// the license.
//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency tag operations.
-// Tags supported here so far are Texas Instruments (TI), HID
+// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------
#include "string.h"
#include "lfdemod.h"
#include "lfsampling.h"
-#include "usb_cdc.h" //test
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+#include "fpgaloader.h"
/**
* Function to do a modulation and then get samples.
*/
void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
{
+ // start timer
+ StartTicks();
- int divisor_used = 95; // 125 KHz
- // see if 'h' was specified
+ // use lf config settings
+ sample_config *sc = getSamplingConfig();
- if (command[strlen((char *) command) - 1] == 'h')
- divisor_used = 88; // 134.8 KHz
-
- sample_config sc = { 0,0,1, divisor_used, 0};
- setSamplingConfig(&sc);
-
- /* Make sure the tag is reset */
+ // Make sure the tag is reset
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(2500);
+ WaitMS(2500);
- LFSetupFPGAForADC(sc.divisor, 1);
+ // clear read buffer (after fpga bitstream loaded...)
+ BigBuf_Clear_keep_EM();
- // And a little more time for the tag to fully power up
- SpinDelay(2000);
+ // power on
+ LFSetupFPGAForADC(sc->divisor, 1);
+ // And a little more time for the tag to fully power up
+ WaitMS(2000);
+ // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
+ bool bitbang = delay_off == 0;
// now modulate the reader field
- while(*command != '\0' && *command != ' ') {
+
+ if (bitbang) {
+ // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
+ uint8_t hack_cnt = 7;
+ if (period_0 < hack_cnt || period_1 < hack_cnt) {
+ DbpString("Warning periods cannot be less than 7us in bit bang mode");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ return;
+ }
+
+ // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
+ // leading to ~ 1 to 2 125khz samples extra in every off period
+ // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
+ // but is this time different for every antenna or other hw builds??? more testing needed
+
+ // prime cmd_len to save time comparing strings while modulating
+ int cmd_len = 0;
+ while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
+ cmd_len++;
+
+ int counter = 0;
+ bool off = false;
+ for (counter = 0; counter < cmd_len; counter++) {
+ // if cmd = 0 then turn field off
+ if (command[counter] == '0') {
+ // if field already off leave alone (affects timing otherwise)
+ if (off == false) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ off = true;
+ }
+ // note we appear to take about 7us to switch over (or run the if statements/loop...)
+ WaitUS(period_0-hack_cnt);
+ // else if cmd = 1 then turn field on
+ } else {
+ // if field already on leave alone (affects timing otherwise)
+ if (off) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ off = false;
+ }
+ // note we appear to take about 7us to switch over (or run the if statements/loop...)
+ WaitUS(period_1-hack_cnt);
+ }
+ }
+ } else { // old mode of cmd read using delay as off period
+ while(*command != '\0' && *command != ' ') {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ WaitUS(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ if(*(command++) == '0') {
+ WaitUS(period_0);
+ } else {
+ WaitUS(period_1);
+ }
+ }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
- SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
+ WaitUS(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
}
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition_config(false);
-}
-
+ DoAcquisition_config(false, 0);
+ // Turn off antenna
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ // tell client we are done
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
/* blank r/w tag data stream
...0000000000000000 01111111
}
}
-
-
void WriteTIbyte(uint8_t b)
{
int i = 0;
// clear buffer
uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
- memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
+ BigBuf_Clear_ext(false);
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
}
}
-
-
-
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
-
-
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use tiread to check");
+ DbpString("Now use `lf ti read` to check");
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
int i;
uint8_t *tab = BigBuf_get_addr();
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
+ //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
- #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
- #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
i = 0;
for(;;) {
//wait until SSC_CLK goes HIGH
+ int ii = 0;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
- DbpString("Stopped");
- return;
+ //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
+ if ( ii == 1000 ) {
+ if (BUTTON_PRESS() || usb_poll_validate_length() ) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ return;
+ }
+ ii=0;
}
WDT_HIT();
+ ii++;
}
if (ledcontrol)
LED_D_ON();
if (ledcontrol)
LED_D_OFF();
+ ii=0;
//wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
+ //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
+ if ( ii == 1000 ) {
+ if (BUTTON_PRESS() || usb_poll_validate_length() ) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ return;
+ }
+ ii=0;
}
WDT_HIT();
+ ii++;
}
i++;
SpinDelayUs(gap);
}
}
+
}
}
uint8_t wavesPerClock = clock/fc;
uint8_t mod = clock % fc; //modifier
uint8_t modAdj = fc/mod; //how often to apply modifier
- bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+ bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
// loop through clock - step field clock
for (uint8_t idx=0; idx < wavesPerClock; idx++){
// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
-void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
+void CmdHIDsimTAG(int hi2, int hi, int lo, int ledcontrol)
{
int n=0, i=0;
/*
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
*/
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
+ if (hi2>0x0FFFFFFF) {
+ DbpString("Tags can only have 44 or 84 bits. - USE lf simfsk for larger tags");
return;
}
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
fc(0,&n);
// special start of frame marker containing invalid bit sequences
fc(8, &n); fc(8, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
+ if (hi2 > 0 || hi > 0xFFF){
+ // manchester encode bits 91 to 64 (91-84 are part of the header)
+ for (i=27; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi2>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+ WDT_HIT();
+ // manchester encode bits 63 to 32
+ for (i=31; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+ } else {
+ // manchester encode bits 43 to 32
+ for (i=11; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
}
}
uint8_t clk = arg2 & 0xFF;
uint8_t invert = (arg2 >> 8) & 1;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
for (i=0; i<size; i++){
if (BitStream[i] == invert){
fcAll(fcLow, &n, clk, &modCnt);
memset(dest+(*n), c ^ *phase, clock);
*phase ^= 1;
}
+ *n += clock;
+}
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
}
// args clock, ask/man or askraw, invert, transmission separator
uint8_t separator = arg2 & 1;
uint8_t invert = (arg2 >> 8) & 1;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
if (encoding==2){ //biphase
uint8_t phase=0;
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
- if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+ if (phase==1) { //run a second set inverted to keep phase in check
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert, &n, clk, encoding);
}
- if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
}
}
}
-
- if (separator==1) Dbprintf("sorry but separator option not yet available");
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
//DEBUG
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
//i+=16;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
-
- if (ledcontrol)
- LED_A_ON();
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
//carrier can be 2,4 or 8
uint8_t carrier = arg1 & 0xFF;
uint8_t invert = arg2 & 0xFF;
uint8_t curPhase = 0;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
for (i=0; i<size; i++){
if (BitStream[i] == curPhase){
- pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+ pskSimBit(carrier, &n, clk, &curPhase, false);
} else {
- pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+ pskSimBit(carrier, &n, clk, &curPhase, true);
}
}
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
//i+=16;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- if (ledcontrol)
- LED_A_ON();
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+void CmdHIDdemodFSK(int findone, int *high2, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
//const size_t sizeOfBigBuff = BigBuf_max_traceLen();
size_t size;
uint32_t hi2=0, hi=0, lo=0;
int idx=0;
+ int dummyIdx = 0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
- while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
// FSK demodulator
//size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
size = 50*128*2; //big enough to catch 2 sequences of largest format
- idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+ idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
if (idx>0 && lo>0 && (size==96 || size==192)){
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ bool decoded = false;
+
// go over previously decoded manchester data and decode into usable tag ID
- if (hi2 != 0){ //extra large HID tags 88/192 bits
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }else { //standard HID tags 44/96 bits
- //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
- uint8_t bitlen = 0;
- uint32_t fc = 0;
- uint32_t cardnum = 0;
- if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
- uint32_t lo2=0;
- lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
- uint8_t idx3 = 1;
- while(lo2 > 1){ //find last bit set to 1 (format len bit)
- lo2=lo2 >> 1;
- idx3++;
- }
- bitlen = idx3+19;
- fc =0;
- cardnum=0;
- if(bitlen == 26){
- cardnum = (lo>>1)&0xFFFF;
- fc = (lo>>17)&0xFF;
- }
- if(bitlen == 37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- if(bitlen == 34){
- cardnum = (lo>>1)&0xFFFF;
- fc= ((hi&1)<<15)|(lo>>17);
- }
- if(bitlen == 35){
- cardnum = (lo>>1)&0xFFFFF;
- fc = ((hi&1)<<11)|(lo>>21);
- }
+ if ((hi2 & 0x000FFFF) != 0){ //extra large HID tags 88/192 bits
+ uint32_t bp = hi2 & 0x000FFFFF;
+ bitlen = 63;
+ while (bp > 0) {
+ bp = bp >> 1;
+ bitlen++;
}
- else { //if bit 38 is not set then 37 bit format is used
- bitlen= 37;
- fc =0;
- cardnum=0;
- if(bitlen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
+ } else if ((hi >> 6) > 0) {
+ uint32_t bp = hi;
+ bitlen = 31;
+ while (bp > 0) {
+ bp = bp >> 1;
+ bitlen++;
+ }
+ } else if (((hi >> 5) & 1) == 0) {
+ bitlen = 37;
+ } else if ((hi & 0x0000001F) > 0 ) {
+ uint32_t bp = (hi & 0x0000001F);
+ bitlen = 31;
+ while (bp > 0) {
+ bp = bp >> 1;
+ bitlen++;
}
- //Dbprintf("TAG ID: %x%08x (%d)",
- // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
- (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ } else {
+ uint32_t bp = lo;
+ bitlen = 0;
+ while (bp > 0) {
+ bp = bp >> 1;
+ bitlen++;
+ }
+ }
+ switch (bitlen){
+ case 26:
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ decoded = true;
+ break;
+ case 35:
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ decoded = true;
+ break;
}
+
+ if (hi2 != 0) //extra large HID tags 88/192 bits
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ else
+ Dbprintf("TAG ID: %x%08x (%d)",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+
+ if (decoded)
+ Dbprintf("Format Len: %dbits - FC: %d - Card: %d",
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+
if (findone){
if (ledcontrol) LED_A_OFF();
+ *high2 = hi2;
*high = hi;
*low = lo;
- return;
+ break;
}
// reset
}
hi2 = hi = lo = idx = 0;
WDT_HIT();
}
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
- //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
size_t size;
- int idx=0;
+ int idx=0, dummyIdx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
DoAcquisition_default(-1,true);
// FSK demodulator
- //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
size = 50*128*2; //big enough to catch 2 sequences of largest format
- idx = AWIDdemodFSK(dest, &size);
+ idx = AWIDdemodFSK(dest, &size, &dummyIdx);
- if (idx>0 && size==96){
- // Index map
- // 0 10 20 30 40 50 60
- // | | | | | | |
- // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
- // -----------------------------------------------------------------------------
- // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
- // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
- // |---26 bit---| |-----117----||-------------142-------------|
- // b = format bit len, o = odd parity of last 3 bits
- // f = facility code, c = card number
- // w = wiegand parity
- // (26 bit format shown)
-
- //get raw ID before removing parities
- uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
- uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
- uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
-
- size = removeParity(dest, idx+8, 4, 1, 88);
- // ok valid card found!
-
- // Index map
- // 0 10 20 30 40 50 60
- // | | | | | | |
- // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
- // -----------------------------------------------------------------------------
- // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
- // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
- // |26 bit| |-117--| |-----142------|
- // b = format bit len, o = odd parity of last 3 bits
- // f = facility code, c = card number
- // w = wiegand parity
- // (26 bit format shown)
-
- uint32_t fc = 0;
- uint32_t cardnum = 0;
- uint32_t code1 = 0;
- uint32_t code2 = 0;
- uint8_t fmtLen = bytebits_to_byte(dest,8);
- if (fmtLen==26){
- fc = bytebits_to_byte(dest+9, 8);
- cardnum = bytebits_to_byte(dest+17, 16);
- code1 = bytebits_to_byte(dest+8,fmtLen);
- Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
- } else {
- cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
- if (fmtLen>32){
- code1 = bytebits_to_byte(dest+8,fmtLen-32);
- code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
- Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
- } else{
- code1 = bytebits_to_byte(dest+8,fmtLen);
- Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
- }
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
+ if (idx<=0 || size!=96) continue;
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+ // -----------------------------------------------------------------------------
+ // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+ // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+ // |---26 bit---| |-----117----||-------------142-------------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+ uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+ uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+ size = removeParity(dest, idx+8, 4, 1, 88);
+ if (size != 66) continue;
+ // ok valid card found!
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+ // -----------------------------------------------------------------------------
+ // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+ // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // |26 bit| |-117--| |-----142------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ uint32_t code2 = 0;
+ uint8_t fmtLen = bytebits_to_byte(dest,8);
+ if (fmtLen==26){
+ fc = bytebits_to_byte(dest+9, 8);
+ cardnum = bytebits_to_byte(dest+17, 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ if (fmtLen>32){
+ code1 = bytebits_to_byte(dest+8,fmtLen-32);
+ code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else{
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
- // reset
}
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ break;
+ }
+ // reset
idx = 0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
int clk=0, invert=0, errCnt=0, maxErr=20;
uint32_t hi=0;
uint64_t lo=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
if (ledcontrol) LED_A_OFF();
*high=lo>>32;
*low=lo & 0xFFFFFFFF;
- return;
+ break;
}
}
WDT_HIT();
hi = lo = size = idx = 0;
clk = invert = errCnt = 0;
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
uint8_t version=0;
uint8_t facilitycode=0;
uint16_t number=0;
+ int dummyIdx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
DoAcquisition_default(-1,true);
//fskdemod and get start index
WDT_HIT();
- idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
if (idx<0) continue;
//valid tag found
//LED_A_OFF();
*high=code;
*low=code2;
- return;
+ break;
}
code=code2=0;
version=facilitycode=0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*------------------------------
- * T5555/T5557/T5567 routines
+ * T5555/T5557/T5567/T5577 routines
*------------------------------
- */
-
-/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY 0x00000001
-#define T55x7_ST_TERMINATOR 0x00000008
-#define T55x7_PWD 0x00000010
-#define T55x7_MAXBLOCK_SHIFT 5
-#define T55x7_AOR 0x00000200
-#define T55x7_PSKCF_RF_2 0
-#define T55x7_PSKCF_RF_4 0x00000400
-#define T55x7_PSKCF_RF_8 0x00000800
-#define T55x7_MODULATION_DIRECT 0
-#define T55x7_MODULATION_PSK1 0x00001000
-#define T55x7_MODULATION_PSK2 0x00002000
-#define T55x7_MODULATION_PSK3 0x00003000
-#define T55x7_MODULATION_FSK1 0x00004000
-#define T55x7_MODULATION_FSK2 0x00005000
-#define T55x7_MODULATION_FSK1a 0x00006000
-#define T55x7_MODULATION_FSK2a 0x00007000
-#define T55x7_MODULATION_MANCHESTER 0x00008000
-#define T55x7_MODULATION_BIPHASE 0x00010000
-#define T55x7_MODULATION_DIPHASE 0x00018000
-#define T55x7_BITRATE_RF_8 0
-#define T55x7_BITRATE_RF_16 0x00040000
-#define T55x7_BITRATE_RF_32 0x00080000
-#define T55x7_BITRATE_RF_40 0x000C0000
-#define T55x7_BITRATE_RF_50 0x00100000
-#define T55x7_BITRATE_RF_64 0x00140000
-#define T55x7_BITRATE_RF_100 0x00180000
-#define T55x7_BITRATE_RF_128 0x001C0000
-
-/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR 0x00000001
-#define T5555_MAXBLOCK_SHIFT 0x00000001
-#define T5555_MODULATION_MANCHESTER 0
-#define T5555_MODULATION_PSK1 0x00000010
-#define T5555_MODULATION_PSK2 0x00000020
-#define T5555_MODULATION_PSK3 0x00000030
-#define T5555_MODULATION_FSK1 0x00000040
-#define T5555_MODULATION_FSK2 0x00000050
-#define T5555_MODULATION_BIPHASE 0x00000060
-#define T5555_MODULATION_DIRECT 0x00000070
-#define T5555_INVERT_OUTPUT 0x00000080
-#define T5555_PSK_RF_2 0
-#define T5555_PSK_RF_4 0x00000100
-#define T5555_PSK_RF_8 0x00000200
-#define T5555_USE_PWD 0x00000400
-#define T5555_USE_AOR 0x00000800
-#define T5555_BITRATE_SHIFT 12
-#define T5555_FAST_WRITE 0x00004000
-#define T5555_PAGE_SELECT 0x00008000
-
-/*
- * Relevant times in microsecond
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
+ *
+ * Relevant communication times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
* Q5 tags seems to have issues when these values changes.
*/
+
+ /*
+ // Original Timings for reference
+//note startgap must be sent after tag has been powered up for more than 3ms (per T5557 ds)
+
#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
-#define READ_GAP 52*8
+#define READ_GAP 15*8
-// VALUES TAKEN FROM EM4x function: SendForward
-// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
-// WRITE_GAP = 128; (16*8)
-// WRITE_1 = 256 32*8; (32*8)
+*/
+/* Q5 timing datasheet:
+ * Type | MIN | Typical | Max |
+ * Start_Gap | 10*8 | ? | 50*8 |
+ * Write_Gap Normal mode | 8*8 | 14*8 | 20*8 |
+ * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
+ * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
+ * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
+ * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
+ * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
+*/
-// These timings work for 4469/4269/4305 (with the 55*8 above)
-// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+/* T5557 timing datasheet:
+ * Type | MIN | Typical | Max |
+ * Start_Gap | 10*8 | ? | 50*8 |
+ * Write_Gap Normal mode | 8*8 |50-150us | 30*8 |
+ * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
+ * Write_0 Normal mode | 16*8 | 24*8 | 31*8 |
+ * Write_1 Normal mode | 48*8 | 54*8 | 63*8 |
+ * Write_0 Fast Mode | 8*8 | 12*8 | 15*8 |
+ * Write_1 Fast Mode | 24*8 | 28*8 | 31*8 |
+*/
+
+/* T5577C timing datasheet for Fixed-Bit-Length protocol (defualt):
+ * Type | MIN | Typical | Max |
+ * Start_Gap | 8*8 | 15*8 | 50*8 |
+ * Write_Gap Normal mode | 8*8 | 10*8 | 20*8 |
+ * Write_Gap Fast Mode | 8*8 | 10*8 | 20*8 |
+ * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
+ * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
+ * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
+ * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
+*/
+
+// Structure to hold Timing values. In future will be simplier to add user changable timings.
+typedef struct {
+ uint16_t START_GAP;
+ uint16_t WRITE_GAP;
+ uint16_t WRITE_0;
+ uint16_t WRITE_1;
+ uint16_t WRITE_2;
+ uint16_t WRITE_3;
+ uint16_t READ_GAP;
+} T55xx_Timing;
+
+// Set Initial/Default Values. Note: *8 can occure when used. This should keep things simplier here.
+T55xx_Timing T55xx_Timing_FixedBit = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
+T55xx_Timing T55xx_Timing_LLR = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
+T55xx_Timing T55xx_Timing_Leading0 = { 31 * 8 , 20 * 8 , 18 * 8 , 40 * 8 , 0 , 0 , 15 * 8 };
+T55xx_Timing T55xx_Timing_1of4 = { 31 * 8 , 20 * 8 , 18 * 8 , 34 * 8 , 50 * 8 , 66 * 8 , 15 * 8 };
+
+// Some defines for readability
+#define T55xx_DLMode_Fixed 0 // Default Mode
+#define T55xx_DLMode_LLR 1 // Long Leading Reference
+#define T55xx_DLMode_Leading0 2 // Leading Zero
+#define T55xx_DLMode_1of4 3 // 1 of 4
+#define T55xx_LongLeadingReference 4 // Value to tell Write Bit to send long reference
+// Macro for code readability
+#define BitStream_Byte(X) ((X) >> 3)
+#define BitStream_Bit(X) ((X) & 7)
-// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
-// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
-// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
-// T0 = TIMER_CLOCK1 / 125000 = 192
-// 1 Cycle = 8 microseconds(us) == 1 field clock
void TurnReadLFOn(int delay) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
- SpinDelayUs(delay); //155*8 //50*8
+ WaitUS(delay); //155*8 //50*8
}
// Write one bit to card
-void T55xxWriteBit(int bit) {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- if (!bit)
- SpinDelayUs(WRITE_0);
- else
- SpinDelayUs(WRITE_1);
+void T55xxWriteBit(int bit, T55xx_Timing *Timings) {
+
+ // If bit = 4 Send Long Leading Reference which is 138 + WRITE_0
+ // Dbprintf ("Bits : %d",bit);
+ switch (bit){
+ case 0 : TurnReadLFOn(Timings->WRITE_0); break; // Send bit 0/00
+ case 1 : TurnReadLFOn(Timings->WRITE_1); break; // Send bit 1/01
+ case 2 : TurnReadLFOn(Timings->WRITE_2); break; // Send bits 10
+ case 3 : TurnReadLFOn(Timings->WRITE_3); break; // Send bits 11
+ case 4 : TurnReadLFOn(Timings->WRITE_0 + (136 * 8)); break; // Send Long Leading Reference
+ }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(WRITE_GAP);
+ WaitUS(Timings->WRITE_GAP);
}
-// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
- LED_A_ON();
- bool PwdMode = arg & 0x1;
- uint8_t Page = (arg & 0x2)>>1;
- uint32_t i = 0;
+// Function to abstract an Arbitrary length byte array to store bit pattern.
+// bit_array - Array to hold data/bit pattern
+// start_offset - bit location to start storing new bits.
+// data - upto 32 bits of data to store
+// num_bits - how many bits (low x bits of data) Max 32 bits at a time
+// max_len - how many bytes can the bit_array hold (ensure no buffer overflow)
+// returns "Next" bit offset / bits stored (for next store)
+//int T55xx_SetBits (uint8_t *bit_array, int start_offset, uint32_t data , int num_bits, int max_len)
+int T55xx_SetBits (uint8_t *BitStream, uint8_t start_offset, uint32_t data , uint8_t num_bits, uint8_t max_len)
+{
+ int8_t offset;
+ int8_t NextOffset = start_offset;
- // Set up FPGA, 125kHz
- LFSetupFPGAForADC(95, true);
+ // Check if data will fit.
+ if ((start_offset + num_bits) <= (max_len*8)) {
+ // Loop through the data and store
+ for (offset = (num_bits-1); offset >= 0; offset--) {
- // Trigger T55x7 in mode.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode 10
- T55xxWriteBit(1);
- T55xxWriteBit(Page); //Page 0
- if (PwdMode){
- // Send Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
+ if ((data >> offset) & 1) BitStream[BitStream_Byte(NextOffset)] |= (1 << BitStream_Bit(NextOffset)); // Set the bit to 1
+ else BitStream[BitStream_Byte(NextOffset)] &= (0xff ^ (1 << BitStream_Bit(NextOffset))); // Set the bit to 0
+
+ NextOffset++;
+ }
+ }
+ else {
+ // Note: This should never happen unless some code changes cause it.
+ // So short message for coders when testing.
+ Dbprintf ("T55 too many bits");
}
- // Send Lock bit
- T55xxWriteBit(0);
+ return NextOffset;
+}
- // Send Data
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Data & i);
+// Send one downlink command to the card
+void T55xx_SendCMD (uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
- // Send Block number
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
+ /*
+ arg bits
+ xxxxxxx1 0x01 PwdMode
+ xxxxxx1x 0x02 Page
+ xxxxx1xx 0x04 testMode
+ xxx11xxx 0x18 downlink mode
+ xx1xxxxx 0x20 !reg_readmode
+ x1xxxxxx 0x40 called for a read, so no data packet
+ 1xxxxxxx 0x80 reset
- // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
- // so wait a little more)
- TurnReadLFOn(20 * 1000);
- //could attempt to do a read to confirm write took
- // as the tag should repeat back the new block
- // until it is reset, but to confirm it we would
- // need to know the current block 0 config mode
+ */
+ bool PwdMode = ((arg & 0x01) == 0x01);
+ bool Page = (arg & 0x02);
+ bool testMode = ((arg & 0x04) == 0x04);
+ uint8_t downlink_mode = (arg >> 3) & 0x03;
+ bool reg_readmode = ((arg & 0x20) == 0x20);
+ bool read_cmd = ((arg & 0x40) == 0x40);
+ bool reset = (arg & 0x80);
+
+ uint8_t i = 0;
+ uint8_t BitStream[10]; // Max Downlink Command size ~74 bits, so 10 bytes (80 bits)
+ uint8_t BitStreamLen;
+ T55xx_Timing *Timing;
+ uint8_t SendBits;
+
+ // Assigning Downlink Timeing for write
+ switch (downlink_mode)
+ {
+ case T55xx_DLMode_Fixed : Timing = &T55xx_Timing_FixedBit; break;
+ case T55xx_DLMode_LLR : Timing = &T55xx_Timing_LLR; break;
+ case T55xx_DLMode_Leading0 : Timing = &T55xx_Timing_Leading0; break;
+ case T55xx_DLMode_1of4 : Timing = &T55xx_Timing_1of4; break;
+ default:
+ Timing = &T55xx_Timing_FixedBit;
+ }
- // turn field off
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- cmd_send(CMD_ACK,0,0,0,0,0);
- LED_A_OFF();
-}
+ // Build Bit Stream to send.
+ memset (BitStream,0x00,sizeof(BitStream));
+
+ BitStreamLen = 0; // Ensure 0 bit index to start.
+
+ // Add Leading 0 and 1 of 4 reference bit
+ if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4))
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
+
+ // Add extra reference 0 for 1 of 4
+ if (downlink_mode == T55xx_DLMode_1of4)
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
+
+ // Add Opcode
+ if (reset) {
+ // Reset : r*) 00
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 2,sizeof(BitStream));
+ }
+ else
+ {
+ if (testMode) Dbprintf("TestMODE");
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 0 : 1 , 1,sizeof(BitStream));
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 1 : Page , 1,sizeof(BitStream));
+
+ if (PwdMode) {
+ // Leading 0 and 1 of 4 00 fixed bits if passsword used
+ if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4)) {
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 2,sizeof(BitStream));
+ }
+ BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Pwd, 32,sizeof(BitStream));
+ }
-// Read one card block in page 0
-void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
- LED_A_ON();
- bool PwdMode = arg0 & 0x1;
- uint8_t Page = (arg0 & 0x2) >> 1;
- uint32_t i = 0;
- bool RegReadMode = (Block == 0xFF);
+ // Add Lock bit 0
+ if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
- //clear buffer now so it does not interfere with timing later
- BigBuf_Clear_ext(false);
+ // Add Data if a write command
+ if (!read_cmd) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Data, 32,sizeof(BitStream));
- //make sure block is at max 7
- Block &= 0x7;
+ // Add Address
+ if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Block, 3,sizeof(BitStream));
+ }
- // Set up FPGA, 125kHz to power up the tag
+ // Send Bits to T55xx
+ // Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
-
- // Trigger T55x7 Direct Access Mode with start gap
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
+ // Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(Timing->START_GAP);
- // Opcode 10
- T55xxWriteBit(1);
- T55xxWriteBit(Page); //Page 0
+ // If long leading 0 send long reference pulse
+ if (downlink_mode == T55xx_DLMode_LLR)
+ T55xxWriteBit (T55xx_LongLeadingReference,Timing); // Send Long Leading Start Reference
- if (PwdMode){
- // Send Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
+ if ((downlink_mode == T55xx_DLMode_1of4) && (BitStreamLen > 0)) { // 1 of 4 need to send 2 bits at a time
+ for ( i = 0; i < BitStreamLen-1; i+=2 ) {
+ SendBits = (BitStream[BitStream_Byte(i )] >> (BitStream_Bit(i )) & 1) << 1; // Bit i
+ SendBits += (BitStream[BitStream_Byte(i+1)] >> (BitStream_Bit(i+1)) & 1); // Bit i+1;
+ T55xxWriteBit (SendBits & 3,Timing);
+ }
}
- // Send a zero bit separation
- T55xxWriteBit(0);
+ else {
+ for (i = 0; i < BitStreamLen; i++) {
+ SendBits = (BitStream[BitStream_Byte(i)] >> BitStream_Bit(i));
+ T55xxWriteBit (SendBits & 1,Timing);
+ }
+ }
+}
- // Send Block number (if direct access mode)
- if (!RegReadMode)
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+ LED_A_ON();
- // Turn field on to read the response
- TurnReadLFOn(READ_GAP);
+ // send r* 00
+ uint8_t arg = 0x80; // SendCMD will add correct reference mode based on flags (when added).
+
+ // Add in downlink_mode when ready
+ // arg |= 0x00; // dlmode << 3 (00 default - 08 leading 0 - 10 Fixed - 18 1 of 4 )
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
+
+ T55xx_SendCMD (0, 0, 0, arg); //, true);
+
+ TurnReadLFOn(T55xx_Timing_FixedBit.READ_GAP);
// Acquisition
- doT55x7Acquisition();
+ DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_A_OFF();
}
-/*
-// Read card traceability data (page 1)
-void T55xxReadTrace(void){
- LED_A_ON();
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+ /*
+ arg bits
+ xxxxxxx1 0x01 PwdMode
+ xxxxxx1x 0x02 Page
+ xxxxx1xx 0x04 testMode
+ xxx11xxx 0x18 downlink mode
+ xx1xxxxx 0x20 !reg_readmode
+ x1xxxxxx 0x40 called for a read, so no data packet
+ 1xxxxxxx 0x80 reset
+ */
+
+ bool testMode = ((arg & 0x04) == 0x04);
+ arg &= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0
+
+ LED_A_ON ();
+ T55xx_SendCMD (Data, Block, Pwd, arg) ;//, false);
- //clear buffer now so it does not interfere with timing later
- BigBuf_Clear_ext(false);
+ // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
- // Set up FPGA, 125kHz
- LFSetupFPGAForADC(95, true);
+ // "there is a clock delay before programming"
+ // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
+ // so we should wait 1 clock + 5.6ms then read response?
+ // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
+ if (testMode) {
+ //TESTMODE TIMING TESTS:
+ // <566us does nothing
+ // 566-568 switches between wiping to 0s and doing nothing
+ // 5184 wipes and allows 1 block to be programmed.
+ // indefinite power on wipes and then programs all blocks with bitshifted data sent.
+ TurnReadLFOn(5184);
- // Trigger T55x7 Direct Access Mode
+ } else {
+ TurnReadLFOn(20 * 1000);
+ //could attempt to do a read to confirm write took
+ // as the tag should repeat back the new block
+ // until it is reset, but to confirm it we would
+ // need to know the current block 0 config mode for
+ // modulation clock an other details to demod the response...
+ // response should be (for t55x7) a 0 bit then (ST if on)
+ // block data written in on repeat until reset.
+
+ //DoPartialAcquisition(20, true, 12000);
+ }
+ // turn field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
- // Opcode 11
- T55xxWriteBit(1);
- T55xxWriteBit(1); //Page 1
+ cmd_send(CMD_ACK,0,0,0,0,0);
+
+ LED_A_OFF ();
+}
+
+// Read one card block in page [page]
+void T55xxReadBlock (uint16_t arg0, uint8_t Block, uint32_t Pwd) {//, struct T55xx_Timing *Timing) {
+
+ LED_A_ON();
+
+ /*
+ arg bits
+ xxxxxxx1 0x01 PwdMode
+ xxxxxx1x 0x02 Page
+ xxxxx1xx 0x04 testMode
+ xxx11xxx 0x18 downlink mode
+ xx1xxxxx 0x20 !reg_readmode
+ x1xxxxxx 0x40 called for a read, so no data packet
+ 1xxxxxxx 0x80 reset
+ */
+
+ // Set Read Flag to ensure SendCMD does not add "data" to the packet
+ arg0 |= 0x40;
+
+ // RegRead Mode true of block 0xff
+ if (Block == 0xff) arg0 |= 0x20;
+
+ //make sure block is at max 7
+ Block &= 0x7;
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ T55xx_SendCMD (0, Block, Pwd, arg0); //, true);
// Turn field on to read the response
- TurnReadLFOn(READ_GAP);
+ // 137*8 seems to get to the start of data pretty well...
+ // but we want to go past the start and let the repeating data settle in...
+ TurnReadLFOn(210*8);
// Acquisition
- doT55x7Acquisition();
+ // Now do the acquisition
+ DoPartialAcquisition(0, true, 12000, 0);
// Turn the field off
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+
LED_A_OFF();
}
-*/
+
void T55xxWakeUp(uint32_t Pwd){
LED_B_ON();
- uint32_t i = 0;
-
- // Set up FPGA, 125kHz
- LFSetupFPGAForADC(95, true);
-
- // Trigger T55x7 Direct Access Mode
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode 10
- T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
+ /*
+ arg bits
+ xxxxxxx1 0x01 PwdMode
+ xxxxxx1x 0x02 Page
+ xxxxx1xx 0x04 testMode
+ xxx11xxx 0x18 downlink mode
+ xx1xxxxx 0x20 !reg_readmode
+ x1xxxxxx 0x40 called for a read, so no data packet
+ 1xxxxxxx 0x80 reset
+ */
+
+ // r* 10 (00) <pwd> r* for llr , L0 and 1/4 - (00) for L0 and 1/4 - All handled in SendCMD
+ // So, default Opcode 10 and pwd.
+ uint8_t arg = 0x01 | 0x40 | 0x20; //Password Read Call no data | reg_read no block
- // Send Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
+ // Add in downlink_mode when ready
+ // arg |= 0x00; // dlmode << 3 (00 default - 08 leading 0 - 10 Fixed - 18 1 of 4 )
+
+ T55xx_SendCMD (0, 0, Pwd, arg); //, true);
// Turn and leave field on to let the begin repeating transmission
TurnReadLFOn(20*1000);
}
/*-------------- Cloning routines -----------*/
-// Copy HID id to card and setup block 0 config
-void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
- int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
- int last_block = 0;
- if (longFMT){
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+ // write last block first and config block last (if included)
+ for (uint8_t i = numblocks+startblock; i > startblock; i--) {
+ T55xxWriteBlock(blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
+ //T55xx_SendCMD (blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
+ }
+}
+
+// Copy a HID-like card (e.g. HID Proximity, Paradox) to a T55x7 compatible card
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, uint8_t preamble) {
+ uint32_t data[] = {0,0,0,0,0,0,0};
+ uint8_t last_block = 0;
+
+ if (longFMT) {
// Ensure no more than 84 bits supplied
if (hi2>0xFFFFF) {
DbpString("Tags can only have 84 bits.");
}
// Build the 6 data blocks for supplied 84bit ID
last_block = 6;
- data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
- for (int i=0;i<4;i++) {
- if (hi2 & (1<<(19-i)))
- data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((3-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (hi2 & (1<<(15-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(31-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data4 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(15-i)))
- data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data4 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data5 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data5 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data6 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data6 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
- else {
+ // load preamble & long format identifier (9E manchester encoded)
+ data[1] = (preamble << 24) | 0x96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+ // load raw id from hi2, hi, lo to data blocks (manchester encoded)
+ data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+ data[3] = manchesterEncode2Bytes(hi >> 16);
+ data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+ data[5] = manchesterEncode2Bytes(lo >> 16);
+ data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+ } else {
// Ensure no more than 44 bits supplied
if (hi>0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
-
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
-
- data1 = 0x1D000000; // load preamble
-
- for (int i=0;i<12;i++) {
- if (hi & (1<<(11-i)))
- data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((11-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
+ // load preamble
+ data[1] = (preamble << 24) | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+ data[2] = manchesterEncode2Bytes(lo >> 16);
+ data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
}
+ // load chip config block
+ data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
- T55xxWriteBlock(data3,3,0,0);
-
- if (longFMT) { // if long format there are 6 blocks
- T55xxWriteBlock(data4,4,0,0);
- T55xxWriteBlock(data5,5,0,0);
- T55xxWriteBlock(data6,6,0,0);
- }
-
- // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
- T55xxWriteBlock(T55x7_BITRATE_RF_50 |
- T55x7_MODULATION_FSK2a |
- last_block << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
+ WriteT55xx(data, 0, last_block+1);
LED_D_OFF();
DbpString("DONE!");
}
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
- int data1=0, data2=0; //up to six blocks for long format
-
- data1 = hi; // load preamble
- data2 = lo;
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+ uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
+ // and the block 0 config
+ WriteT55xx(data, 0, 3);
- //Config Block
- T55xxWriteBlock(0x00147040,0,0,0);
LED_D_OFF();
DbpString("DONE!");
}
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+ uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+ WriteT55xx(data, 0, 3);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
+ DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+ //Program the 7 data blocks for supplied 224bit UID
+ uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+ // and the block 0 for Indala224 format
+ //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
+ data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
+ WriteT55xx(data, 0, 8);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+ DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+ uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+ if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ // Program the data blocks for supplied ID and the block 0 config
+ WriteT55xx(data, 0, 3);
+ LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
// Define 9bit header for EM410x tags
-#define EM410X_HEADER 0x1FF
+#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
int i, id_bit;
uint64_t id = EM410X_HEADER;
uint64_t rev_id = 0; // reversed ID
LED_D_ON();
// Write EM410x ID
- T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
- T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
- // Config for EM410x (RF/64, Manchester, Maxblock=2)
- if (card) {
- // Clock rate is stored in bits 8-15 of the card value
- clock = (card & 0xFF00) >> 8;
- Dbprintf("Clock rate: %d", clock);
- switch (clock) {
- case 50:
- clock = T55x7_BITRATE_RF_50;
- case 40:
- clock = T55x7_BITRATE_RF_40;
- case 32:
- clock = T55x7_BITRATE_RF_32;
- break;
- case 16:
- clock = T55x7_BITRATE_RF_16;
- break;
- case 0:
- // A value of 0 is assumed to be 64 for backwards-compatibility
- // Fall through...
- case 64:
- clock = T55x7_BITRATE_RF_64;
- break;
- default:
+ uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+ clock = (card & 0xFF00) >> 8;
+ clock = (clock == 0) ? 64 : clock;
+ Dbprintf("Clock rate: %d", clock);
+ if (card & 0xFF) { //t55x7
+ clock = GetT55xxClockBit(clock);
+ if (clock == 0) {
Dbprintf("Invalid clock rate: %d", clock);
return;
}
-
- // Writing configuration for T55x7 tag
- T55xxWriteBlock(clock |
- T55x7_MODULATION_MANCHESTER |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
+ data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+ } else { //t5555 (Q5)
+ data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
}
- else
- // Writing configuration for T5555(Q5) tag
- T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
- T5555_MODULATION_MANCHESTER |
- 2 << T5555_MAXBLOCK_SHIFT,
- 0, 0, 0);
+
+ WriteT55xx(data, 0, 3);
LED_D_OFF();
Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
(uint32_t)(id >> 32), (uint32_t)id);
}
-// Clone Indala 64-bit tag by UID to T55x7
-void CopyIndala64toT55x7(int hi, int lo)
-{
-
- //Program the 2 data blocks for supplied 64bit UID
- // and the block 0 for Indala64 format
- T55xxWriteBlock(hi,1,0,0);
- T55xxWriteBlock(lo,2,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
- // T5567WriteBlock(0x603E1042,0);
-
- DbpString("DONE!");
-
-}
-
-void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
-{
-
- //Program the 7 data blocks for supplied 224bit UID
- // and the block 0 for Indala224 format
- T55xxWriteBlock(uid1,1,0,0);
- T55xxWriteBlock(uid2,2,0,0);
- T55xxWriteBlock(uid3,3,0,0);
- T55xxWriteBlock(uid4,4,0,0);
- T55xxWriteBlock(uid5,5,0,0);
- T55xxWriteBlock(uid6,6,0,0);
- T55xxWriteBlock(uid7,7,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 7 << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
- // T5567WriteBlock(0x603E10E2,0);
-
- DbpString("DONE!");
-
-}
-
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
#define FWD_CMD_WRITE 0xA
#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
-
+#define FWD_CMD_PROTECT 0x3
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t * forward_ptr; //ptr for forward message preparation
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+
uint8_t Prepare_Cmd( uint8_t cmd ) {
- //--------------------------------------------------------------------
*forward_ptr++ = 0; //start bit
*forward_ptr++ = 0; //second pause for 4050 code
// prepares address bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
- //--------------------------------------------------------------------
register uint8_t line_parity;
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
- //--------------------------------------------------------------------
register uint8_t line_parity;
register uint8_t column_parity;
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
- LED_D_ON();
-
- // Set up FPGA, 125kHz
+ // Set up FPGA, 125kHz or 95 divisor
LFSetupFPGAForADC(95, true);
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
+ WaitUS(18*8); //18 cycles on (8us each)
- // now start writting
+ // now start writting - each bit should be 32*8 total length
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ WaitUS(32*8); //32 cycles at 125Khz (8us each)
else {
//These timings work for 4469/4269/4305 (with the 55*8 above)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ WaitUS(23*8); //23 cycles off (8us each)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
+ WaitUS((32-23)*8); //remaining cycles on (8us each)
}
}
}
//Wait for command to complete
SpinDelay(20);
-
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t fwd_bit_count;
- uint8_t *dest = BigBuf_get_addr();
- uint16_t bufferlength = BigBuf_max_traceLen();
- uint32_t i = 0;
// Clear destination buffer before sending the command
- memset(dest, 0x80, bufferlength);
+ BigBuf_Clear_ext(false);
+ LED_A_ON();
+ StartTicks();
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
SendForward(fwd_bit_count);
-
+ WaitUS(400);
// Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= bufferlength) break;
- }
- }
+ DoPartialAcquisition(20, true, 6000, 1000);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_A_OFF();
cmd_send(CMD_ACK,0,0,0,0,0);
- LED_D_OFF();
}
-void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-
+void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
+
+ bool PwdMode = (flag & 0x1);
+ uint8_t Address = (flag >> 8) & 0xFF;
uint8_t fwd_bit_count;
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ LED_A_ON();
+ StartTicks();
//If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
+ if (PwdMode) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
SendForward(fwd_bit_count);
//Wait for write to complete
- SpinDelay(20);
+ //SpinDelay(10);
+
+ WaitUS(6500);
+ //Capture response if one exists
+ DoPartialAcquisition(20, true, 6000, 1000);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ LED_A_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+void EM4xProtect(uint32_t flag, uint32_t Data, uint32_t Pwd) {
+
+ bool PwdMode = (flag & 0x1);
+ uint8_t fwd_bit_count;
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ LED_A_ON();
+ StartTicks();
+ //If password mode do login
+ if (PwdMode) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_PROTECT );
+
+ //unsure if this needs the full packet config...
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ //SpinDelay(10);
+
+ WaitUS(6500);
+ //Capture response if one exists
+ DoPartialAcquisition(20, true, 6000, 1000);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_A_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+/*
+Reading a COTAG.
+
+COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
+because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
+
+READER START SEQUENCE:
+burst 800 us, gap 2.2 msecs
+burst 3.6 msecs gap 2.2 msecs
+burst 800 us gap 2.2 msecs
+pulse 3.6 msecs
+
+This triggers a COTAG tag to response
+*/
+void Cotag(uint32_t arg0) {
+
+#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
+#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
+
+ uint8_t rawsignal = arg0 & 0xF;
+
+ LED_A_ON();
+
+ // Switching to LF image on FPGA. This might empty BigBuff
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ // Set up FPGA, 132kHz to power up the tag
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc(FPGA_MAJOR_MODE_LF_ADC);
+
+ // start clock - 1.5ticks is 1us
+ StartTicks();
+
+ //send COTAG start pulse
+ ON(740) OFF
+ ON(3330) OFF
+ ON(740) OFF
+ ON(1000)
+
+ switch(rawsignal) {
+ case 0: doCotagAcquisition(50000); break;
+ case 1: doCotagAcquisitionManchester(); break;
+ case 2: DoAcquisition_config(true, 0); break;
+ }
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}