]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/nonce2key/nonce2key.c
CHG: rename a local scope variable "data"->"cmd"
[proxmark3-svn] / client / nonce2key / nonce2key.c
index d2e50d5ef84f35dd22b507018969b0dfac7b1d0c..64d3587303acdf6afd25dd43d4dd69971b01c853 100644 (file)
 //-----------------------------------------------------------------------------
 // MIFARE Darkside hack
 //-----------------------------------------------------------------------------
-
-#define __STDC_FORMAT_MACROS
-#include <inttypes.h>
-#define llx PRIx64
-
 #include "nonce2key.h"
-#include "ui.h"
 
 int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
-  struct Crypto1State *state, *state_s;
-  uint32_t pos, rr, nr_diff;//, ks1, ks2;
-  byte_t bt, i, ks3x[8], par[8][8];
-  uint64_t key_recovered;
-  rr = 0;
-  
-  // Reset the last three significant bits of the reader nonce
-  nr &= 0xffffff1f;
+       struct Crypto1State *state;
+       uint32_t i, pos, rr = 0, nr_diff;
+       byte_t bt, ks3x[8], par[8][8];
+
+       // Reset the last three significant bits of the reader nonce
+       nr &= 0xffffff1f;
   
-  PrintAndLog("\nuid(%08x) nt(%08x) par(%016"llx") ks(%016"llx")\n\n",uid,nt,par_info,ks_info);
-
-  for (pos=0; pos<8; pos++)
-  {
-    ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
-    bt = (par_info >> (pos*8)) & 0xff;
-    for (i=0; i<8; i++)
-    {
-      par[7-pos][i] = (bt >> i) & 0x01;
-    }
-  }
-
-  printf("|diff|{nr}    |ks3|ks3^5|parity         |\n");
-  printf("+----+--------+---+-----+---------------+\n");
-  for (i=0; i<8; i++)
-  {
-    nr_diff = nr | i << 5;
-    printf("| %02x |%08x|",i << 5, nr_diff);
-    printf(" %01x |  %01x  |",ks3x[i], ks3x[i]^5);
-    for (pos=0; pos<7; pos++) printf("%01x,", par[i][pos]);
-    printf("%01x|\n", par[i][7]);
-  }
+       PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08x)", uid, nt, par_info, ks_info, nr);
+
+       for ( pos = 0; pos < 8; pos++ ) {
+               ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
+               bt = (par_info >> (pos*8)) & 0xff;
+
+               for ( i = 0; i < 8; i++) {
+                       par[7-pos][i] = (bt >> i) & 0x01;
+               }
+       }
+
+       PrintAndLog("+----+--------+---+-----+---------------+");
+       PrintAndLog("|diff|{nr}    |ks3|ks3^5|parity         |");
+       PrintAndLog("+----+--------+---+-----+---------------+");
+       for ( i = 0; i < 8; i++) {
+               nr_diff = nr | i << 5;
+
+               PrintAndLog("| %02x |%08x| %01x |  %01x  |%01x,%01x,%01x,%01x,%01x,%01x,%01x,%01x|",
+                       i << 5, nr_diff, ks3x[i], ks3x[i]^5,
+                       par[i][0], par[i][1], par[i][2], par[i][3],
+                       par[i][4], par[i][5], par[i][6], par[i][7]);
+
+       }
+       PrintAndLog("+----+--------+---+-----+---------------+");
+
+       clock_t t1 = clock();
+
+       state = lfsr_common_prefix(nr, rr, ks3x, par);
+       lfsr_rollback_word(state, uid ^ nt, 0);
+       crypto1_get_lfsr(state, key);
+       crypto1_destroy(state);
+
+       t1 = clock() - t1;
+       if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks", (float)t1);
+       return 0;
+}
+
+int compar_intA(const void * a, const void * b) {
+       if (*(int64_t*)b == *(int64_t*)a) return 0;
+       if (*(int64_t*)b > *(int64_t*)a) return 1;
+       return -1;
+}
+
+// call when PAR == 0,  special attack?  It seems to need two calls.  with same uid, block, keytype
+int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
+
+       struct Crypto1State *state;
+       uint32_t i, pos, key_count;
+       uint8_t ks3x[8];
+       uint64_t key_recovered;
+       int64_t *state_s;
+       static uint8_t last_blockno;
+       static uint8_t last_keytype;
+       static uint32_t last_uid;
+       static int64_t *last_keylist;
   
-  state = lfsr_common_prefix(nr, rr, ks3x, par);
-       state_s = 0;
-       for (i = 0; (state) && ((state + i)->odd != 0 || (state + i)->even != 0) && (i < 10); i++)
+       if (last_uid != uid &&
+               last_blockno != blockno &&
+               last_keytype != keytype &&
+               last_keylist != NULL)
        {
-    printf("%08x|%08x\n",(state+i)->odd, (state+i)->even);
-               state_s = state + i;
+               free(last_keylist);
+               last_keylist = NULL;
+       }
+       last_uid = uid;
+       last_blockno = blockno;
+       last_keytype = keytype;
+
+       // Reset the last three significant bits of the reader nonce
+       nr &= 0xffffff1f;
+       // split keystream into array
+       for (pos=0; pos<8; pos++) {
+               ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
+       }
+       // find possible states for this keystream
+       state = lfsr_common_prefix_ex(nr, ks3x);
+
+       if (!state) {
+               PrintAndLog("Failed getting states");
+               return 1;
        }
-  if (!state_s) return 1;
        
-  lfsr_rollback_word(state_s, uid^nt, 0);
-  crypto1_get_lfsr(state_s, &key_recovered);
-  if (!state) free(state);
+       state_s = (int64_t*)state;
        
-       *key = key_recovered;
+       uint32_t xored = uid ^ nt;
+       
+       for (i = 0; (state) && ((state + i)->odd != -1); i++) {
+               lfsr_rollback_word(state + i, xored, 0);
+               crypto1_get_lfsr(state + i, &key_recovered);
+               *(state_s + i) = key_recovered;
+       }
+
+       qsort(state_s, i, sizeof(int64_t), compar_intA);
+       *(state_s + i) = -1;
+       
+       // first call to this function.  clear all other stuff and set new found states.
+       if (last_keylist == NULL) {
+               free(last_keylist);
+               last_keylist = state_s;
+               PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on...");                
+               PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)", uid, nt, ks_info, nr);
+               return 1;
+       }
+
+       PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)", uid, nt, ks_info, nr);
+               
+       //Create the intersection:
+       int64_t *p1, *p2, *p3;
+       p1 = p3 = last_keylist; 
+       p2 = state_s;
+               
+       while ( *p1 != -1 && *p2 != -1 ) {
+               if (compar_intA(p1, p2) == 0) {
+                       PrintAndLog("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx,(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
+                       *p3++ = *p1++;
+                       p2++;
+               }
+               else {
+                       while (compar_intA(p1, p2) == -1) ++p1;
+                       while (compar_intA(p1, p2) == 1) ++p2;
+               }
+       }
+       key_count = p3 - last_keylist;
+       PrintAndLog("key_count: %d", key_count);
+       if ( key_count == 0 ){
+               free(state);
+               state = NULL;
+               return 0;
+       }
+       
+       uint8_t retval = 1;
+       // Validate all key candidates with testing each of them with mfCheckKeys
+       uint8_t keyBlock[6] = {0,0,0,0,0,0};
+       uint64_t key64;
+       for (i = 0; i < key_count; i++) {
+               key64 = *(last_keylist + i);
+               num_to_bytes(key64, 6, keyBlock);
+               key64 = 0;
+               if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) {
+                       *key = key64;
+                       retval = 0;
+                       goto out;
+               }
+       }
+       
+out:
+       free(last_keylist);
+       last_keylist = NULL;
+       free(state);
+       state = NULL;
+       return retval;
+}
+
+// 32 bit recover key from 2 nonces
+bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) {
+       struct Crypto1State *s,*t;
+       uint64_t outkey = 0;
+       uint64_t key=0;     // recovered key
+       uint32_t uid     = data.cuid;
+       uint32_t nt      = data.nonce;  // first tag challenge (nonce)
+       uint32_t nr0_enc = data.nr;  // first encrypted reader challenge
+       uint32_t ar0_enc = data.ar;  // first encrypted reader response
+       uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
+       uint32_t ar1_enc = data.ar2; // second encrypted reader response
+       bool isSuccess = FALSE;
+       uint8_t counter = 0;
+       
+       clock_t t1 = clock();
+       uint32_t p64 = prng_successor(nt, 64);
+               
+       if ( verbose ) {
+               PrintAndLog("Recovering key for:");
+               PrintAndLog("    uid: %08x",uid);
+               PrintAndLog("     nt: %08x",nt);
+               PrintAndLog(" {nr_0}: %08x",nr0_enc);
+               PrintAndLog(" {ar_0}: %08x",ar0_enc);
+               PrintAndLog(" {nr_1}: %08x",nr1_enc);
+               PrintAndLog(" {ar_1}: %08x",ar1_enc);
+               PrintAndLog("\nLFSR succesors of the tag challenge:");
+               PrintAndLog("  nt': %08x", p64);
+               PrintAndLog(" nt'': %08x", prng_successor(p64, 32));
+       }
+       
+       s = lfsr_recovery32(ar0_enc ^ p64, 0);
   
-  return 0;
+       for(t = s; t->odd | t->even; ++t) {
+               lfsr_rollback_word(t, 0, 0);
+               lfsr_rollback_word(t, nr0_enc, 1);
+               lfsr_rollback_word(t, uid ^ nt, 0);
+               crypto1_get_lfsr(t, &key);
+               crypto1_word(t, uid ^ nt, 0);
+               crypto1_word(t, nr1_enc, 1);
+               if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) {
+                       outkey = key;
+                       ++counter;
+                       if (counter==20) break;
+               }
+       }
+       isSuccess = (counter > 0);
+       t1 = clock() - t1;
+       if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks  - possible keys %d", (float)t1, counter);
+
+       *outputkey = ( isSuccess ) ? outkey : 0;        
+       crypto1_destroy(s);
+       return isSuccess;
+}
+
+bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) {
+       struct Crypto1State *s, *t;
+       uint64_t outkey  = 0;
+       uint64_t key     = 0;                        // recovered key
+       uint32_t uid     = data.cuid;
+       uint32_t nt0     = data.nonce;  // first tag challenge (nonce)
+       uint32_t nr0_enc = data.nr;  // first encrypted reader challenge
+       uint32_t ar0_enc = data.ar; // first encrypted reader response
+       //uint32_t uid1    = le32toh(data+16);
+       uint32_t nt1     = data.nonce2; // second tag challenge (nonce)
+       uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
+       uint32_t ar1_enc = data.ar2; // second encrypted reader response        
+       bool isSuccess = FALSE;
+       int counter = 0;
+
+       clock_t t1 = clock();
+
+       uint32_t p640 = prng_successor(nt0, 64);
+       uint32_t p641 = prng_successor(nt1, 64);
+       
+       if (verbose) {
+               PrintAndLog("Recovering key for:");
+               PrintAndLog("    uid: %08x", uid);
+               PrintAndLog("   nt_0: %08x", nt0);
+               PrintAndLog(" {nr_0}: %08x", nr0_enc);
+               PrintAndLog(" {ar_0}: %08x", ar0_enc);
+               PrintAndLog("   nt_1: %08x", nt1);
+               PrintAndLog(" {nr_1}: %08x", nr1_enc);
+               PrintAndLog(" {ar_1}: %08x", ar1_enc);
+               PrintAndLog("\nLFSR succesors of the tag challenge:");
+               PrintAndLog("  nt': %08x", p640);
+               PrintAndLog(" nt'': %08x", prng_successor(p640, 32));
+       }
+       
+       s = lfsr_recovery32(ar0_enc ^ p640, 0);
+  
+       for(t = s; t->odd | t->even; ++t) {
+               lfsr_rollback_word(t, 0, 0);
+               lfsr_rollback_word(t, nr0_enc, 1);
+               lfsr_rollback_word(t, uid ^ nt0, 0);
+               crypto1_get_lfsr(t, &key);
+               
+               crypto1_word(t, uid ^ nt1, 0);
+               crypto1_word(t, nr1_enc, 1);
+               if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) {
+                       outkey=key;
+                       ++counter;
+                       if (counter==20) break;
+               }
+       }
+    isSuccess  = (counter > 0);
+       t1 = clock() - t1;
+       if (verbose) {
+               if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks  - possible keys %d", (float)t1, counter);
+       }
+       *outputkey = ( isSuccess ) ? outkey : 0;
+       crypto1_destroy(s);
+       return isSuccess;
+}
+
+int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
+       uint32_t uid    = le32toh(data);
+       uint32_t nt     = le32toh(data+4);  // tag challenge
+       uint32_t nr_enc = le32toh(data+8);  // encrypted reader challenge
+       uint32_t ar_enc = le32toh(data+12); // encrypted reader response        
+       uint32_t at_enc = le32toh(data+16);     // encrypted tag response
+       return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
+}
+
+int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
+       uint64_t key = 0;               // recovered key
+       uint32_t ks2;                   // keystream used to encrypt reader response
+       uint32_t ks3;                   // keystream used to encrypt tag response
+       struct Crypto1State *revstate;
+       
+       PrintAndLog("Enter mfkey64");
+       clock_t t1 = clock();
+       
+       // Extract the keystream from the messages
+       ks2 = ar_enc ^ prng_successor(nt, 64);
+       ks3 = at_enc ^ prng_successor(nt, 96);
+       revstate = lfsr_recovery64(ks2, ks3);
+       lfsr_rollback_word(revstate, 0, 0);
+       lfsr_rollback_word(revstate, 0, 0);
+       lfsr_rollback_word(revstate, nr_enc, 1);
+       lfsr_rollback_word(revstate, uid ^ nt, 0);
+       crypto1_get_lfsr(revstate, &key);
+
+       PrintAndLog("Found Key: [%012"llx"]", key);
+       t1 = clock() - t1;
+       if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks", (float)t1);
+
+       *outputkey = key;
+       crypto1_destroy(revstate);
+       return 0;
 }
Impressum, Datenschutz