/* this holds up stuff unless we're connected to usb */
// if (!usbattached)
// return;
-
+
UsbCommand c;
c.cmd = CMD_DEBUG_PRINT_STRING;
c.ext1 = strlen(str);
{
if(at134khz) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
} else {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
}
// Connect the A/D to the peak-detected low-frequency path.
at134khz= TRUE;
else
at134khz= FALSE;
-
+
if(at134khz) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
} else {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
}
// Give it a bit of time for the resonant antenna to settle.
SpinDelayUs(delay_off);
if(at134khz) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
} else {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
}
LED_D_ON();
if(*(command++) == '0')
SpinDelayUs(delay_off);
if(at134khz) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
} else {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
}
// now do the read
DoAcquisition125k(at134khz);
}
+//-----------------------------------------------------------------------------
+// Read a TI-type tag. We assume that the tag has already been illuminated,
+// and that the exciting signal has been turned off. That means that we just
+// acquire the `one-bit DAC' bits from the comparator.
+//-----------------------------------------------------------------------------
+void AcquireTiType(void)
+{
+ int i;
+ int n = 4000;
+
+ // clear buffer
+ memset(BigBuf,0,sizeof(BigBuf));
+
+ // Set up the synchronous serial port
+ PIO_DISABLE = (1<<GPIO_SSC_DIN);
+ PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);
+
+ SSC_CONTROL = SSC_CONTROL_RESET;
+ SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
+
+ // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+ // 48/2 = 24 MHz clock must be divided by 12
+ SSC_CLOCK_DIVISOR = 12;
+
+ SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);
+ SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;
+ SSC_TRANSMIT_CLOCK_MODE = 0;
+ SSC_TRANSMIT_FRAME_MODE = 0;
+
+ i = 0;
+ for(;;) {
+ if(SSC_STATUS & SSC_STATUS_RX_READY) {
+ BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer
+ i++; if(i >= n) return;
+ }
+ WDT_HIT();
+ }
+}
+
+void AcquireRawBitsTI(void)
+{
+ LED_D_ON();
+ // TI tags charge at 134.2Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+
+ // Charge TI tag for 50ms.
+ SpinDelay(50);
+ LED_D_OFF();
+
+ LED_A_ON();
+ // Place FPGA in passthrough mode so as to stop driving the LF coil,
+ // in this mode the CROSS_LO line connects to SSP_DIN
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
+}
+
//-----------------------------------------------------------------------------
// Read an ADC channel and block till it completes, then return the result
// in ADC units (0 to 1023). Also a routine to average 32 samples and
return (a + 15) >> 5;
}
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */
-void SweepLFrange()
+void MeasureAntennaTuning(void)
{
BYTE *dest = (BYTE *)BigBuf;
- char dummy[12];
- int i, peak= 0, ptr= 0;
- double freq;
+ int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
- // clear buffer
+ UsbCommand c;
+
+ DbpString("Measuring antenna characteristics, please wait.");
memset(BigBuf,0,sizeof(BigBuf));
+/*
+ * Sweeps the useful LF range of the proxmark from
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
for (i=255; i>19; i--) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
+ // Vref = 3.3V, and a 10000:240 voltage divider on the input
+ // can measure voltages up to 137500 mV
+ adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+ if (i==95) vLf125 = adcval; // voltage at 125Khz
+ if (i==89) vLf134 = adcval; // voltage at 134Khz
+
+ dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
if(dest[i] > peak) {
- peak= dest[i];
- ptr= i;
- }
- }
- dummy[11]= '\0';
- dummy[10]= 'z';
- dummy[9]= 'H';
- dummy[8]= 'k';
- dummy[7]= ' ';
- freq= 12000000/(ptr + 1);
- for(i= 6; i > 3 ; --i) {
- dummy[i]= '0' + ((int) freq) % 10;
- freq /= 10;
- }
- dummy[3]= '.';
- for(i= 2; i >= 0 ; --i) {
- dummy[i]= '0' + ((int) freq) % 10;
- freq /= 10;
+ peakv = adcval;
+ peak = dest[i];
+ peakf = i;
+ ptr = i;
}
- DbpString("Antenna resonates at:");
- DbpString(dummy);
-}
-
-void MeasureAntennaTuning(void)
-{
-// Impedances are Zc = 1/(j*omega*C), in ohms
-#define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz
-#define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz
-
- int vLf125, vLf134, vHf; // in mV
-
- UsbCommand c;
-
- // Let the FPGA drive the low-frequency antenna around 125 kHz.
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- SpinDelay(20);
- vLf125 = AvgAdc(ADC_CHAN_LF);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- vLf125 = (137500 * vLf125) >> 10;
-
- // Let the FPGA drive the low-frequency antenna around 134 kHz.
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- SpinDelay(20);
- vLf134 = AvgAdc(ADC_CHAN_LF);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- vLf134 = (137500 * vLf134) >> 10;
+ }
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- vHf = AvgAdc(ADC_CHAN_HF);
// Vref = 3300mV, and an 10:1 voltage divider on the input
// can measure voltages up to 33000 mV
- vHf = (33000 * vHf) >> 10;
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
c.cmd = CMD_MEASURED_ANTENNA_TUNING;
c.ext1 = (vLf125 << 0) | (vLf134 << 16);
c.ext2 = vHf;
- c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
+ c.ext3 = peakf | (peakv << 16);
UsbSendPacket((BYTE *)&c, sizeof(c));
}
OPEN_COIL();
else
SHORT_COIL();
-
+
if (ledcontrol)
LED_D_OFF();
if (ledcontrol)
LED_A_ON();
SimulateTagLowFrequency(n, ledcontrol);
-
+
if (ledcontrol)
LED_A_OFF();
}
DWORD hi=0, lo=0;
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
break;
+ case CMD_ACQUIRE_RAW_BITS_TI_TYPE:
+ AcquireRawBitsTI();
+ break;
+
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
break;
case CMD_READ_MEM:
ReadMem(c->ext1);
break;
- case CMD_SWEEP_LF:
- SweepLFrange();
- break;
-
case CMD_SET_LF_DIVISOR:
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
break;
{
const DWORD *data = ((DWORD *)addr);
int i;
-
+
DbpString("Reading memory at address");
DbpIntegers(0, 0, addr);
for (i = 0; i < 8; i+= 2)
memset(BigBuf,0,sizeof(BigBuf));
SpinDelay(100);
- LED_D_OFF();
- LED_C_OFF();
- LED_B_OFF();
- LED_A_OFF();
+ LED_D_OFF();
+ LED_C_OFF();
+ LED_B_OFF();
+ LED_A_OFF();
UsbStart();
LCDInit();
// test text on different colored backgrounds
- LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
- LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
- LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
- LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
- LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
- LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
- LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
- LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
+ LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
+ LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
+ LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
+ LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
+ LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
+ LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
+ LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
+ LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
// color bands
LCDFill(0, 1+8* 8, 132, 8, BLACK);
#define OPTS 2
int high[OPTS], low[OPTS];
-
+
// Oooh pretty -- notify user we're in elite samy mode now
LED(LED_RED, 200);
LED(LED_ORANGE, 200);
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LED(LED_RED, 200);
-
+
int selected = 0;
int playing = 0;
-
+
// Turn on selected LED
LED(selected + 1, 0);
-
+
for (;;)
{
usbattached = UsbPoll(FALSE);
WDT_HIT();
-
+
// Was our button held down or pressed?
int button_pressed = BUTTON_HELD(1000);
SpinDelay(300);
-
+
// Button was held for a second, begin recording
if (button_pressed > 0)
{
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
-
+
// record
DbpString("Starting recording");
-
+
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+
/* need this delay to prevent catching some weird data */
SpinDelay(500);
+
CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
DbpString("Recorded");
DbpIntegers(selected, high[selected], low[selected]);
-
+
LEDsoff();
LED(selected + 1, 0);
// Finished recording
-
+
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
}
-
+
// Change where to record (or begin playing)
else if (button_pressed)
{
if (playing)
selected = (selected + 1) % OPTS;
playing = !playing;
-
+
LEDsoff();
LED(selected + 1, 0);
-
+
// Begin transmitting
if (playing)
{
LED(LED_GREEN, 0);
DbpString("Playing");
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
DbpIntegers(selected, high[selected], low[selected]);
CmdHIDsimTAG(high[selected], low[selected], 0);
DbpString("Done playing");
-
+ if (BUTTON_HELD(1000) > 0)
+ {
+ DbpString("Exiting");
+ LEDsoff();
+ return;
+ }
+
/* We pressed a button so ignore it here with a delay */
SpinDelay(300);
-
+
// when done, we're done playing, move to next option
selected = (selected + 1) % OPTS;
playing = !playing;
LEDsoff();
LED(selected + 1, 0);
}
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
}
}
}
-// listen for external reader
+// listen for external reader
void ListenReaderField(int limit)
{
int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;
lf_av= ReadAdc(ADC_CHAN_LF);
- if(limit != HF_ONLY)
+ if(limit != HF_ONLY)
{
DbpString("LF 125/134 Baseline:");
DbpIntegers(lf_av,0,0);
hf_av= ReadAdc(ADC_CHAN_HF);
- if (limit != LF_ONLY)
+ if (limit != LF_ONLY)
{
DbpString("HF 13.56 Baseline:");
DbpIntegers(hf_av,0,0);
hf_baseline= hf_av;
}
- for(;;)
+ for(;;)
{
- if(BUTTON_PRESS())
+ if(BUTTON_PRESS())
{
DbpString("Stopped");
LED_B_OFF();
WDT_HIT();
- if (limit != HF_ONLY)
+ if (limit != HF_ONLY)
{
if (abs(lf_av - lf_baseline) > 10)
LED_D_ON();
++lf_count;
lf_av_new= ReadAdc(ADC_CHAN_LF);
// see if there's a significant change
- if(abs(lf_av - lf_av_new) > 10)
+ if(abs(lf_av - lf_av_new) > 10)
{
DbpString("LF 125/134 Field Change:");
DbpIntegers(lf_av,lf_av_new,lf_count);
}
}
- if (limit != LF_ONLY)
+ if (limit != LF_ONLY)
{
if (abs(hf_av - hf_baseline) > 10)
LED_B_ON();
++hf_count;
hf_av_new= ReadAdc(ADC_CHAN_HF);
// see if there's a significant change
- if(abs(hf_av - hf_av_new) > 10)
+ if(abs(hf_av - hf_av_new) > 10)
{
DbpString("HF 13.56 Field Change:");
DbpIntegers(hf_av,hf_av_new,hf_count);