(8,  &n);     fc(10, &n); // logical 0
        fc(10, &n);     fc(10, &n); // invalid
        fc(8,  &n);     fc(10, &n); // logical 0
@@ -581,9 +557,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
        for (i=11; i>=0; i--) {
                if ((i%4)==3) fc(0,&n);
                if ((hi>>i)&1) {
        for (i=11; i>=0; i--) {
                if ((i%4)==3) fc(0,&n);
                if ((hi>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
+                       fc(10, &n); fc(8,  &n);         // low-high transition
                } else {
                } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
+                       fc(8,  &n); fc(10, &n);         // high-low transition
                }
        }
 
                }
        }
 
@@ -592,9 +568,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
        for (i=31; i>=0; i--) {
                if ((i%4)==3) fc(0,&n);
                if ((lo>>i)&1) {
        for (i=31; i>=0; i--) {
                if ((i%4)==3) fc(0,&n);
                if ((lo>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
+                       fc(10, &n); fc(8,  &n);         // low-high transition
                } else {
                } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
+                       fc(8,  &n); fc(10, &n);         // high-low transition
                }
        }
 
                }
        }
 
@@ -606,629 +582,840 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
                LED_A_OFF();
 }
 
                LED_A_OFF();
 }
 
-size_t fsk_demod(uint8_t * dest, size_t size)
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
 {
 {
-       uint32_t last_transition = 0;
-       uint32_t idx = 1;
-
-       // we don't care about actual value, only if it's more or less than a
-       // threshold essentially we capture zero crossings for later analysis
-       uint8_t threshold_value = 127;
-
-
-       // sync to first lo-hi transition, and threshold
-
-       //Need to threshold first sample
-       if(dest[0] < threshold_value) dest[0] = 0;
-       else dest[0] = 1;
+       int ledcontrol=1;
+       int n=0, i=0;
+       uint8_t fcHigh = arg1 >> 8;
+       uint8_t fcLow = arg1 & 0xFF;
+       uint16_t modCnt = 0;
+       uint8_t clk = arg2 & 0xFF;
+       uint8_t invert = (arg2 >> 8) & 1;
+
+       for (i=0; i<size; i++){
+               if (BitStream[i] == invert){
+                       fcAll(fcLow, &n, clk, &modCnt);
+               } else {
+                       fcAll(fcHigh, &n, clk, &modCnt);
+               }
+       }
+       Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+       /*Dbprintf("DEBUG: First 32:");
+       uint8_t *dest = BigBuf_get_addr();
+       i=0;
+       Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       i+=16;
+       Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       */
+       if (ledcontrol)
+               LED_A_ON();
 
 
-       size_t numBits = 0;
-       // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-       // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-       // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-       for(idx = 1; idx < size; idx++) {
-               // threshold current value
-               if (dest[idx] < threshold_value) dest[idx] = 0;
-               else dest[idx] = 1;
+       SimulateTagLowFrequency(n, 0, ledcontrol);
 
 
-               // Check for 0->1 transition
-               if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+       if (ledcontrol)
+               LED_A_OFF();
+}
 
 
-                       if (idx-last_transition <  9) {
-                                       dest[numBits]=1;
-                       } else {
-                                       dest[numBits]=0;
-                       }
-                       last_transition = idx;
-                       numBits++;
-               }
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       // c = current bit 1 or 0
+       if (manchester==1){
+               memset(dest+(*n), c, halfClk);
+               memset(dest+(*n) + halfClk, c^1, halfClk);
+       } else {
+               memset(dest+(*n), c, clock);
        }
        }
-       return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+       *n += clock;
 }
 
 }
 
-
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
 {
 {
-       uint8_t lastval=dest[0];
-       uint32_t idx=0;
-       size_t numBits=0;
-       uint32_t n=1;
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       if (c){
+               memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+               memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+       } else {
+               memset(dest+(*n), c ^ *phase, clock);
+               *phase ^= 1;
+       }
+       *n += clock;
+}
 
 
-       for( idx=1; idx < size; idx++) {
+static void stAskSimBit(int *n, uint8_t clock) {
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       //ST = .5 high .5 low 1.5 high .5 low 1 high    
+       memset(dest+(*n), 1, halfClk);
+       memset(dest+(*n) + halfClk, 0, halfClk);
+       memset(dest+(*n) + clock, 1, clock + halfClk);
+       memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+       memset(dest+(*n) + clock*3, 1, clock);
+       *n += clock*4;
+}
 
 
-               if (dest[idx]==lastval) {
-                       n++;
-                       continue;
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       int ledcontrol = 1;
+       int n=0, i=0;
+       uint8_t clk = (arg1 >> 8) & 0xFF;
+       uint8_t encoding = arg1 & 0xFF;
+       uint8_t separator = arg2 & 1;
+       uint8_t invert = (arg2 >> 8) & 1;
+
+       if (encoding==2){  //biphase
+               uint8_t phase=0;
+               for (i=0; i<size; i++){
+                       biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+               }
+               if (phase==1) { //run a second set inverted to keep phase in check
+                       for (i=0; i<size; i++){
+                               biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+                       }
                }
                }
-               //if lastval was 1, we have a 1->0 crossing
-               if ( dest[idx-1] ) {
-                       n=(n+1) / h2l_crossing_value;
-               } else {// 0->1 crossing
-                       n=(n+1) / l2h_crossing_value;
+       } else {  // ask/manchester || ask/raw
+               for (i=0; i<size; i++){
+                       askSimBit(BitStream[i]^invert, &n, clk, encoding);
                }
                }
-               if (n == 0) n = 1;
-
-               if(n < maxConsequtiveBits)
-               {
-                       memset(dest+numBits, dest[idx-1] , n);
-                       numBits += n;
+               if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
+                       for (i=0; i<size; i++){
+                               askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+                       }
                }
                }
-               n=0;
-               lastval=dest[idx];
-       }//end for
+       }
+       if (separator==1 && encoding == 1)
+               stAskSimBit(&n, clk);
+       else if (separator==1)
+               Dbprintf("sorry but separator option not yet available");
+
+       Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+       //DEBUG
+       //Dbprintf("First 32:");
+       //uint8_t *dest = BigBuf_get_addr();
+       //i=0;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       //i+=16;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       
+       if (ledcontrol) LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+       if (ledcontrol) LED_A_OFF();
+}
 
 
-       return numBits;
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfWave = waveLen/2;
+       //uint8_t idx;
+       int i = 0;
+       if (phaseChg){
+               // write phase change
+               memset(dest+(*n), *curPhase^1, halfWave);
+               memset(dest+(*n) + halfWave, *curPhase, halfWave);
+               *n += waveLen;
+               *curPhase ^= 1;
+               i += waveLen;
+       }
+       //write each normal clock wave for the clock duration
+       for (; i < clk; i+=waveLen){
+               memset(dest+(*n), *curPhase, halfWave);
+               memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+               *n += waveLen;
+       }
+}
 
 
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       int ledcontrol=1;
+       int n=0, i=0;
+       uint8_t clk = arg1 >> 8;
+       uint8_t carrier = arg1 & 0xFF;
+       uint8_t invert = arg2 & 0xFF;
+       uint8_t curPhase = 0;
+       for (i=0; i<size; i++){
+               if (BitStream[i] == curPhase){
+                       pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+               } else {
+                       pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+               }
+       }
+       Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+       //Dbprintf("DEBUG: First 32:");
+       //uint8_t *dest = BigBuf_get_addr();
+       //i=0;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       //i+=16;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+                  
+       if (ledcontrol) LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+       if (ledcontrol) LED_A_OFF();
 }
 }
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
-       uint8_t *dest = (uint8_t *)BigBuf;
-
-       size_t size=0,idx=0; //, found=0;
+       uint8_t *dest = BigBuf_get_addr();
+       //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+       size_t size
        uint32_t hi2=0, hi=0, lo=0;
        uint32_t hi2=0, hi=0, lo=0;
+       int idx=0;
+       int dummyIdx = 0;
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
 
 
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
 
 
-       while(!BUTTON_PRESS()) {
-
-               // Configure to go in 125Khz listen mode
-               SetupToAcquireRawAdcSamples(0);
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
                WDT_HIT();
                if (ledcontrol) LED_A_ON();
 
 
                WDT_HIT();
                if (ledcontrol) LED_A_ON();
 
-               DoAcquisition125k_internal(true);
-               size  = sizeof(BigBuf);
-
+               DoAcquisition_default(-1,true);
                // FSK demodulator
                // FSK demodulator
-               size = fsk_demod(dest, size);
-               WDT_HIT();
-
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-               // 1->0 : fc/8 in sets of 6
-               // 0->1 : fc/10 in sets of 5
-               size = aggregate_bits(dest,size, 6,5,5);
-
-               WDT_HIT();
-
-               // final loop, go over previously decoded manchester data and decode into usable tag ID
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-               uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-               int numshifts = 0;
-               idx = 0;
-               while( idx + sizeof(frame_marker_mask) < size) {
-                       // search for a start of frame marker
-                       if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-                       { // frame marker found
-                               idx+=sizeof(frame_marker_mask);
-
-                               while(dest[idx] != dest[idx+1] && idx < size-2)
-                               {       // Keep going until next frame marker (or error)
-                                       // Shift in a bit. Start by shifting high registers
-                                       hi2 = (hi2<<1)|(hi>>31);
-                                       hi = (hi<<1)|(lo>>31);
-                                       //Then, shift in a 0 or one into low
-                                       if (dest[idx] && !dest[idx+1])  // 1 0
-                                               lo=(lo<<1)|0;
-                                       else // 0 1
-                                               lo=(lo<<1)|
-                                                               1;
-                                       numshifts ++;
-                                       idx += 2;
-                               }
-                               //Dbprintf("Num shifts: %d ", numshifts);
-                               // Hopefully, we read a tag and  hit upon the next frame marker
-                               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-                               {
-                                       if (hi2 != 0){
-                                               Dbprintf("TAG ID: %x%08x%08x (%d)",
-                                                        (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+               //size = sizeOfBigBuff;  //variable size will change after demod so re initialize it before use
+               size = 50*128*2; //big enough to catch 2 sequences of largest format
+               idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
+               
+               if (idx>0 && lo>0 && (size==96 || size==192)){
+                       // go over previously decoded manchester data and decode into usable tag ID
+                       if (hi2 != 0){ //extra large HID tags  88/192 bits
+                               Dbprintf("TAG ID: %x%08x%08x (%d)",
+                                 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+                       }else {  //standard HID tags 44/96 bits
+                               //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+                               uint8_t bitlen = 0;
+                               uint32_t fc = 0;
+                               uint32_t cardnum = 0;
+                               if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+                                       uint32_t lo2=0;
+                                       lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+                                       uint8_t idx3 = 1;
+                                       while(lo2 > 1){ //find last bit set to 1 (format len bit)
+                                               lo2=lo2 >> 1;
+                                               idx3++;
+                                       }
+                                       bitlen = idx3+19;
+                                       fc =0;
+                                       cardnum=0;
+                                       if(bitlen == 26){
+                                               cardnum = (lo>>1)&0xFFFF;
+                                               fc = (lo>>17)&0xFF;
+                                       }
+                                       if(bitlen == 37){
+                                               cardnum = (lo>>1)&0x7FFFF;
+                                               fc = ((hi&0xF)<<12)|(lo>>20);
+                                       }
+                                       if(bitlen == 34){
+                                               cardnum = (lo>>1)&0xFFFF;
+                                               fc= ((hi&1)<<15)|(lo>>17);
                                        }
                                        }
-                                       else {
-                                               Dbprintf("TAG ID: %x%08x (%d)",
-                                                (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+                                       if(bitlen == 35){
+                                               cardnum = (lo>>1)&0xFFFFF;
+                                               fc = ((hi&1)<<11)|(lo>>21);
                                        }
                                }
                                        }
                                }
-
-                               // reset
-                               hi2 = hi = lo = 0;
-                               numshifts = 0;
-                       }else
-                       {
-                               idx++;
+                               else { //if bit 38 is not set then 37 bit format is used
+                                       bitlen= 37;
+                                       fc =0;
+                                       cardnum=0;
+                                       if(bitlen==37){
+                                               cardnum = (lo>>1)&0x7FFFF;
+                                               fc = ((hi&0xF)<<12)|(lo>>20);
+                                       }
+                               }
+                               //Dbprintf("TAG ID: %x%08x (%d)",
+                               // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+                               Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+                                                (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+                                                (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
                        }
                        }
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high = hi;
+                               *low = lo;
+                               break;
+                       }
+                       // reset
                }
                }
+               hi2 = hi = lo = idx = 0;
                WDT_HIT();
                WDT_HIT();
-
        }
        }
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        DbpString("Stopped");
        if (ledcontrol) LED_A_OFF();
 }
 
        DbpString("Stopped");
        if (ledcontrol) LED_A_OFF();
 }
 
-uint32_t bytebits_to_byte(uint8_t* src, int numbits)
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
 {
-       uint32_t num = 0;
-       for(int i = 0 ; i < numbits ; i++)
-       {
-               num = (num << 1) | (*src);
-               src++;
+       uint8_t *dest = BigBuf_get_addr();
+       size_t size; 
+       int idx=0, dummyIdx=0;
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
+
+               DoAcquisition_default(-1,true);
+               // FSK demodulator
+               size = 50*128*2; //big enough to catch 2 sequences of largest format
+               idx = AWIDdemodFSK(dest, &size, &dummyIdx);
+               
+               if (idx<=0 || size!=96) continue;
+               // Index map
+               // 0            10            20            30              40            50              60
+               // |            |             |             |               |             |               |
+               // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+               // -----------------------------------------------------------------------------
+               // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+               // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+               //          |---26 bit---|    |-----117----||-------------142-------------|
+               // b = format bit len, o = odd parity of last 3 bits
+               // f = facility code, c = card number
+               // w = wiegand parity
+               // (26 bit format shown)
+
+               //get raw ID before removing parities
+               uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+               uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+               uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+               size = removeParity(dest, idx+8, 4, 1, 88);
+               if (size != 66) continue;
+               // ok valid card found!
+
+               // Index map
+               // 0           10         20        30          40        50        60
+               // |           |          |         |           |         |         |
+               // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+               // -----------------------------------------------------------------------------
+               // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+               // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+               // |26 bit|   |-117--| |-----142------|
+               // b = format bit len, o = odd parity of last 3 bits
+               // f = facility code, c = card number
+               // w = wiegand parity
+               // (26 bit format shown)
+
+               uint32_t fc = 0;
+               uint32_t cardnum = 0;
+               uint32_t code1 = 0;
+               uint32_t code2 = 0;
+               uint8_t fmtLen = bytebits_to_byte(dest,8);
+               if (fmtLen==26){
+                       fc = bytebits_to_byte(dest+9, 8);
+                       cardnum = bytebits_to_byte(dest+17, 16);
+                       code1 = bytebits_to_byte(dest+8,fmtLen);
+                       Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+               } else {
+                       cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+                       if (fmtLen>32){
+                               code1 = bytebits_to_byte(dest+8,fmtLen-32);
+                               code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+                               Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+                       } else{
+                               code1 = bytebits_to_byte(dest+8,fmtLen);
+                               Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+                       }
+               }
+               if (findone){
+                       if (ledcontrol) LED_A_OFF();
+                       break;
+               }
+               // reset
+               idx = 0;
+               WDT_HIT();
        }
        }
-       return num;
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
 }
 
 }
 
-
-void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
 {
 {
-       uint8_t *dest = (uint8_t *)BigBuf;
+       uint8_t *dest = BigBuf_get_addr();
 
        size_t size=0, idx=0;
 
        size_t size=0, idx=0;
-       uint32_t code=0, code2=0;
-
+       int clk=0, invert=0, errCnt=0, maxErr=20;
+       uint32_t hi=0;
+       uint64_t lo=0;
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
 
 
-       while(!BUTTON_PRESS()) {
-
-               // Configure to go in 125Khz listen mode
-               SetupToAcquireRawAdcSamples(0);
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
                WDT_HIT();
                if (ledcontrol) LED_A_ON();
 
 
                WDT_HIT();
                if (ledcontrol) LED_A_ON();
 
-               DoAcquisition125k_internal(true);
-               size  = sizeof(BigBuf);
-
-               // FSK demodulator
-               size = fsk_demod(dest, size);
+               DoAcquisition_default(-1,true);
+               size  = BigBuf_max_traceLen();
+               //askdemod and manchester decode
+               if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+               errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
                WDT_HIT();
 
                WDT_HIT();
 
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-               // 1->0 : fc/8 in sets of 7
-               // 0->1 : fc/10 in sets of 6
-               size = aggregate_bits(dest, size, 7,6,13);
+               if (errCnt<0) continue;
+       
+               errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+               if (errCnt){
+                       if (size>64){
+                               Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+                                 hi,
+                                 (uint32_t)(lo>>32),
+                                 (uint32_t)lo,
+                                 (uint32_t)(lo&0xFFFF),
+                                 (uint32_t)((lo>>16LL) & 0xFF),
+                                 (uint32_t)(lo & 0xFFFFFF));
+                       } else {
+                               Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+                                 (uint32_t)(lo>>32),
+                                 (uint32_t)lo,
+                                 (uint32_t)(lo&0xFFFF),
+                                 (uint32_t)((lo>>16LL) & 0xFF),
+                                 (uint32_t)(lo & 0xFFFFFF));
+                       }
+
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high=lo>>32;
+                               *low=lo & 0xFFFFFFFF;
+                               break;
+                       }
+               }
+               WDT_HIT();
+               hi = lo = size = idx = 0;
+               clk = invert = errCnt = 0;
+       }
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
+}
 
 
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       int idx=0;
+       uint32_t code=0, code2=0;
+       uint8_t version=0;
+       uint8_t facilitycode=0;
+       uint16_t number=0;
+       int dummyIdx=0;
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
                WDT_HIT();
                WDT_HIT();
-               
+               if (ledcontrol) LED_A_ON();
+               DoAcquisition_default(-1,true);
+               //fskdemod and get start index
+               WDT_HIT();
+               idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
+               if (idx<0) continue;
+               //valid tag found
+
+               //Index map
+               //0           10          20          30          40          50          60
+               //|           |           |           |           |           |           |
+               //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+               //-----------------------------------------------------------------------------
+               //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+               //
+               //XSF(version)facility:codeone+codetwo
                //Handle the data
                //Handle the data
-           uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-               for( idx=0; idx < size - 64; idx++) {
-
-               if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
-
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);                         
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
-                   Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
-                       
-                   code = bytebits_to_byte(dest+idx,32);
-                   code2 = bytebits_to_byte(dest+idx+32,32); 
-
-                   short version = bytebits_to_byte(dest+idx+14,4); 
-                   char unknown = bytebits_to_byte(dest+idx+19,8) ;
-                   uint16_t number = bytebits_to_byte(dest+idx+36,9); 
-                   
-                   Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
-                   if (ledcontrol)     LED_D_OFF();
-               
-                       // if we're only looking for one tag 
-                       if (findone){
-                               LED_A_OFF();
-                               return;
-                       }               
+               if(findone){ //only print binary if we are doing one
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+               }
+               code = bytebits_to_byte(dest+idx,32);
+               code2 = bytebits_to_byte(dest+idx+32,32);
+               version = bytebits_to_byte(dest+idx+27,8); //14,4
+               facilitycode = bytebits_to_byte(dest+idx+18,8);
+               number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+               Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+               // if we're only looking for one tag
+               if (findone){
+                       if (ledcontrol) LED_A_OFF();
+                       //LED_A_OFF();
+                       *high=code;
+                       *low=code2;
+                       break;
                }
                }
+               code=code2=0;
+               version=facilitycode=0;
+               number=0;
+               idx=0;
+
                WDT_HIT();
        }
                WDT_HIT();
        }
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        DbpString("Stopped");
        if (ledcontrol) LED_A_OFF();
 }
 
 /*------------------------------
        DbpString("Stopped");
        if (ledcontrol) LED_A_OFF();
 }
 
 /*------------------------------
- * T5555/T5557/T5567 routines
+ * T5555/T5557/T5567/T5577 routines
  *------------------------------
  *------------------------------
- */
-
-/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY                        0x00000001
-#define T55x7_ST_TERMINATOR            0x00000008
-#define T55x7_PWD                      0x00000010
-#define T55x7_MAXBLOCK_SHIFT           5
-#define T55x7_AOR                      0x00000200
-#define T55x7_PSKCF_RF_2               0
-#define T55x7_PSKCF_RF_4               0x00000400
-#define T55x7_PSKCF_RF_8               0x00000800
-#define T55x7_MODULATION_DIRECT                0
-#define T55x7_MODULATION_PSK1          0x00001000
-#define T55x7_MODULATION_PSK2          0x00002000
-#define T55x7_MODULATION_PSK3          0x00003000
-#define T55x7_MODULATION_FSK1          0x00004000
-#define T55x7_MODULATION_FSK2          0x00005000
-#define T55x7_MODULATION_FSK1a         0x00006000
-#define T55x7_MODULATION_FSK2a         0x00007000
-#define T55x7_MODULATION_MANCHESTER    0x00008000
-#define T55x7_MODULATION_BIPHASE       0x00010000
-#define T55x7_BITRATE_RF_8             0
-#define T55x7_BITRATE_RF_16            0x00040000
-#define T55x7_BITRATE_RF_32            0x00080000
-#define T55x7_BITRATE_RF_40            0x000C0000
-#define T55x7_BITRATE_RF_50            0x00100000
-#define T55x7_BITRATE_RF_64            0x00140000
-#define T55x7_BITRATE_RF_100           0x00180000
-#define T55x7_BITRATE_RF_128           0x001C0000
-
-/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR            0x00000001
-#define T5555_MAXBLOCK_SHIFT           0x00000001
-#define T5555_MODULATION_MANCHESTER    0
-#define T5555_MODULATION_PSK1          0x00000010
-#define T5555_MODULATION_PSK2          0x00000020
-#define T5555_MODULATION_PSK3          0x00000030
-#define T5555_MODULATION_FSK1          0x00000040
-#define T5555_MODULATION_FSK2          0x00000050
-#define T5555_MODULATION_BIPHASE       0x00000060
-#define T5555_MODULATION_DIRECT                0x00000070
-#define T5555_INVERT_OUTPUT            0x00000080
-#define T5555_PSK_RF_2                 0
-#define T5555_PSK_RF_4                 0x00000100
-#define T5555_PSK_RF_8                 0x00000200
-#define T5555_USE_PWD                  0x00000400
-#define T5555_USE_AOR                  0x00000800
-#define T5555_BITRATE_SHIFT            12
-#define T5555_FAST_WRITE               0x00004000
-#define T5555_PAGE_SELECT              0x00008000
-
-/*
- * Relevant times in microsecond
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
+ *
+ * Relevant communication times in microsecond
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes. 
  */
  */
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0   144 // 192
-#define WRITE_1   400 // 432 for T55x7; 448 for E5550
+#define START_GAP 31*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (or 15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (or 10fc)
+#define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
+#define WRITE_1   50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc)  432 for T55x7; 448 for E5550
+#define READ_GAP  15*8 
+
+void TurnReadLFOn(int delay) {
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+       // Give it a bit of time for the resonant antenna to settle.
+       WaitUS(delay); //155*8 //50*8
+}
 
 // Write one bit to card
 
 // Write one bit to card
-void T55xxWriteBit(int bit)
-{
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-       if (bit == 0)
-               SpinDelayUs(WRITE_0);
+void T55xxWriteBit(int bit) {
+       if (!bit)
+               TurnReadLFOn(WRITE_0);
        else
        else
-               SpinDelayUs(WRITE_1);
+               TurnReadLFOn(WRITE_1);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       SpinDelayUs(WRITE_GAP);
+       WaitUS(WRITE_GAP);
 }
 
 }
 
-// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
-       unsigned int i;
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+       LED_A_ON();
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_keep_EM();
+
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
+       StartTicks();
+       // make sure tag is fully powered up...
+       WaitMS(5);
+       
+       // Trigger T55x7 in mode.
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       WaitUS(START_GAP);
 
 
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       // reset tag - op code 00
+       T55xxWriteBit(0);
+       T55xxWriteBit(0);
 
 
-       // Give it a bit of time for the resonant antenna to settle.
-       // And for the tag to fully power up
-       SpinDelay(150);
+       TurnReadLFOn(READ_GAP);
+
+       // Acquisition
+       DoPartialAcquisition(0, true, BigBuf_max_traceLen());
+
+       // Turn the field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);    
+       LED_A_OFF();
+}
 
 
-       // Now start writting
+// Write one card block in page 0, no lock
+void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+       LED_A_ON();
+       bool PwdMode = arg & 0x1;
+       uint8_t Page = (arg & 0x2)>>1;
+       bool testMode = arg & 0x4;
+       uint32_t i = 0;
+
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
+       StartTicks();
+       // make sure tag is fully powered up...
+       WaitMS(5);
+       // Trigger T55x7 in mode.
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       SpinDelayUs(START_GAP);
+       WaitUS(START_GAP);
 
 
-       // Opcode
-       T55xxWriteBit(1);
-       T55xxWriteBit(0); //Page 0
-  if (PwdMode == 1){
-    // Pwd
-    for (i = 0x80000000; i != 0; i >>= 1)
-      T55xxWriteBit(Pwd & i);
-  }
-       // Lock bit
+       if (testMode) Dbprintf("TestMODE");
+       // Std Opcode 10
+       T55xxWriteBit(testMode ? 0 : 1);
+       T55xxWriteBit(testMode ? 1 : Page); //Page 0
+
+       if (PwdMode) {
+               // Send Pwd
+               for (i = 0x80000000; i != 0; i >>= 1)
+                       T55xxWriteBit(Pwd & i);
+       }
+       // Send Lock bit
        T55xxWriteBit(0);
 
        T55xxWriteBit(0);
 
-       // Data
+       // Send Data
        for (i = 0x80000000; i != 0; i >>= 1)
                T55xxWriteBit(Data & i);
 
        for (i = 0x80000000; i != 0; i >>= 1)
                T55xxWriteBit(Data & i);
 
-       // Block
+       // Send Block number
        for (i = 0x04; i != 0; i >>= 1)
                T55xxWriteBit(Block & i);
 
        for (i = 0x04; i != 0; i >>= 1)
                T55xxWriteBit(Block & i);
 
-       // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+       // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
        // so wait a little more)
        // so wait a little more)
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-       SpinDelay(20);
+
+       // "there is a clock delay before programming" 
+       //  - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
+       //  so we should wait 1 clock + 5.6ms then read response? 
+       //  but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
+       if (testMode) {
+               //TESTMODE TIMING TESTS: 
+               // <566us does nothing 
+               // 566-568 switches between wiping to 0s and doing nothing
+               // 5184 wipes and allows 1 block to be programmed.
+               // indefinite power on wipes and then programs all blocks with bitshifted data sent.
+               TurnReadLFOn(5184); 
+
+       } else {
+               TurnReadLFOn(20 * 1000);
+               //could attempt to do a read to confirm write took
+               // as the tag should repeat back the new block 
+               // until it is reset, but to confirm it we would 
+               // need to know the current block 0 config mode for
+               // modulation clock an other details to demod the response...
+               // response should be (for t55x7) a 0 bit then (ST if on) 
+               // block data written in on repeat until reset. 
+
+               //DoPartialAcquisition(20, true, 12000);
+       }
+
+       // turn field off
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_A_OFF();
 }
 
 }
 
-// Read one card block in page 0
-void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int m=0, i=0;
-  
-       m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-       memset(dest, 128, m);
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-  
-       LED_D_ON();
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-  
-       // Give it a bit of time for the resonant antenna to settle.
-       // And for the tag to fully power up
-       SpinDelay(150);
-  
-       // Now start writting
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+       T55xxWriteBlockExt(Data, Block, Pwd, arg);
+       cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+       LED_A_ON();
+       bool PwdMode = arg0 & 0x1;
+       uint8_t Page = (arg0 & 0x2) >> 1;
+       uint32_t i = 0;
+       bool RegReadMode = (Block == 0xFF);//regular read mode
+
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_ext(false);
+
+       //make sure block is at max 7
+       Block &= 0x7;
+
+       // Set up FPGA, 125kHz to power up the tag
+       LFSetupFPGAForADC(95, true);
+       StartTicks();
+       // make sure tag is fully powered up...
+       WaitMS(5);
+       // Trigger T55x7 Direct Access Mode with start gap
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       SpinDelayUs(START_GAP);
-  
-       // Opcode
+       WaitUS(START_GAP);
+
+       // Opcode 1[page]
        T55xxWriteBit(1);
        T55xxWriteBit(1);
-       T55xxWriteBit(0); //Page 0
-       if (PwdMode == 1){
-               // Pwd
+       T55xxWriteBit(Page); //Page 0
+
+       if (PwdMode){
+               // Send Pwd
                for (i = 0x80000000; i != 0; i >>= 1)
                        T55xxWriteBit(Pwd & i);
        }
                for (i = 0x80000000; i != 0; i >>= 1)
                        T55xxWriteBit(Pwd & i);
        }
-       // Lock bit
+       // Send a zero bit separation
        T55xxWriteBit(0);
        T55xxWriteBit(0);
-       // Block
-       for (i = 0x04; i != 0; i >>= 1)
-               T55xxWriteBit(Block & i);
-  
-  // Turn field on to read the response
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-  
+
+       // Send Block number (if direct access mode)
+       if (!RegReadMode)
+               for (i = 0x04; i != 0; i >>= 1)
+                       T55xxWriteBit(Block & i);               
+
+       // Turn field on to read the response
+       // 137*8 seems to get to the start of data pretty well... 
+       //  but we want to go past the start and let the repeating data settle in...
+       TurnReadLFOn(210*8); 
+
+       // Acquisition
        // Now do the acquisition
        // Now do the acquisition
-       i = 0;
-       for(;;) {
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-                       AT91C_BASE_SSC->SSC_THR = 0x43;
-               }
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-                       dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       // we don't care about actual value, only if it's more or less than a
-                       // threshold essentially we capture zero crossings for later analysis
-      //                       if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-                       i++;
-                       if (i >= m) break;
-               }
-       }
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-       LED_D_OFF();
-       DbpString("DONE!");
+       DoPartialAcquisition(0, true, 12000);
+
+       // Turn the field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);    
+       LED_A_OFF();
 }
 
 }
 
-// Read card traceability data (page 1)
-void T55xxReadTrace(void){
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int m=0, i=0;
-  
-       m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-       memset(dest, 128, m);
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-  
-       LED_D_ON();
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-  
-       // Give it a bit of time for the resonant antenna to settle.
-       // And for the tag to fully power up
-       SpinDelay(150);
-  
-       // Now start writting
+void T55xxWakeUp(uint32_t Pwd){
+       LED_B_ON();
+       uint32_t i = 0;
+       
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
+       StartTicks();
+       // make sure tag is fully powered up...
+       WaitMS(5);
+       
+       // Trigger T55x7 Direct Access Mode
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       SpinDelayUs(START_GAP);
-  
-       // Opcode
+       WaitUS(START_GAP);
+       
+       // Opcode 10
        T55xxWriteBit(1);
        T55xxWriteBit(1);
-       T55xxWriteBit(1); //Page 1
-  
-  // Turn field on to read the response
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-  
-       // Now do the acquisition
-       i = 0;
-       for(;;) {
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-                       AT91C_BASE_SSC->SSC_THR = 0x43;
+       T55xxWriteBit(0); //Page 0
+
+       // Send Pwd
+       for (i = 0x80000000; i != 0; i >>= 1)
+               T55xxWriteBit(Pwd & i);
+
+       // Turn and leave field on to let the begin repeating transmission
+       TurnReadLFOn(20*1000);
+}
+
+/*-------------- Cloning routines -----------*/
+
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+       // write last block first and config block last (if included)
+       for (uint8_t i = numblocks+startblock; i > startblock; i--) {
+               T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
+       }
+}
+
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+       uint32_t data[] = {0,0,0,0,0,0,0};
+       uint8_t last_block = 0;
+
+       if (longFMT) {
+               // Ensure no more than 84 bits supplied
+               if (hi2>0xFFFFF) {
+                       DbpString("Tags can only have 84 bits.");
+                       return;
                }
                }
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-                       dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       i++;
-                       if (i >= m) break;
+               // Build the 6 data blocks for supplied 84bit ID
+               last_block = 6;
+               // load preamble (1D) & long format identifier (9E manchester encoded)
+               data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+               // load raw id from hi2, hi, lo to data blocks (manchester encoded)
+               data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+               data[3] = manchesterEncode2Bytes(hi >> 16);
+               data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+               data[5] = manchesterEncode2Bytes(lo >> 16);
+               data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+       }       else {
+               // Ensure no more than 44 bits supplied
+               if (hi>0xFFF) {
+                       DbpString("Tags can only have 44 bits.");
+                       return;
                }
                }
+               // Build the 3 data blocks for supplied 44bit ID
+               last_block = 3;
+               // load preamble
+               data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+               data[2] = manchesterEncode2Bytes(lo >> 16);
+               data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
        }
        }
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       // load chip config block
+       data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+
+       LED_D_ON();
+       // Program the data blocks for supplied ID
+       // and the block 0 for HID format
+       WriteT55xx(data, 0, last_block+1);
+
        LED_D_OFF();
        LED_D_OFF();
+
        DbpString("DONE!");
 }
 
        DbpString("DONE!");
 }
 
-/*-------------- Cloning routines -----------*/
-// Copy HID id to card and setup block 0 config
-void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
-       int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
-       int last_block = 0;
-  
-  if (longFMT){
-         // Ensure no more than 84 bits supplied
-         if (hi2>0xFFFFF) {
-                 DbpString("Tags can only have 84 bits.");
-                 return;
-         }
-    // Build the 6 data blocks for supplied 84bit ID
-    last_block = 6;
-    data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
-         for (int i=0;i<4;i++) {
-                 if (hi2 & (1<<(19-i)))
-                         data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
-                 else
-                         data1 |= (1<<((3-i)*2)); // 0 -> 01
-         }
-    
-       data2 = 0;
-       for (int i=0;i<16;i++) {
-               if (hi2 & (1<<(15-i)))
-                       data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data2 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-       data3 = 0;
-       for (int i=0;i<16;i++) {
-               if (hi & (1<<(31-i)))
-                       data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data3 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-    
-       data4 = 0;
-       for (int i=0;i<16;i++) {
-               if (hi & (1<<(15-i)))
-                       data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data4 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-       data5 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(31-i)))
-                       data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data5 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-    
-       data6 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(15-i)))
-                       data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data6 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-  }
-  else {
-         // Ensure no more than 44 bits supplied
-         if (hi>0xFFF) {
-                 DbpString("Tags can only have 44 bits.");
-                 return;
-         }
-    
-       // Build the 3 data blocks for supplied 44bit ID
-       last_block = 3;
-       
-       data1 = 0x1D000000; // load preamble
-    
-    for (int i=0;i<12;i++) {
-      if (hi & (1<<(11-i)))
-        data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
-      else
-        data1 |= (1<<((11-i)*2)); // 0 -> 01
-    }
-    
-       data2 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(31-i)))
-                       data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data2 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-    
-       data3 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(15-i)))
-                       data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data3 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-  }
-  
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+       uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+
        LED_D_ON();
        // Program the data blocks for supplied ID
        LED_D_ON();
        // Program the data blocks for supplied ID
-       // and the block 0 for HID format
-       T55xxWriteBlock(data1,1,0,0);
-       T55xxWriteBlock(data2,2,0,0);
-       T55xxWriteBlock(data3,3,0,0);
-       
-       if (longFMT) { // if long format there are 6 blocks
-         T55xxWriteBlock(data4,4,0,0);
-         T55xxWriteBlock(data5,5,0,0);
-         T55xxWriteBlock(data6,6,0,0);
-  }
-  
-       // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
-       T55xxWriteBlock(T55x7_BITRATE_RF_50    |
-                  T55x7_MODULATION_FSK2a |
-                  last_block << T55x7_MAXBLOCK_SHIFT,
-                  0,0,0);
-  
+       // and the block 0 config
+       WriteT55xx(data, 0, 3);
+
        LED_D_OFF();
        LED_D_OFF();
-       
+
        DbpString("DONE!");
 }
 
        DbpString("DONE!");
 }
 
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
-   int data1=0, data2=0; //up to six blocks for long format
-       
-    data1 = hi;  // load preamble
-    data2 = lo;
-    
-    LED_D_ON();
-    // Program the data blocks for supplied ID
-    // and the block 0 for HID format
-    T55xxWriteBlock(data1,1,0,0);
-    T55xxWriteBlock(data2,2,0,0);
-       
-    //Config Block
-    T55xxWriteBlock(0x00147040,0,0,0);
-    LED_D_OFF();
-       
-    DbpString("DONE!");
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+       //Program the 2 data blocks for supplied 64bit UID
+       // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+       uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+       WriteT55xx(data, 0, 3);
+       //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+       //      T5567WriteBlock(0x603E1042,0);
+       DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+       //Program the 7 data blocks for supplied 224bit UID
+       uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+       // and the block 0 for Indala224 format 
+       //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+       data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+       WriteT55xx(data, 0, 8);
+       //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+       //      T5567WriteBlock(0x603E10E2,0);
+       DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+       uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+       if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+       // Program the data blocks for supplied ID and the block 0 config
+       WriteT55xx(data, 0, 3);
+       LED_D_OFF();
+       cmd_send(CMD_ACK,0,0,0,0,0);
 }
 
 // Define 9bit header for EM410x tags
 }
 
 // Define 9bit header for EM410x tags
-#define EM410X_HEADER          0x1FF
+#define EM410X_HEADER            0x1FF
 #define EM410X_ID_LENGTH       40
 
 #define EM410X_ID_LENGTH       40
 
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
        int i, id_bit;
        uint64_t id = EM410X_HEADER;
        uint64_t rev_id = 0;    // reversed ID
        int i, id_bit;
        uint64_t id = EM410X_HEADER;
        uint64_t rev_id = 0;    // reversed ID
@@ -1288,355 +1475,29 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
        LED_D_ON();
 
        // Write EM410x ID
        LED_D_ON();
 
        // Write EM410x ID
-       T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
-       T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
-       // Config for EM410x (RF/64, Manchester, Maxblock=2)
-       if (card) {
-               // Clock rate is stored in bits 8-15 of the card value
-               clock = (card & 0xFF00) >> 8;
-               Dbprintf("Clock rate: %d", clock);
-               switch (clock)
-               {
-                       case 32:
-                               clock = T55x7_BITRATE_RF_32;
-                               break;
-                       case 16:
-                               clock = T55x7_BITRATE_RF_16;
-                               break;
-                       case 0:
-                               // A value of 0 is assumed to be 64 for backwards-compatibility
-                               // Fall through...
-                       case 64:
-                               clock = T55x7_BITRATE_RF_64;
-                               break;      
-                       default:
-                               Dbprintf("Invalid clock rate: %d", clock);
-                               return;
+       uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+       clock = (card & 0xFF00) >> 8;
+       clock = (clock == 0) ? 64 : clock;
+       Dbprintf("Clock rate: %d", clock);
+       if (card & 0xFF) { //t55x7
+               clock = GetT55xxClockBit(clock);                        
+               if (clock == 0) {
+                       Dbprintf("Invalid clock rate: %d", clock);
+                       return;
                }
                }
+               data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+       } else { //t5555 (Q5)
+               data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+       }
 
 
-               // Writing configuration for T55x7 tag
-               T55xxWriteBlock(clock       |
-                               T55x7_MODULATION_MANCHESTER |
-                               2 << T55x7_MAXBLOCK_SHIFT,
-                               0, 0, 0);
-  }
-       else
-               // Writing configuration for T5555(Q5) tag
-               T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
-                               T5555_MODULATION_MANCHESTER   |
-                               2 << T5555_MAXBLOCK_SHIFT,
-                               0, 0, 0);
+       WriteT55xx(data, 0, 3);
 
        LED_D_OFF();
        Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
 
        LED_D_OFF();
        Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
-                                       (uint32_t)(id >> 32), (uint32_t)id);
+                        (uint32_t)(id >> 32), (uint32_t)id);
 }
 
 }
 
-// Clone Indala 64-bit tag by UID to T55x7
-void CopyIndala64toT55x7(int hi, int lo)
-{
-
-       //Program the 2 data blocks for supplied 64bit UID
-       // and the block 0 for Indala64 format
-       T55xxWriteBlock(hi,1,0,0);
-       T55xxWriteBlock(lo,2,0,0);
-       //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
-       T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-                       T55x7_MODULATION_PSK1 |
-                       2 << T55x7_MAXBLOCK_SHIFT,
-                       0, 0, 0);
-       //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
-//     T5567WriteBlock(0x603E1042,0);
-
-       DbpString("DONE!");
-
-}      
-
-void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
-{
-
-       //Program the 7 data blocks for supplied 224bit UID
-       // and the block 0 for Indala224 format
-       T55xxWriteBlock(uid1,1,0,0);
-       T55xxWriteBlock(uid2,2,0,0);
-       T55xxWriteBlock(uid3,3,0,0);
-       T55xxWriteBlock(uid4,4,0,0);
-       T55xxWriteBlock(uid5,5,0,0);
-       T55xxWriteBlock(uid6,6,0,0);
-       T55xxWriteBlock(uid7,7,0,0);
-       //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
-       T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-                       T55x7_MODULATION_PSK1 |
-                       7 << T55x7_MAXBLOCK_SHIFT,
-                       0,0,0);
-       //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
-//     T5567WriteBlock(0x603E10E2,0);
-
-       DbpString("DONE!");
-
-}
-
-
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-#define max(x,y) ( x<y ? y:x)
-
-int DemodPCF7931(uint8_t **outBlocks) {
-       uint8_t BitStream[256];
-       uint8_t Blocks[8][16];
-       uint8_t *GraphBuffer = (uint8_t *)BigBuf;
-       int GraphTraceLen = sizeof(BigBuf);
-       int i, j, lastval, bitidx, half_switch;
-       int clock = 64;
-       int tolerance = clock / 8;
-       int pmc, block_done;
-       int lc, warnings = 0;
-       int num_blocks = 0;
-       int lmin=128, lmax=128;
-       uint8_t dir;
-       
-       AcquireRawAdcSamples125k(0);
-       
-       lmin = 64;
-       lmax = 192;
-       
-       i = 2;
-       
-       /* Find first local max/min */
-       if(GraphBuffer[1] > GraphBuffer[0]) {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
-        break;
-      i++;
-    }
-    dir = 0;
-       }
-       else {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
-        break;
-      i++;
-    }
-    dir = 1;
-       }
-       
-       lastval = i++;
-       half_switch = 0;
-       pmc = 0;
-       block_done = 0;
-       
-       for (bitidx = 0; i < GraphTraceLen; i++)
-       {
-    if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
-    {
-      lc = i - lastval;
-      lastval = i;
-      
-      // Switch depending on lc length:
-      // Tolerance is 1/8 of clock rate (arbitrary)
-      if (abs(lc-clock/4) < tolerance) {
-        // 16T0
-        if((i - pmc) == lc) { /* 16T0 was previous one */
-          /* It's a PMC ! */
-          i += (128+127+16+32+33+16)-1;
-          lastval = i;
-          pmc = 0;
-          block_done = 1;
-        }
-        else {
-          pmc = i;
-        }
-      } else if (abs(lc-clock/2) < tolerance) {
-        // 32TO
-        if((i - pmc) == lc) { /* 16T0 was previous one */
-          /* It's a PMC ! */
-          i += (128+127+16+32+33)-1;
-          lastval = i;
-          pmc = 0;
-          block_done = 1;
-        }
-        else if(half_switch == 1) {
-          BitStream[bitidx++] = 0;
-          half_switch = 0;
-        }
-        else
-          half_switch++;
-      } else if (abs(lc-clock) < tolerance) {
-        // 64TO
-        BitStream[bitidx++] = 1;
-      } else {
-        // Error
-        warnings++;
-        if (warnings > 10)
-        {
-          Dbprintf("Error: too many detection errors, aborting.");
-          return 0;
-        }
-      }
-      
-      if(block_done == 1) {
-        if(bitidx == 128) {
-          for(j=0; j<16; j++) {
-            Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
-            64*BitStream[j*8+6]+
-            32*BitStream[j*8+5]+
-            16*BitStream[j*8+4]+
-            8*BitStream[j*8+3]+
-            4*BitStream[j*8+2]+
-            2*BitStream[j*8+1]+
-            BitStream[j*8];
-          }
-          num_blocks++;
-        }
-        bitidx = 0;
-        block_done = 0;
-        half_switch = 0;
-      }
-      if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
-      else dir = 1;
-    }
-    if(bitidx==255)
-      bitidx=0;
-    warnings = 0;
-    if(num_blocks == 4) break;
-       }
-       memcpy(outBlocks, Blocks, 16*num_blocks);
-       return num_blocks;
-}
-
-int IsBlock0PCF7931(uint8_t *Block) {
-       // Assume RFU means 0 :)
-       if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
-    return 1;
-       if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
-    return 1;
-       return 0;
-}
-
-int IsBlock1PCF7931(uint8_t *Block) {
-       // Assume RFU means 0 :)
-       if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
-    if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
-      return 1;
-       
-       return 0;
-}
-
-#define ALLOC 16
-
-void ReadPCF7931() {
-       uint8_t Blocks[8][17];
-       uint8_t tmpBlocks[4][16];
-       int i, j, ind, ind2, n;
-       int num_blocks = 0;
-       int max_blocks = 8;
-       int ident = 0;
-       int error = 0;
-       int tries = 0;
-       
-       memset(Blocks, 0, 8*17*sizeof(uint8_t));
-       
-       do {
-    memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
-    n = DemodPCF7931((uint8_t**)tmpBlocks);
-    if(!n)
-      error++;
-    if(error==10 && num_blocks == 0) {
-      Dbprintf("Error, no tag or bad tag");
-      return;
-    }
-    else if (tries==20 || error==10) {
-      Dbprintf("Error reading the tag");
-      Dbprintf("Here is the partial content");
-      goto end;
-    }
-    
-    for(i=0; i<n; i++)
-      Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
-               tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
-    if(!ident) {
-      for(i=0; i<n; i++) {
-        if(IsBlock0PCF7931(tmpBlocks[i])) {
-          // Found block 0 ?
-          if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
-            // Found block 1!
-            // \o/
-            ident = 1;
-            memcpy(Blocks[0], tmpBlocks[i], 16);
-            Blocks[0][ALLOC] = 1;
-            memcpy(Blocks[1], tmpBlocks[i+1], 16);
-            Blocks[1][ALLOC] = 1;
-            max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
-            // Debug print
-            Dbprintf("(dbg) Max blocks: %d", max_blocks);
-            num_blocks = 2;
-            // Handle following blocks
-            for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
-              if(j==n) j=0;
-              if(j==i) break;
-              memcpy(Blocks[ind2], tmpBlocks[j], 16);
-              Blocks[ind2][ALLOC] = 1;
-            }
-            break;
-          }
-        }
-      }
-    }
-    else {
-      for(i=0; i<n; i++) { // Look for identical block in known blocks
-        if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
-          for(j=0; j<max_blocks; j++) {
-            if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
-              // Found an identical block
-              for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
-                if(ind2 < 0)
-                  ind2 = max_blocks;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-              for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
-                if(ind2 > max_blocks)
-                  ind2 = 0;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-            }
-          }
-        }
-      }
-    }
-    tries++;
-    if (BUTTON_PRESS()) return;
-       } while (num_blocks != max_blocks);
-end:
-       Dbprintf("-----------------------------------------");
-       Dbprintf("Memory content:");
-       Dbprintf("-----------------------------------------");
-       for(i=0; i<max_blocks; i++) {
-    if(Blocks[i][ALLOC]==1)
-      Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
-               Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
-    else
-      Dbprintf("<missing block %d>", i);
-       }
-       Dbprintf("-----------------------------------------");
-       
-       return ;
-}
-
-
 //-----------------------------------
 // EM4469 / EM4305 routines
 //-----------------------------------
 //-----------------------------------
 // EM4469 / EM4305 routines
 //-----------------------------------
@@ -1645,7 +1506,6 @@ end:
 #define FWD_CMD_READ 0x9
 #define FWD_CMD_DISABLE 0x5
 
 #define FWD_CMD_READ 0x9
 #define FWD_CMD_DISABLE 0x5
 
-
 uint8_t forwardLink_data[64]; //array of forwarded bits
 uint8_t * forward_ptr; //ptr for forward message preparation
 uint8_t fwd_bit_sz; //forwardlink bit counter
 uint8_t forwardLink_data[64]; //array of forwarded bits
 uint8_t * forward_ptr; //ptr for forward message preparation
 uint8_t fwd_bit_sz; //forwardlink bit counter
@@ -1656,84 +1516,85 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer
 // see EM4469 spec
 //====================================================================
 //--------------------------------------------------------------------
 // see EM4469 spec
 //====================================================================
 //--------------------------------------------------------------------
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8); 
+
 uint8_t Prepare_Cmd( uint8_t cmd ) {
 uint8_t Prepare_Cmd( uint8_t cmd ) {
-  //--------------------------------------------------------------------
-  
-  *forward_ptr++ = 0; //start bit
-  *forward_ptr++ = 0; //second pause for 4050 code
-  
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  
-  return 6; //return number of emited bits
+
+       *forward_ptr++ = 0; //start bit
+       *forward_ptr++ = 0; //second pause for 4050 code
+
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+
+       return 6; //return number of emited bits
 }
 
 //====================================================================
 // prepares address bits
 // see EM4469 spec
 //====================================================================
 }
 
 //====================================================================
 // prepares address bits
 // see EM4469 spec
 //====================================================================
-
-//--------------------------------------------------------------------
 uint8_t Prepare_Addr( uint8_t addr ) {
 uint8_t Prepare_Addr( uint8_t addr ) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  
-  uint8_t i;
-  line_parity = 0;
-  for(i=0;i<6;i++) {
-    *forward_ptr++ = addr;
-    line_parity ^= addr;
-    addr >>= 1;
-  }
-  
-  *forward_ptr++ = (line_parity & 1);
-  
-  return 7; //return number of emited bits
+
+       register uint8_t line_parity;
+
+       uint8_t i;
+       line_parity = 0;
+       for(i=0;i<6;i++) {
+               *forward_ptr++ = addr;
+               line_parity ^= addr;
+               addr >>= 1;
+       }
+
+       *forward_ptr++ = (line_parity & 1);
+
+       return 7; //return number of emited bits
 }
 
 //====================================================================
 // prepares data bits intreleaved with parity bits
 // see EM4469 spec
 //====================================================================
 }
 
 //====================================================================
 // prepares data bits intreleaved with parity bits
 // see EM4469 spec
 //====================================================================
-
-//--------------------------------------------------------------------
 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  register uint8_t column_parity;
-  register uint8_t i, j;
-  register uint16_t data;
-  
-  data = data_low;
-  column_parity = 0;
-  
-  for(i=0; i<4; i++) {
-    line_parity = 0;
-    for(j=0; j<8; j++) {
-      line_parity ^= data;
-      column_parity ^= (data & 1) << j;
-      *forward_ptr++ = data;
-      data >>= 1;
-    }
-    *forward_ptr++ = line_parity;
-    if(i == 1)
-      data = data_hi;
-  }
-  
-  for(j=0; j<8; j++) {
-    *forward_ptr++ = column_parity;
-    column_parity >>= 1;
-  }
-  *forward_ptr = 0;
-  
-  return 45; //return number of emited bits
+
+       register uint8_t line_parity;
+       register uint8_t column_parity;
+       register uint8_t i, j;
+       register uint16_t data;
+
+       data = data_low;
+       column_parity = 0;
+
+       for(i=0; i<4; i++) {
+               line_parity = 0;
+               for(j=0; j<8; j++) {
+                       line_parity ^= data;
+                       column_parity ^= (data & 1) << j;
+                       *forward_ptr++ = data;
+                       data >>= 1;
+               }
+               *forward_ptr++ = line_parity;
+               if(i == 1)
+                       data = data_hi;
+       }
+
+       for(j=0; j<8; j++) {
+               *forward_ptr++ = column_parity;
+               column_parity >>= 1;
+       }
+       *forward_ptr = 0;
+
+       return 45; //return number of emited bits
 }
 
 //====================================================================
 }
 
 //====================================================================
@@ -1742,114 +1603,163 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
 // fwd_bit_count set with number of bits to be sent
 //====================================================================
 void SendForward(uint8_t fwd_bit_count) {
 // fwd_bit_count set with number of bits to be sent
 //====================================================================
 void SendForward(uint8_t fwd_bit_count) {
-  
-  fwd_write_ptr = forwardLink_data;
-  fwd_bit_sz = fwd_bit_count;
-  
-  LED_D_ON();
-  
-  //Field on
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-  
-  // Give it a bit of time for the resonant antenna to settle.
-  // And for the tag to fully power up
-  SpinDelay(150);
-  
-  // force 1st mod pulse (start gap must be longer for 4305)
-  fwd_bit_sz--; //prepare next bit modulation
-  fwd_write_ptr++;
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
-  SpinDelayUs(16*8); //16 cycles on (8us each)
-  
-  // now start writting
-  while(fwd_bit_sz-- > 0) { //prepare next bit modulation
-    if(((*fwd_write_ptr++) & 1) == 1)
-      SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
-    else {
-      //These timings work for 4469/4269/4305 (with the 55*8 above)
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-      SpinDelayUs(23*8); //16-4 cycles off (8us each)
-      FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
-      SpinDelayUs(9*8); //16 cycles on (8us each)
-    }
-  }
+
+       fwd_write_ptr = forwardLink_data;
+       fwd_bit_sz = fwd_bit_count;
+
+       // Set up FPGA, 125kHz or 95 divisor
+       LFSetupFPGAForADC(95, true);
+
+       // force 1st mod pulse (start gap must be longer for 4305)
+       fwd_bit_sz--; //prepare next bit modulation
+       fwd_write_ptr++;
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       WaitUS(55*8); //55 cycles off (8us each)for 4305  //another reader has 37 here...
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+       WaitUS(18*8); //18 cycles on (8us each)
+
+       // now start writting
+       while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+               if(((*fwd_write_ptr++) & 1) == 1)
+                       WaitUS(32*8); //32 cycles at 125Khz (8us each)
+               else {
+                       //These timings work for 4469/4269/4305 (with the 55*8 above)
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+                       WaitUS(23*8); //23 cycles off (8us each)
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+                       WaitUS(18*8); //18 cycles on (8us each)
+               }
+       }
 }
 
 void EM4xLogin(uint32_t Password) {
 }
 
 void EM4xLogin(uint32_t Password) {
-  
-  uint8_t fwd_bit_count;
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
-  fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for command to complete
-  SpinDelay(20);
-  
+
+       uint8_t fwd_bit_count;
+
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+       fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+       SendForward(fwd_bit_count);
+
+       //Wait for command to complete
+       SpinDelay(20);
 }
 
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
 }
 
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  uint8_t *dest = (uint8_t *)BigBuf;
-  int m=0, i=0;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
-  fwd_bit_count += Prepare_Addr( Address );
-  
-  m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-  memset(dest, 128, m);
-  // Connect the A/D to the peak-detected low-frequency path.
-  SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-  // Now set up the SSC to get the ADC samples that are now streaming at us.
-  FpgaSetupSsc();
-  
-  SendForward(fwd_bit_count);
-  
-  // Now do the acquisition
-  i = 0;
-  for(;;) {
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-      AT91C_BASE_SSC->SSC_THR = 0x43;
-    }
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-      dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-      i++;
-      if (i >= m) break;
-    }
-  }
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+
+       uint8_t fwd_bit_count;
+
+       // Clear destination buffer before sending the command
+       BigBuf_Clear_ext(false);
+
+       LED_A_ON();
+       StartTicks();
+       //If password mode do login
+       if (PwdMode == 1) EM4xLogin(Pwd);
+
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+       fwd_bit_count += Prepare_Addr( Address );
+
+       SendForward(fwd_bit_count);
+       WaitUS(400);
+       // Now do the acquisition
+       DoPartialAcquisition(20, true, 6000);
+       
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       LED_A_OFF();
+       cmd_send(CMD_ACK,0,0,0,0,0);
 }
 
 }
 
-void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
-  fwd_bit_count += Prepare_Addr( Address );
-  fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for write to complete
-  SpinDelay(20);
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
+       
+       bool PwdMode = (flag & 0xF);
+       uint8_t Address = (flag >> 8) & 0xFF;
+       uint8_t fwd_bit_count;
+
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_ext(false);
+
+       LED_A_ON();
+       StartTicks();
+       //If password mode do login
+       if (PwdMode) EM4xLogin(Pwd);
+
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+       fwd_bit_count += Prepare_Addr( Address );
+       fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+       SendForward(fwd_bit_count);
+
+       //Wait for write to complete
+       //SpinDelay(10);
+
+       WaitUS(6500);
+       //Capture response if one exists
+       DoPartialAcquisition(20, true, 6000);
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       LED_A_OFF();
+       cmd_send(CMD_ACK,0,0,0,0,0);
+}
+/*
+Reading a COTAG.
+
+COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
+because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
+
+READER START SEQUENCE:
+burst 800 us,    gap   2.2 msecs
+burst 3.6 msecs  gap   2.2 msecs
+burst 800 us     gap   2.2 msecs
+pulse 3.6 msecs
+
+This triggers a COTAG tag to response
+*/
+void Cotag(uint32_t arg0) {
+
+#define OFF     { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
+#define ON(x)   { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
+
+       uint8_t rawsignal = arg0 & 0xF;
+
+       LED_A_ON();
+
+       // Switching to LF image on FPGA. This might empty BigBuff
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_ext(false);
+
+       // Set up FPGA, 132kHz to power up the tag
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+       // Connect the A/D to the peak-detected low-frequency path.
+       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+       // Now set up the SSC to get the ADC samples that are now streaming at us.
+       FpgaSetupSsc();
+
+       // start clock - 1.5ticks is 1us
+       StartTicks();
+
+       //send COTAG start pulse
+       ON(740)  OFF
+       ON(3330) OFF
+       ON(740)  OFF
+       ON(1000)
+
+       switch(rawsignal) {
+               case 0: doCotagAcquisition(50000); break;
+               case 1: doCotagAcquisitionManchester(); break;
+               case 2: DoAcquisition_config(true, 0); break;
+       }
+
+       // Turn the field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);
+       LED_A_OFF();
 }
 }
Impressum, Datenschutz