-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
#include "crapto1.h"
#include "mifareutil.h"
#include "BigBuf.h"
+#include "parity.h"
+
static uint32_t iso14a_timeout;
int rsamples = 0;
uint8_t trigger = 0;
static uint32_t LastTimeProxToAirStart;
static uint32_t LastProxToAirDuration;
-
-
// CARD TO READER - manchester
// Sequence D: 11110000 modulation with subcarrier during first half
// Sequence E: 00001111 modulation with subcarrier during second half
#define SEC_Y 0x00
#define SEC_Z 0xc0
-const uint8_t OddByteParity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
-
void iso14a_set_timeout(uint32_t timeout) {
iso14a_timeout = timeout;
if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
}
-
void iso14a_set_ATS_timeout(uint8_t *ats) {
uint8_t tb1;
if (ats[0] > 1) { // there is a format byte T0
if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
- if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
+
+ if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
tb1 = ats[3];
- } else {
+ else
tb1 = ats[2];
- }
+
fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
- fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ fwt = 4096 * (1 << fwi);
- iso14a_set_timeout(fwt/(8*16));
+ //iso14a_set_timeout(fwt/(8*16));
+ iso14a_set_timeout(fwt/128);
}
}
}
-
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
- return OddByteParity[bt];
-}
-
void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
{
uint16_t paritybit_cnt = 0;
for (uint16_t i = 0; i < iLen; i++) {
// Generate the parity bits
- parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+ parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
if (paritybit_cnt == 7) {
par[paritybyte_cnt] = parityBits; // save 8 Bits parity
parityBits = 0; // and advance to next Parity Byte
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+
+ set_tracing(FALSE);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
{
-
+ uint32_t counters[] = {0,0,0};
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint8_t sak;
// PACK response to PWD AUTH for EV1/NTAG
- uint8_t response8[4];
+ uint8_t response8[4] = {0,0,0,0};
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
- uint8_t response1[2];
+ uint8_t response1[2] = {0,0};
switch (tagType) {
case 1: { // MIFARE Classic
response8[0] = 0x80;
response8[1] = 0x80;
ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+ // uid not supplied then get from emulator memory
+ if (data[0]==0) {
+ uint16_t start = 4 * (0+12);
+ uint8_t emdata[8];
+ emlGetMemBt( emdata, start, sizeof(emdata));
+ memcpy(data, emdata, 3); //uid bytes 0-2
+ memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+ flags |= FLAG_7B_UID_IN_DATA;
+ }
} break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
// TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
- // Prepare GET_VERSION (different for EV-1 / NTAG)
+ // Prepare GET_VERSION (different for UL EV-1 / NTAG)
//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
- uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+ //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
// Prepare CHK_TEARING
- uint8_t response9[] = {0xBD,0x90,0x3f};
+ //uint8_t response9[] = {0xBD,0x90,0x3f};
#define TAG_RESPONSE_COUNT 10
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
{ .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
{ .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
- { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
- { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
- { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
- };
+
+ { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
+ };
+ //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+ //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
+
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
// Such a response is less time critical, so we can prepare them on the fly
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
- for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+ for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
prepare_allocated_tag_modulation(&responses[i]);
- }
int len = 0;
LED_A_ON();
for(;;) {
- // Clean receive command buffer
+ WDT_HIT();
+
+ // Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
uint8_t block = receivedCmd[1];
- if ( tagType == 7 ) {
- uint16_t start = 4 * block;
-
- /*if ( block < 4 ) {
- //NTAG 215
- uint8_t blockdata[50] = {
- data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
- data[3],data[4],data[5],data[6],
- data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
- 0xe1,0x10,0x12,0x00,
- 0x03,0x00,0xfe,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,
- 0x00,0x00};
- AppendCrc14443a(blockdata+start, 16);
- EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
- } else {*/
+ // if Ultralight or NTAG (4 byte blocks)
+ if ( tagType == 7 || tagType == 2 ) {
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * (block+12);
uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
emlGetMemBt( emdata, start, 16);
AppendCrc14443a(emdata, 16);
EmSendCmdEx(emdata, sizeof(emdata), false);
- //}
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
-
- } else {
- EmSendCmdEx(data+(4*block),16,false);
+ } else { // all other tags (16 byte block tags)
+ EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
}
- } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
+ } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
uint8_t emdata[MAX_FRAME_SIZE];
- int start = receivedCmd[1] * 4;
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ int start = (receivedCmd[1]+12) * 4;
int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
emlGetMemBt( emdata, start, len);
AppendCrc14443a(emdata, len);
} else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
// ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
- uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
- 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
- 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
- 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
- 0x00,0x00};
- AppendCrc14443a(data, sizeof(data)-2);
- EmSendCmdEx(data,sizeof(data),false);
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * 4;
+ uint8_t emdata[34];
+ emlGetMemBt( emdata, start, 32);
+ AppendCrc14443a(emdata, 32);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
+ // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
+ // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
+ // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
+ // 0x00,0x00};
+ //AppendCrc14443a(data, sizeof(data)-2);
+ //EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
- } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
- uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
- EmSendCmdEx(data,sizeof(data),false);
- p_response = NULL;
- } else if(receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
+ } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
+ uint8_t index = receivedCmd[1];
+ uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
+ if ( counters[index] > 0) {
+ num_to_bytes(counters[index], 3, data);
+ AppendCrc14443a(data, sizeof(data)-2);
+ }
+ EmSendCmdEx(data,sizeof(data),false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
// number of counter
- //uint8_t counter = receivedCmd[1];
- //uint32_t val = bytes_to_num(receivedCmd+2,4);
-
+ uint8_t counter = receivedCmd[1];
+ uint32_t val = bytes_to_num(receivedCmd+2,4);
+ counters[counter] = val;
+
// send ACK
uint8_t ack[] = {0x0a};
EmSendCmdEx(ack,sizeof(ack),false);
p_response = NULL;
} else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
- p_response = &responses[9];
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint8_t emdata[3];
+ uint8_t counter=0;
+ if (receivedCmd[1]<3) counter = receivedCmd[1];
+ emlGetMemBt( emdata, 10+counter, 1);
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[9];
+
} else if(receivedCmd[0] == 0x50) { // Received a HALT
-
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
- p_response = &responses[7];
+ uint8_t emdata[10];
+ emlGetMemBt( emdata, 0, 8 );
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[7];
} else {
p_response = &responses[5]; order = 7;
}
p_response = &responses[6]; order = 70;
}
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
{
if ( tagType == 7 ) {
- p_response = &responses[8]; // PACK response
+ uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+ uint8_t emdata[4];
+ emlGetMemBt( emdata, start, 2);
+ AppendCrc14443a(emdata, 2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[8]; // PACK response
uint32_t pwd = bytes_to_num(receivedCmd+1,4);
- Dbprintf("Auth attempt: %08x", pwd);
+
+ if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
}
- }
- else {
+ } else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
case 0x02:
default: {
// Never seen this command before
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
p_response = &dynamic_response_info;
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(p_response->response, p_response->response_n, par);
EmLogTrace(Uart.output,
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
BigBuf_free_keep_EM();
LED_A_OFF();
if (MF_DBGLEVEL >= 4){
- Dbprintf("-[ Wake ups after halt [%d]", happened);
- Dbprintf("-[ Messages after halt [%d]", happened2);
- Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+ Dbprintf("-[ Wake ups after halt [%d]", happened);
+ Dbprintf("-[ Messages after halt [%d]", happened2);
+ Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
}
}
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
-
+
delay &= 0x07;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i);
}
- ToSend[ToSendMax++] = 0x00;
+ ToSend[++ToSendMax] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
//-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
uint32_t ThisTransferTime = 0;
PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+
while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
LastTimeProxToAirStart = *timing;
} else {
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
- c++;
- if(c >= len) {
+ ++c;
+ if(c >= len)
break;
- }
}
}
void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
- int last;
+ int last = 0;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
- last = 0;
size_t bytecount = nbytes(bits);
// Generate send structure for the data bits
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[1];
+ uint8_t par[1] = {0x00};
GetParity(&resp, 1, par);
EmLogTrace(Uart.output,
Uart.len,
}
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
}
int EmSendCmd(uint8_t *resp, uint16_t respLen){
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, false, par);
}
bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
{
- if (tracing) {
- // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
- // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
- // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
- uint16_t reader_modlen = reader_EndTime - reader_StartTime;
- uint16_t approx_fdt = tag_StartTime - reader_EndTime;
- uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
- reader_EndTime = tag_StartTime - exact_fdt;
- reader_StartTime = reader_EndTime - reader_modlen;
- if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
- return FALSE;
- } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
- } else {
- return TRUE;
- }
+ // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+ // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+ // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_EndTime = tag_StartTime - exact_fdt;
+ reader_StartTime = reader_EndTime - reader_modlen;
+
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
+ return FALSE;
+ else
+ return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
+
}
//-----------------------------------------------------------------------------
LED_A_ON();
// Log reader command in trace buffer
- if (tracing) {
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
- }
+ LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len/8, par);
ReaderTransmitBitsPar(frame, len, par, timing);
}
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len, par);
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
- if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- }
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
+ return FALSE;
+
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
- if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- }
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
+ return FALSE;
+
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[]
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
- uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
- uint8_t resp_par[MAX_PARITY_SIZE];
- byte_t uid_resp[4];
- size_t uid_resp_len;
+ uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
+ uint8_t resp_par[MAX_PARITY_SIZE] = {0};
+ byte_t uid_resp[4] = {0};
+ size_t uid_resp_len = 0;
uint8_t sak = 0x04; // cascade uid
int cascade_level = 0;
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0, NULL);
+ ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
// Receive the ATQA
if(!ReaderReceive(resp, resp_par)) return 0;
memset(p_hi14a_card->uid,0,10);
}
- // clear uid
- if (uid_ptr) {
- memset(uid_ptr,0,10);
+ if (anticollision) {
+ // clear uid
+ if (uid_ptr)
+ memset(uid_ptr,0,10);
}
// check for proprietary anticollision:
- if ((resp[0] & 0x1F) == 0) {
- return 3;
- }
+ if ((resp[0] & 0x1F) == 0) return 3;
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+ if (anticollision) {
// SELECT_ALL
- ReaderTransmit(sel_all, sizeof(sel_all), NULL);
- if (!ReaderReceive(resp, resp_par)) return 0;
-
- if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
- memset(uid_resp, 0, 4);
- uint16_t uid_resp_bits = 0;
- uint16_t collision_answer_offset = 0;
- // anti-collision-loop:
- while (Demod.collisionPos) {
- Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
- for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
- uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
- uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ memset(uid_resp, 0, 4);
+ uint16_t uid_resp_bits = 0;
+ uint16_t collision_answer_offset = 0;
+ // anti-collision-loop:
+ while (Demod.collisionPos) {
+ Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ }
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp_bits++;
+ // construct anticollosion command:
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+ sel_uid[2+i] = uid_resp[i];
+ }
+ collision_answer_offset = uid_resp_bits%8;
+ ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+ if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
}
- uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
- uid_resp_bits++;
- // construct anticollosion command:
- sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
- for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
- sel_uid[2+i] = uid_resp[i];
+ // finally, add the last bits and BCC of the UID
+ for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+ uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+ uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
- collision_answer_offset = uid_resp_bits%8;
- ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
- if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+
+ } else { // no collision, use the response to SELECT_ALL as current uid
+ memcpy(uid_resp, resp, 4);
}
- // finally, add the last bits and BCC of the UID
- for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
- uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
- uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+
+ } else {
+ if (cascade_level < num_cascades - 1) {
+ uid_resp[0] = 0x88;
+ memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+ } else {
+ memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
}
-
- } else { // no collision, use the response to SELECT_ALL as current uid
- memcpy(uid_resp, resp, 4);
}
uid_resp_len = 4;
// calculate crypto UID. Always use last 4 Bytes.
- if(cuid_ptr) {
+ if(cuid_ptr)
*cuid_ptr = bytes_to_num(uid_resp, 4);
- }
// Construct SELECT UID command
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
- memcpy(sel_uid+2, uid_resp, 4); // the UID
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
AppendCrc14443a(sel_uid, 7); // calculate and add CRC
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
// Receive the SAK
if (!ReaderReceive(resp, resp_par)) return 0;
+
sak = resp[0];
- // Test if more parts of the uid are coming
+ // Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uid_resp[0] = uid_resp[1];
uid_resp[1] = uid_resp[2];
uid_resp[2] = uid_resp[3];
-
uid_resp_len = 3;
}
- if(uid_ptr) {
+ if(uid_ptr && anticollision)
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
- }
if(p_hi14a_card) {
memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
ReaderTransmit(rats, sizeof(rats), NULL);
if (!(len = ReaderReceive(resp, resp_par))) return 0;
-
if(p_hi14a_card) {
memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
- uint8_t parity[MAX_PARITY_SIZE];
+ uint8_t parity[MAX_PARITY_SIZE] = {0x00};
uint8_t real_cmd[cmd_len+4];
real_cmd[0] = 0x0a; //I-Block
// put block number into the PCB
size_t lenbits = c->arg[1] >> 16;
uint32_t timeout = c->arg[2];
uint32_t arg0 = 0;
- byte_t buf[USB_CMD_DATA_SIZE];
- uint8_t par[MAX_PARITY_SIZE];
+ byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
- if(param & ISO14A_CONNECT) {
+ if (param & ISO14A_CONNECT)
clear_trace();
- }
set_tracing(TRUE);
- if(param & ISO14A_REQUEST_TRIGGER) {
+ if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(TRUE);
- }
- if(param & ISO14A_CONNECT) {
+
+ if (param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
- arg0 = iso14443a_select_card(NULL,card,NULL);
+ arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
}
}
- if(param & ISO14A_SET_TIMEOUT) {
+ if (param & ISO14A_SET_TIMEOUT)
iso14a_set_timeout(timeout);
- }
- if(param & ISO14A_APDU) {
+ if (param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
- if(param & ISO14A_RAW) {
+ if (param & ISO14A_RAW) {
if(param & ISO14A_APPEND_CRC) {
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
- if(param & ISO14A_REQUEST_TRIGGER) {
+ if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(FALSE);
- }
- if(param & ISO14A_NO_DISCONNECT) {
+
+ if (param & ISO14A_NO_DISCONNECT)
return;
- }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
LEDsoff();
}
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
- uint16_t i;
- uint32_t nttmp1, nttmp2;
-
if (nt1 == nt2) return 0;
-
- nttmp1 = nt1;
- nttmp2 = nt2;
-
- for (i = 1; i < 0xFFFF; i++) {
- nttmp1 = prng_successor(nttmp1, 1);
- if (nttmp1 == nt2) return i;
- nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
- }
- return(-99999); // either nt1 or nt2 are invalid nonces
-}
-
-int32_t dist_nt_ex32(uint32_t nt1, uint32_t nt2, bool *result) {
-
uint16_t i;
- uint32_t nttmp1, nttmp2;
-
- if (nt1 == nt2) return 0;
-
- nttmp1 = nt1;
- nttmp2 = nt2;
+ uint32_t nttmp1 = nt1;
+ uint32_t nttmp2 = nt2;
- *result = true;
- for (i = 1; i < 0xFFFFFFFF; i++) {
+ for (i = 1; i < 0xFFFF; ++i) {
nttmp1 = prng_successor(nttmp1, 1);
if (nttmp1 == nt2) return i;
-
+
nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
- }
+ if (nttmp2 == nt1) return -i;
+ }
- *result = false;
return(-99999); // either nt1 or nt2 are invalid nonces
}
+
//-----------------------------------------------------------------------------
// Recover several bits of the cypher stream. This implements (first stages of)
// the algorithm described in "The Dark Side of Security by Obscurity and
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
+void ReaderMifare(bool first_try, uint8_t block )
{
// Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c };
+ uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- static uint8_t mf_nr_ar3;
-
- uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
+ static uint8_t mf_nr_ar3 = 0;
- if (first_try) {
- iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
- }
-
- // free eventually allocated BigBuf memory. We want all for tracing.
- BigBuf_free();
+ mf_auth[1] = block;
+ AppendCrc14443a(mf_auth, 2);
- clear_trace();
- set_tracing(TRUE);
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
- uint8_t uid[10] ={0};
- uint32_t cuid;
+ uint8_t uid[10] = {0};
+ uint32_t cuid = 0;
uint32_t nt = 0;
uint32_t previous_nt = 0;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
- #define PRNG_SEQUENCE_LENGTH (1 << 16);
static uint32_t sync_time = 0;
- static uint32_t sync_cycles = 0;
+ static int32_t sync_cycles = 0;
int catch_up_cycles = 0;
int last_catch_up = 0;
+ uint16_t elapsed_prng_sequences = 1;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
+ #define PRNG_SEQUENCE_LENGTH (1 << 16);
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define NUM_DEBUG_INFOS 8 // per strategy
+ #define MAX_STRATEGY 3
+
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+ int16_t debug_info_nr = -1;
+ uint16_t strategy = 0;
+ int32_t debug_info[MAX_STRATEGY+1][NUM_DEBUG_INFOS];
+ uint32_t select_time = 0;
+ uint32_t halt_time = 0;
+ //uint8_t caller[7] = {0};
+
+ // init to zero.
+ for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
+ debug_info[i][j] = 0;
+
+ LED_A_ON();
+ LED_B_OFF();
+ LED_C_OFF();
+
+ if (first_try)
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+
+ // free eventually allocated BigBuf memory. We want all for tracing.
+ BigBuf_free();
+ clear_trace();
+ set_tracing(TRUE);
+
if (first_try) {
- mf_nr_ar3 = 0;
sync_time = GetCountSspClk() & 0xfffffff8;
sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ mf_nr_ar3 = 0;
nt_attacked = 0;
- nt = 0;
par[0] = 0;
- }
- else {
+ } else {
// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
mf_nr_ar3++;
mf_nr_ar[3] = mf_nr_ar3;
par[0] = par_low;
}
-
- LED_A_ON();
- LED_B_OFF();
- LED_C_OFF();
-
-
- #define MAX_UNEXPECTED_RANDOM 5 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
- #define MAX_SYNC_TRIES 16
- uint16_t unexpected_random = 0;
- uint16_t sync_tries = 0;
- int16_t debug_info_nr = -1;
- uint32_t debug_info[MAX_SYNC_TRIES];
-
- for(uint16_t i = 0; TRUE; i++) {
- LED_C_ON();
+ LED_C_ON();
+ for(uint16_t i = 0; TRUE; ++i) {
+
WDT_HIT();
// Test if the action was cancelled
break;
}
- if(!iso14443a_select_card(uid, NULL, &cuid)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
+ if (strategy == 2) {
+ // test with additional halt command
+ halt_time = 0;
+ int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+
+ if (len && MF_DBGLEVEL >= 3)
+ Dbprintf("Unexpected response of %d bytes to halt command (additional debugging).\n", len);
+ }
+
+ if (strategy == 3) {
+ // test with FPGA power off/on
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(100);
+ sync_time = GetCountSspClk() & 0xfffffff8;
+ WDT_HIT();
+ }
+
+ if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n");
continue;
}
+ select_time = GetCountSspClk() & 0xfffffff8;
+ elapsed_prng_sequences = 1;
+
if (debug_info_nr == -1) {
+
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
-
+
// if we missed the sync time already, advance to the next nonce repeat
+ WDT_HIT();
while(GetCountSspClk() > sync_time) {
+ ++elapsed_prng_sequences;
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ //sync_time += sync_cycles;
+ //sync_time &= 0xfffffff8;
}
-
+ WDT_HIT();
// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ if (MF_DBGLEVEL == 2) Dbprintf("sync_time %d \n", sync_time);
+
} else {
- ReaderTransmit(mf_auth, sizeof(mf_auth), NULL);
+ // collect some information on tag nonces for debugging:
+ #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+ if (strategy == 0) {
+ // nonce distances at fixed time after card select:
+ sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 1) {
+ // nonce distances at fixed time between authentications:
+ sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 2) {
+ // nonce distances at fixed time after halt:
+ sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else {
+ // nonce_distances at fixed time after power on
+ sync_time = DEBUG_FIXED_SYNC_CYCLES;
+ }
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
}
// Receive the (4 Byte) "random" nonce
- if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
+ if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
continue;
- }
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
} else {
if (nt_distance == -99999) { // invalid nonce received
unexpected_random++;
- if (!nt_attacked && unexpected_random > MAX_UNEXPECTED_RANDOM) {
+ if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
isOK = -3; // Card has an unpredictable PRNG. Give up
break;
} else {
continue; // continue trying...
}
}
+
if (++sync_tries > MAX_SYNC_TRIES) {
- if (sync_tries > 2 * MAX_SYNC_TRIES) {
+ if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
break;
} else { // continue for a while, just to collect some debug info
- debug_info[++debug_info_nr] = nt_distance;
+ ++debug_info_nr;
+ debug_info[strategy][debug_info_nr] = nt_distance;
+ if (debug_info_nr == NUM_DEBUG_INFOS-1) {
+ ++strategy;
+ debug_info_nr = 0;
+ }
continue;
}
}
- sync_cycles = (sync_cycles - nt_distance);
- if (sync_cycles <= 0) {
+
+ sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+ if (sync_cycles <= 0)
sync_cycles += PRNG_SEQUENCE_LENGTH;
- }
- if (MF_DBGLEVEL >= 3) {
- Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
- }
+
+ if (MF_DBGLEVEL >= 2)
+ Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+
continue;
}
}
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+
catch_up_cycles = -dist_nt(nt_attacked, nt);
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
+
+ // average?
+ catch_up_cycles /= elapsed_prng_sequences;
+
if (catch_up_cycles == last_catch_up) {
- consecutive_resyncs++;
- }
- else {
+ ++consecutive_resyncs;
+ } else {
last_catch_up = catch_up_cycles;
consecutive_resyncs = 0;
}
+ sync_cycles += catch_up_cycles;
+
if (consecutive_resyncs < 3) {
- if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
- }
- else {
- sync_cycles = sync_cycles + catch_up_cycles;
- if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ if (MF_DBGLEVEL >= 3)
+ Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+ } else {
+ sync_cycles += catch_up_cycles;
+
+ if (MF_DBGLEVEL >= 3)
+ Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+
+ last_catch_up = 0;
+ catch_up_cycles = 0;
+ consecutive_resyncs = 0;
}
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
- if (ReaderReceive(receivedAnswer, receivedAnswerPar))
- {
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
- {
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
- }
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
par[0] = par_low;
} else {
- if (nt_diff == 0 && first_try)
- {
+ if (nt_diff == 0 && first_try) {
par[0]++;
- if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
isOK = -2;
break;
}
}
}
-
mf_nr_ar[3] &= 0x1F;
-
+
+ WDT_HIT();
+
if (isOK == -4) {
- if (MF_DBGLEVEL >= 3) {
- for(uint16_t i = 0; i < MAX_SYNC_TRIES; i++) {
- Dbprintf("collected debug info[%d] = %d\n", i, debug_info[i]);
- }
- }
+ for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
+ Dbprintf("info[%d][%d] = %d", i, j, debug_info[i][j]);
}
- byte_t buf[28];
+ // reset sync_time.
+ if ( isOK == 1) {
+ sync_time = 0;
+ sync_cycles = 0;
+ mf_nr_ar3 = 0;
+ nt_attacked = 0;
+ par[0] = 0;
+ }
+
+ byte_t buf[28] = {0x00};
memcpy(buf + 0, uid, 4);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
- // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
-
set_tracing(FALSE);
}
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
- uint8_t response[MAX_MIFARE_FRAME_SIZE];
- uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+ uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
- //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
- uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
+ uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
+ //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rSAK1[] = {0x04, 0xda, 0x17};
- uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
+ //uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
+ uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
- //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+ //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
bool finished = FALSE;
- while (!BUTTON_PRESS() && !finished) {
+ while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
WDT_HIT();
// find reader field
break;
}
case MFEMUL_AUTH1:{
- if( len != 8)
- {
+ if( len != 8) {
cardSTATE_TO_IDLE();
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
//Collect AR/NR
//if(ar_nr_collected < 2 && cardAUTHSC == 2){
- if(ar_nr_collected < 2){
- if(ar_nr_responses[2] != ar)
- {// Avoid duplicates... probably not necessary, ar should vary.
+ if(ar_nr_collected < 2) {
+ if(ar_nr_responses[2] != ar) {
+ // Avoid duplicates... probably not necessary, ar should vary.
//ar_nr_responses[ar_nr_collected*5] = 0;
//ar_nr_responses[ar_nr_collected*5+1] = 0;
ar_nr_responses[ar_nr_collected*5+2] = nonce;
}
// Interactive mode flag, means we need to send ACK
if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
- {
finished = true;
- }
}
// --- crypto
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
cardSTATE = MFEMUL_WORK;
- if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
- cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
- GetTickCount() - authTimer);
+ if (MF_DBGLEVEL >= 4) {
+ Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
+ cardAUTHSC,
+ cardAUTHKEY == 0 ? 'A' : 'B',
+ GetTickCount() - authTimer
+ );
+ }
break;
}
case MFEMUL_SELECT2:{
// select 2 card
if (len == 9 &&
- (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+ (receivedCmd[0] == 0x95 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
EmSendCmd(rSAK, sizeof(rSAK));
cuid = bytes_to_num(rUIDBCC2, 4);
cardSTATE = MFEMUL_WORK;
bool encrypted_data = (cardAUTHKEY != 0xFF) ;
- if(encrypted_data) {
- // decrypt seqence
+ // decrypt seqence
+ if(encrypted_data)
mf_crypto1_decrypt(pcs, receivedCmd, len);
- }
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
authTimer = GetTickCount();
}
// read block
if (receivedCmd[0] == 0x30) {
- if (MF_DBGLEVEL >= 4) {
- Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
- }
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
+
emlGetMem(response, receivedCmd[1], 1);
AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par);
break;
}
case MFEMUL_WRITEBL2:{
- if (len == 18){
+ if (len == 18) {
mf_crypto1_decrypt(pcs, receivedCmd, len);
emlSetMem(receivedCmd, cardWRBL, 1);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
- {
+ // Interactive mode flag, means we need to send ACK
+ if(flags & FLAG_INTERACTIVE) {
//May just aswell send the collected ar_nr in the response aswell
uint8_t len = ar_nr_collected*5*4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
}
- if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
- {
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) {
- Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+ Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT
}
}
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+
+ set_tracing(FALSE);
}
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
-
- // C(red) A(yellow) B(green)
LEDsoff();
+
// init trace buffer
clear_trace();
set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
// The response (tag -> reader) that we're receiving.
- uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// free eventually allocated BigBuf memory
BigBuf_free();
+
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
- if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
+
+ if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
- } else {
+ else
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
- }
+
// test for length of buffer
if(dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if (sniffCounter & 0x01) {
- if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
+ // no need to try decoding tag data if the reader is sending
+ if(!TagIsActive) {
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV();
+
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
/* And ready to receive another command. */
- UartReset();
+ UartInit(receivedCmd, receivedCmdPar);
/* And also reset the demod code */
DemodReset();
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
- if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
+ // no need to try decoding tag data if the reader is sending
+ if(!ReaderIsActive) {
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV();
// And ready to receive another response.
DemodReset();
-
+
// And reset the Miller decoder including its (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
- // why not UartReset?
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
previous_data = *data;
sniffCounter++;
data++;
- if(data == dmaBuf + DMA_BUFFER_SIZE) {
+
+ if(data == dmaBuf + DMA_BUFFER_SIZE)
data = dmaBuf;
- }
} // main cycle
MfSniffEnd();
LEDsoff();
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+ set_tracing(FALSE);
}