// Jonathan Westhues, split Nov 2006
// Modified by Greg Jones, Jan 2009
// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
-// Modified by piwi, Oct 2018
+// Modified by piwi, Oct 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// transmission modes from tag to reader. As of Oct 2018 this code supports
// both reader modes and the high speed variant with one subcarrier from card to reader.
// As long as the card fully support ISO 15693 this is no problem, since the
-// reader chooses both data rates, but some non-standard tags do not.
+// reader chooses both data rates, but some non-standard tags do not.
// For card simulation, the code supports both high and low speed modes with one subcarrier.
//
// VCD (reader) -> VICC (tag)
// 1 out of 256:
-// data rate: 1,66 kbit/s (fc/8192)
-// used for long range
+// data rate: 1,66 kbit/s (fc/8192)
+// used for long range
// 1 out of 4:
-// data rate: 26,48 kbit/s (fc/512)
-// used for short range, high speed
+// data rate: 26,48 kbit/s (fc/512)
+// used for short range, high speed
//
// VICC (tag) -> VCD (reader)
// Modulation:
-// ASK / one subcarrier (423,75 khz)
-// FSK / two subcarriers (423,75 khz && 484,28 khz)
+// ASK / one subcarrier (423,75 khz)
+// FSK / two subcarriers (423,75 khz && 484,28 khz)
// Data Rates / Modes:
-// low ASK: 6,62 kbit/s
-// low FSK: 6.67 kbit/s
-// high ASK: 26,48 kbit/s
-// high FSK: 26,69 kbit/s
+// low ASK: 6,62 kbit/s
+// low FSK: 6.67 kbit/s
+// high ASK: 26,48 kbit/s
+// high FSK: 26,69 kbit/s
//-----------------------------------------------------------------------------
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
-// This section basicly contains transmission and receiving of bits
+// This section basically contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
-#define Crc(data,datalen) Iso15693Crc(data,datalen)
-#define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
-#define sprintUID(target,uid) Iso15693sprintUID(target,uid)
-
// buffers
-#define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
+#define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
-// timing. Delays in SSP_CLK ticks.
-// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
-#define DELAY_READER_TO_ARM_SIM 8
-#define DELAY_ARM_TO_READER_SIM 1
-#define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response
-//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader
-#define DELAY_ISO15693_VCD_TO_VICC_READER 1056 // 1056/3,39MHz = 311.5us from end of command EOF to start of tag response
-#define DELAY_ISO15693_VICC_TO_VCD_READER 1017 // 1017/3.39MHz = 300us between end of tag response and next reader command
-
// ---------------------------
// Signal Processing
// ---------------------------
for(i = 0; i < 4; i++) {
ToSendStuffBit(1);
}
-
+
ToSendMax++;
}
}
-static void CodeIso15693AsTag(uint8_t *cmd, int n)
-{
+// static uint8_t encode4Bits(const uint8_t b) {
+ // uint8_t c = b & 0xF;
+ // // OTA, the least significant bits first
+ // // The columns are
+ // // 1 - Bit value to send
+ // // 2 - Reversed (big-endian)
+ // // 3 - Manchester Encoded
+ // // 4 - Hex values
+
+ // switch(c){
+ // // 1 2 3 4
+ // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
+ // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
+ // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
+ // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
+ // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
+ // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
+ // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
+ // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
+ // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
+ // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
+ // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
+ // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
+ // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
+ // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
+ // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
+ // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
+
+ // }
+// }
+
+static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
+
+void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
+ /*
+ * SOF comprises 3 parts;
+ * * An unmodulated time of 56.64 us
+ * * 24 pulses of 423.75 kHz (fc/32)
+ * * A logic 1, which starts with an unmodulated time of 18.88us
+ * followed by 8 pulses of 423.75kHz (fc/32)
+ *
+ * EOF comprises 3 parts:
+ * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
+ * time of 18.88us.
+ * - 24 pulses of fc/32
+ * - An unmodulated time of 56.64 us
+ *
+ * A logic 0 starts with 8 pulses of fc/32
+ * followed by an unmodulated time of 256/fc (~18,88us).
+ *
+ * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
+ * 8 pulses of fc/32 (also 18.88us)
+ *
+ * A bit here becomes 8 pulses of fc/32. Therefore:
+ * The SOF can be written as 00011101 = 0x1D
+ * The EOF can be written as 10111000 = 0xb8
+ * A logic 1 is 01
+ * A logic 0 is 10
+ *
+ * */
+
ToSendReset();
// SOF
- ToSendStuffBit(0);
- ToSendStuffBit(0);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x1D; // 00011101
// data
- for(int i = 0; i < n; i++) {
- for(int j = 0; j < 8; j++) {
- if ((cmd[i] >> j) & 0x01) {
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- } else {
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- }
- }
+ for (int i = 0; i < len; i++) {
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
}
// EOF
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(0);
- ToSendStuffBit(0);
+ ToSend[++ToSendMax] = 0xB8; // 10111000
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Transmit the tag response (to the reader) that was placed in cmd[].
//-----------------------------------------------------------------------------
-static void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow)
-{
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
- uint8_t shift_delay = start_time & 0x00000007;
- uint8_t bitmask = 0x00;
- for (int i = 0; i < shift_delay; i++) {
- bitmask |= (0x01 << i);
+ uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF
+
+ while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
+ if (slot_time) {
+ modulation_start_time += slot_time; // use next available slot
+ } else {
+ modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
+ }
}
- while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
+ while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
+ /* wait */ ;
+
+ uint8_t shift_delay = modulation_start_time & 0x00000007;
- AT91C_BASE_SSC->SSC_THR = 0x00; // clear TXRDY
+ *start_time = modulation_start_time - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
- for(size_t c = 0; c <= len; c++) {
- uint8_t bits_to_send = bits_to_shift << (8 - shift_delay) | (c==len?0x00:cmd[c]) >> shift_delay;
- bits_to_shift = cmd[c] & bitmask;
- for (int i = 7; i >= 0; i--) {
+ uint8_t bits_to_send = 0x00;
+ for (size_t c = 0; c < len; c++) {
+ for (int i = (c==0?4:7); i >= 0; i--) {
+ uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
for (int j = 0; j < (slow?4:1); ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- if (bits_to_send >> i & 0x01) {
- AT91C_BASE_SSC->SSC_THR = 0xff;
- } else {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
+ bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
+ AT91C_BASE_SSC->SSC_THR = bits_to_send;
+ bits_to_shift = cmd_bits;
j++;
}
- WDT_HIT();
}
- }
- }
+ }
+ WDT_HIT();
+ }
+ // send the remaining bits, padded with 0:
+ bits_to_send = bits_to_shift << (8 - shift_delay);
+ for ( ; ; ) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = bits_to_send;
+ break;
+ }
+ }
LED_C_OFF();
}
static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag)
{
switch(DecodeTag->state) {
- case STATE_TAG_SOF_LOW:
+ case STATE_TAG_SOF_LOW:
// waiting for 12 times low (11 times low is accepted as well)
if (amplitude < NOISE_THRESHOLD) {
DecodeTag->posCount++;
}
}
break;
-
+
case STATE_TAG_SOF_HIGH:
// waiting for 10 times high. Take average over the last 8
if (amplitude > NOISE_THRESHOLD) {
bool gotFrame = false;
uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
-
+
// the Decoder data structure
DecodeTag_t DecodeTag = { 0 };
DecodeTagInit(&DecodeTag, response, max_len);
FpgaDisableSscDma();
BigBuf_free();
-
+
if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+ samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
if (DecodeTag.len > 0) {
LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
typedef struct DecodeReader {
enum {
STATE_READER_UNSYNCD,
+ STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
int byteCount;
int byteCountMax;
int posCount;
- int sum1, sum2;
+ int sum1, sum2;
uint8_t *output;
} DecodeReader_t;
static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
{
- switch(DecodeReader->state) {
+ switch (DecodeReader->state) {
case STATE_READER_UNSYNCD:
- if(!bit) {
+ // wait for unmodulated carrier
+ if (bit) {
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ }
+ break;
+
+ case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
+ if (!bit) {
// we went low, so this could be the beginning of a SOF
DecodeReader->posCount = 1;
DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
DecodeReader->posCount++;
- if(bit) { // detected rising edge
- if(DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
- DecodeReaderReset(DecodeReader);
+ if (bit) { // detected rising edge
+ if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else { // SOF
DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
}
} else {
- if(DecodeReader->posCount > 5) { // stayed low for too long
+ if (DecodeReader->posCount > 5) { // stayed low for too long
DecodeReaderReset(DecodeReader);
} else {
// do nothing, keep waiting
case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
DecodeReader->posCount++;
- if(!bit) { // detected a falling edge
+ if (!bit) { // detected a falling edge
if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
DecodeReaderReset(DecodeReader);
} else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
} else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
DecodeReaderReset(DecodeReader);
- } else { // SOF for 1 out of 4 coding
+ } else { // SOF for 1 out of 256 coding
DecodeReader->Coding = CODING_1_OUT_OF_256;
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
}
} else {
- if(DecodeReader->posCount > 29) { // stayed high for too long
- DecodeReaderReset(DecodeReader);
+ if (DecodeReader->posCount > 29) { // stayed high for too long
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else {
// do nothing, keep waiting
}
if (bit) { // detected rising edge
if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
- DecodeReaderReset(DecodeReader);
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else {
DecodeReader->posCount = 1;
DecodeReader->bitCount = 0;
}
} else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
- DecodeReaderReset(DecodeReader);
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else {
+ DecodeReader->posCount = 1;
DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
}
}
} else {
if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount > 34) { // signal stayed low for too long
- DecodeReaderReset(DecodeReader);
+ DecodeReaderReset(DecodeReader);
} else {
// do nothing, keep waiting
}
} else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount > 26) { // signal stayed low for too long
- DecodeReaderReset(DecodeReader);
+ DecodeReaderReset(DecodeReader);
} else {
// do nothing, keep waiting
}
case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
DecodeReader->posCount++;
if (bit) {
- if (DecodeReader->posCount == 33) {
+ if (DecodeReader->posCount == 9) {
DecodeReader->posCount = 1;
DecodeReader->bitCount = 0;
DecodeReader->byteCount = 0;
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
+ bit = !!bit;
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
DecodeReader->sum1 = bit;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
- int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
- int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
- int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
- if (corr01 > corr11 && corr01 > corr10) { // EOF
+ if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
LED_B_OFF(); // Finished receiving
DecodeReaderReset(DecodeReader);
if (DecodeReader->byteCount != 0) {
return true;
}
}
- if (corr10 > corr11) { // detected a 2bit position
+ if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
DecodeReader->shiftReg >>= 2;
DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
}
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
+ bit = !!bit;
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
DecodeReader->sum1 = bit;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
- int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
- int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
- int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
- if (corr01 > corr11 && corr01 > corr10) { // EOF
+ if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
LED_B_OFF(); // Finished receiving
DecodeReaderReset(DecodeReader);
if (DecodeReader->byteCount != 0) {
return true;
}
}
- if (corr10 > corr11) { // detected the bit position
+ if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
DecodeReader->shiftReg = DecodeReader->bitCount;
}
if (DecodeReader->bitCount == 255) { // we have a full byte
// Receive a command (from the reader to us, where we are the simulated tag),
// and store it in the given buffer, up to the given maximum length. Keeps
// spinning, waiting for a well-framed command, until either we get one
-// (returns true) or someone presses the pushbutton on the board (false).
+// (returns len) or someone presses the pushbutton on the board (returns -1).
//
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
-static int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time)
-{
+int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
int samples = 0;
bool gotFrame = false;
uint8_t b;
- uint8_t *dmaBuf = BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE);
+ uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the decoder data structure
DecodeReader_t DecodeReader = {0};
(void) temp;
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
- uint32_t bit_time = GetCountSspClk() & 0xfffffff8;
+ uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
// Setup and start DMA.
FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
uint8_t *upTo = dmaBuf;
- for(;;) {
+ for (;;) {
uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
if (behindBy == 0) continue;
b = *upTo++;
- if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
- if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
break;
}
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
- *eof_time = bit_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
+ *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
gotFrame = true;
break;
}
}
if (BUTTON_PRESS()) {
- DecodeReader.byteCount = 0;
+ DecodeReader.byteCount = -1;
break;
}
WDT_HIT();
}
-
FpgaDisableSscDma();
- BigBuf_free_keep_EM();
-
+
if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
+ samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
if (DecodeReader.byteCount > 0) {
- LogTrace(DecodeReader.output, DecodeReader.byteCount, 0, *eof_time, NULL, true);
+ uint32_t sof_time = *eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
+ - 32 // time for SOF transfer
+ - 16; // time for EOF transfer
+ LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
}
return DecodeReader.byteCount;
// no mask
cmd[2] = 0x00;
//Now the CRC
- crc = Crc(cmd, 3);
+ crc = Iso15693Crc(cmd, 3);
cmd[3] = crc & 0xff;
cmd[4] = crc >> 8;
Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
}
Dbprintf("Snoop started. Press PM3 Button to stop.");
-
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
}
}
samples++;
-
+
if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
FpgaDisableSscDma();
ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF);
}
- if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
+ if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
FpgaDisableSscDma();
//Use samples as a time measurement
FpgaDisableSscDma();
BigBuf_free();
-
+
LEDsoff();
DbpString("Snoop statistics:");
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the security status of the block
// followed by the block data
- cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
+ cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
// READ BLOCK command code
cmd[1] = ISO15693_READBLOCK;
// UID may be optionally specified here
// Block number to read
cmd[10] = blockNumber;
//Now the CRC
- crc = Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
+ crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
cmd[8] = uid[1]; //0x05;
cmd[9] = uid[0]; //0xe0;
//Now the CRC
- crc = Crc(cmd, 10);
+ crc = Iso15693Crc(cmd, 10);
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
}
// Universal Method for sending to and recv bytes from a tag
-// init ... should we initialize the reader?
-// speed ... 0 low speed, 1 hi speed
-// *recv will contain the tag's answer
-// return: lenght of received data
+// init ... should we initialize the reader?
+// speed ... 0 low speed, 1 hi speed
+// *recv will contain the tag's answer
+// return: lenght of received data
int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
LED_A_ON();
strncat(status,"NoErr ", DBD15STATLEN);
}
- crc=Crc(d,len-2);
+ crc=Iso15693Crc(d,len-2);
if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
strncat(status,"CrcOK",DBD15STATLEN);
else
LED_A_ON();
set_tracing(true);
-
+
int answerLen = 0;
uint8_t TagUID[8] = {0x00};
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// Start from off (no field generated)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
// Give the tags time to energize
LED_D_ON();
// Now send the IDENTIFY command
BuildIdentifyRequest();
TransmitTo15693Tag(ToSend, ToSendMax, 0);
-
+
// Now wait for a response
answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
LED_A_OFF();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
StartCountSspClk();
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
- TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
+ TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
Dbprintf("%d bytes read from reader:", cmd_len);
Dbhexdump(cmd_len, cmd, false);
}
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
uint8_t data[6];
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
-
+
int datalen=0, recvlen=0;
Iso15693InitReader();
StartCountSspClk();
-
+
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
- datalen = AddCrc(data,3);
+ datalen = Iso15693AddCrc(data,3);
recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen>=12) {
- Dbprintf("NoAFI UID=%s", sprintUID(NULL, &recv[2]));
+ Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
}
// now with AFI
for (int i = 0; i < 256; i++) {
data[2] = i & 0xFF;
- datalen = AddCrc(data,4);
+ datalen = Iso15693AddCrc(data,4);
recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen >= 12) {
- Dbprintf("AFI=%i UID=%s", i, sprintUID(NULL, &recv[2]));
+ Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
}
}
Dbprintf("AFI Bruteforcing done.");
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
LED_A_OFF();
// Set the UID to the tag (based on Iceman work).
void SetTag15693Uid(uint8_t *uid)
{
- uint8_t cmd[4][9] = {0x00};
-
- uint16_t crc;
-
- int recvlen = 0;
- uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
- LED_A_ON();
-
- // Command 1 : 02213E00000000
- cmd[0][0] = 0x02;
- cmd[0][1] = 0x21;
- cmd[0][2] = 0x3e;
- cmd[0][3] = 0x00;
- cmd[0][4] = 0x00;
- cmd[0][5] = 0x00;
- cmd[0][6] = 0x00;
-
- // Command 2 : 02213F69960000
- cmd[1][0] = 0x02;
- cmd[1][1] = 0x21;
- cmd[1][2] = 0x3f;
- cmd[1][3] = 0x69;
- cmd[1][4] = 0x96;
- cmd[1][5] = 0x00;
- cmd[1][6] = 0x00;
-
- // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
- cmd[2][0] = 0x02;
- cmd[2][1] = 0x21;
- cmd[2][2] = 0x38;
- cmd[2][3] = uid[7];
- cmd[2][4] = uid[6];
- cmd[2][5] = uid[5];
- cmd[2][6] = uid[4];
-
- // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
- cmd[3][0] = 0x02;
- cmd[3][1] = 0x21;
- cmd[3][2] = 0x39;
- cmd[3][3] = uid[3];
- cmd[3][4] = uid[2];
- cmd[3][5] = uid[1];
- cmd[3][6] = uid[0];
-
- for (int i=0; i<4; i++) {
- // Add the CRC
- crc = Crc(cmd[i], 7);
- cmd[i][7] = crc & 0xff;
- cmd[i][8] = crc >> 8;
-
- if (DEBUG) {
- Dbprintf("SEND:");
- Dbhexdump(sizeof(cmd[i]), cmd[i], false);
- }
-
- recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
-
- if (DEBUG) {
- Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
- }
-
- cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
- }
-
- LED_D_OFF();
-
- LED_A_OFF();
+ uint8_t cmd[4][9] = {0x00};
+
+ uint16_t crc;
+
+ int recvlen = 0;
+ uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
+
+ LED_A_ON();
+
+ // Command 1 : 02213E00000000
+ cmd[0][0] = 0x02;
+ cmd[0][1] = 0x21;
+ cmd[0][2] = 0x3e;
+ cmd[0][3] = 0x00;
+ cmd[0][4] = 0x00;
+ cmd[0][5] = 0x00;
+ cmd[0][6] = 0x00;
+
+ // Command 2 : 02213F69960000
+ cmd[1][0] = 0x02;
+ cmd[1][1] = 0x21;
+ cmd[1][2] = 0x3f;
+ cmd[1][3] = 0x69;
+ cmd[1][4] = 0x96;
+ cmd[1][5] = 0x00;
+ cmd[1][6] = 0x00;
+
+ // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
+ cmd[2][0] = 0x02;
+ cmd[2][1] = 0x21;
+ cmd[2][2] = 0x38;
+ cmd[2][3] = uid[7];
+ cmd[2][4] = uid[6];
+ cmd[2][5] = uid[5];
+ cmd[2][6] = uid[4];
+
+ // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
+ cmd[3][0] = 0x02;
+ cmd[3][1] = 0x21;
+ cmd[3][2] = 0x39;
+ cmd[3][3] = uid[3];
+ cmd[3][4] = uid[2];
+ cmd[3][5] = uid[1];
+ cmd[3][6] = uid[0];
+
+ for (int i=0; i<4; i++) {
+ // Add the CRC
+ crc = Iso15693Crc(cmd[i], 7);
+ cmd[i][7] = crc & 0xff;
+ cmd[i][8] = crc >> 8;
+
+ if (DEBUG) {
+ Dbprintf("SEND:");
+ Dbhexdump(sizeof(cmd[i]), cmd[i], false);
+ }
+
+ recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
+
+ if (DEBUG) {
+ Dbprintf("RECV:");
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
+
+ cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+ }
+
+ LED_D_OFF();
+
+ LED_A_OFF();
}
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
//Now the CRC
- crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
+ crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
// Number of Blocks to read
cmd[11] = 0x2f; // read quite a few
//Now the CRC
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
cmd[10] = 0x00;
cmd[11] = 0x0a;
-// cmd[12] = 0x00;
-// cmd[13] = 0x00; //Now the CRC
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
cmd[10] = 0x05; // for custom codes this must be manufacturer code
cmd[11] = 0x00;
-// cmd[12] = 0x00;
-// cmd[13] = 0x00; //Now the CRC
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;