]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/ui.c
CHG: finalized the merge between peter filmoores 14atagfuzz branch (emv). I seriou...
[proxmark3-svn] / client / ui.c
index b31f1ead5b6e9458ea952516a2158e5d89c483f8..4fabbe70af25c41849115e2aeda87cc3190824aa 100644 (file)
@@ -9,23 +9,9 @@
 // UI utilities
 //-----------------------------------------------------------------------------
 
-#include <stdarg.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <time.h>
-#include <readline/readline.h>
-#include <pthread.h>
-#include "loclass/cipherutils.h"
 #include "ui.h"
-#include "cmdmain.h"
-#include "cmddata.h"
-#include "graph.h"
-//#include <liquid/liquid.h>
-#define M_PI 3.14159265358979323846264338327
-
 double CursorScaleFactor;
-int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
+int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64, CursorCPos= 0, CursorDPos= 0;
 int offline;
 int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
@@ -39,7 +25,10 @@ void PrintAndLog(char *fmt, ...)
        va_list argptr, argptr2;
        static FILE *logfile = NULL;
        static int logging = 1;
-
+       // time_t current_time;
+       // struct tm* tm_info;
+       // char buffer[26] = {0};
+               
        // lock this section to avoid interlacing prints from different threats
        pthread_mutex_lock(&print_lock);
   
@@ -77,6 +66,16 @@ void PrintAndLog(char *fmt, ...)
        }
        
        if (logging && logfile) {
+
+               /*
+               // Obtain current time.
+               current_time = time(NULL);
+               // Convert to local time format.
+               tm_info = localtime(&current_time);             
+               strftime(buffer, 26, "%Y-%m-%d %H:%M:%S", tm_info);
+               fprintf(logfile, "%s  ", buffer);
+               */
+               
                vfprintf(logfile, fmt, argptr2);
                fprintf(logfile,"\n");
                fflush(logfile);
@@ -90,306 +89,35 @@ void PrintAndLog(char *fmt, ...)
        pthread_mutex_unlock(&print_lock);  
 }
 
-void SetLogFilename(char *fn)
-{
-  logfilename = fn;
+void SetLogFilename(char *fn) {
+       logfilename = fn;
 }
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout,  size_t dataoutlen){
-       
-       int bitlength = 0;
-       int clock, high, low, startindex;
-       low = startindex = 0;
-       high = 1;
-       uint8_t * bitStream =  (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);        
-       memset(bitStream, 0x00, dataoutlen);    
-       
-       /* Detect high and lows */
-       DetectHighLowInGraph(&high, &low, TRUE); 
-
-       /* get clock */
-       clock = GetClock("",0, 0);      
-
-       startindex = DetectFirstTransition(data, len, high);
-  
-       if (high != 1)
-               // decode "raw"
-               bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
-       else
-               // decode manchester
-               bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
-
-       memcpy(dataout, bitStream, bitlength);
-       free(bitStream);
-       return bitlength;
-}
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
-       int i = 0;
-       /* now look for the first threshold */
-       for (; i < len; ++i) {
-               if (data[i] == threshold) {
-                       break;
-               }
-       }
-       return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
-
-       int i, j, z, hithigh, hitlow, bitIndex, startType;
-       i = 0;
-       bitIndex = 0;
-       
-       int isDamp = 0;
-       int damplimit = (int)((high / 2) * 0.3);
-       int dampHi =  (high/2)+damplimit;
-       int dampLow = (high/2)-damplimit;
-       int firstST = 0;
-
-       // i = clock frame of data
-       for (; i < (int)(len/clock); i++)
-       {
-               hithigh = 0;
-               hitlow = 0;
-               startType = -1;
-               z = startIndex + (i*clock);
-               isDamp = 0;
-                       
-               /* Find out if we hit both high and low peaks */
-               for (j = 0; j < clock; j++)
-               {               
-                       if (data[z+j] == high){
-                               hithigh = 1;
-                               if ( startType == -1)
-                                       startType = 1;
-                       }
-                       
-                       if (data[z+j] == low ){
-                               hitlow = 1;
-                               if ( startType == -1)
-                                       startType = 0;
-                       } 
-               
-                       if (hithigh && hitlow)
-                         break;
-               }
-               
-               // No high value found, are we in a dampening field?
-               if ( !hithigh ) {
-                       //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
-                       for (j = 0; j < clock; j++) {
-                               if ( 
-                                    (data[z+j] <= dampHi && data[z+j] >= dampLow)
-                                  ){
-                                  isDamp++;
-                               }
-                       }
-               }
-
-               /*  Manchester Switching..
-                       0: High -> Low   
-                       1: Low -> High  
-               */
-               if (startType == 0)
-                       dataout[bitIndex++] = 1;
-               else if (startType == 1) 
-                       dataout[bitIndex++] = 0;
-               else
-                       dataout[bitIndex++] = 2;
-                       
-               if ( isDamp > clock/2 ) {
-                       firstST++;
-               }
-               
-               if ( firstST == 4)
-                       break;
-               if ( bitIndex >= dataoutlen-1 )
-                       break;
-       }
-       return bitIndex;
- }
  
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
-
-       PrintAndLog(" Path B");
-       int i,j, bitindex, lc, tolerance, warnings;
-       warnings = 0;
-       int upperlimit = len*2/clock+8;
-       i = startIndex;
-       j = 0;
-       tolerance = clock/4;
-       uint8_t decodedArr[len];
-       
-       /* Detect duration between 2 successive transitions */
-       for (bitindex = 1; i < len; i++) {
-       
-               if (data[i-1] != data[i]) {
-                       lc = i - startIndex;
-                       startIndex = i;
-
-                       // Error check: if bitindex becomes too large, we do not
-                       // have a Manchester encoded bitstream or the clock is really wrong!
-                       if (bitindex > upperlimit ) {
-                               PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
-                               return 0;
-                       }
-                       // Then switch depending on lc length:
-                       // Tolerance is 1/4 of clock rate (arbitrary)
-                       if (abs((lc-clock)/2) < tolerance) {
-                               // Short pulse : either "1" or "0"
-                               decodedArr[bitindex++] = data[i-1];
-                       } else if (abs(lc-clock) < tolerance) {
-                               // Long pulse: either "11" or "00"
-                               decodedArr[bitindex++] = data[i-1];
-                               decodedArr[bitindex++] = data[i-1];
-                       } else {
-                               ++warnings;
-                               PrintAndLog("Warning: Manchester decode error for pulse width detection.");
-                               if (warnings > 10) {
-                                       PrintAndLog("Error: too many detection errors, aborting.");
-                                       return 0; 
-                               }
-                       }
-               }
-       }
-       
-       /* 
-       * We have a decodedArr of "01" ("1") or "10" ("0")
-       * parse it into final decoded dataout
-    */ 
-    for (i = 0; i < bitindex; i += 2) {
-
-           if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
-                       dataout[j++] = 1;
-               } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
-                       dataout[j++] = 0;
-               } else {
-                       i++;
-                       warnings++;
-                       PrintAndLog("Unsynchronized, resync...");
-                       PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
-
-                       if (warnings > 10) {    
-                               PrintAndLog("Error: too many decode errors, aborting.");
-                               return 0;
-                       }
-               }
-    }
-       
-       PrintAndLog("%s", sprint_hex(dataout, j));
-       return j;
- }
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
-       /* 
-       * We have a bitstream of "01" ("1") or "10" ("0")
-       * parse it into final decoded bitstream
-    */ 
-       int i, j, warnings; 
-       uint8_t decodedArr[(len/2)+1];
-
-       j = warnings = 0;
-       
-       uint8_t lastbit = 0;
-       
-    for (i = 0; i < len; i += 2) {
-       
-               uint8_t first = bitstream[i];
-               uint8_t second = bitstream[i+1];
-
-               if ( first == second ) {
-                       ++i;
-                       ++warnings;
-                       if (warnings > 10) {
-                               PrintAndLog("Error: too many decode errors, aborting.");
-                               return;
-                       }
-               } 
-               else if ( lastbit != first ) {
-                       decodedArr[j++] = 0 ^ invert;
-               }
-               else {
-                       decodedArr[j++] = 1 ^ invert;
-               }
-               lastbit = second;
-    }
-       
-       PrintAndLog("%s", sprint_hex(decodedArr, j));
-}
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
-
-       PrintAndLog(" Manchester decoded  : %d bits", len);
-         
-       uint8_t mod = len % blocksize;
-       uint8_t div = len / blocksize;
-       int i;
-  
-       // Now output the bitstream to the scrollback by line of 16 bits
-       for (i = 0; i < div*blocksize; i+=blocksize) {
-               PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-       }
-       
-       if ( mod > 0 )
-               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );      
-}
-
-/* Sliding DFT
-   Smooths out 
-*/ 
-void iceFsk2(int * data, const size_t len){
-
-       int i, j;
-       int * output =  (int* ) malloc(sizeof(int) * len);      
-       memset(output, 0x00, len);
-
-       // for (i=0; i<len-5; ++i){
-               // for ( j=1; j <=5; ++j) {
-                       // output[i] += data[i*j];
-               // }
-               // output[i] /= 5;
-       // }
-       int rest = 127;
-       int tmp =0;
-       for (i=0; i<len; ++i){
-               if ( data[i] < 127)
-                       output[i] = 0;
-               else {
-                       tmp =  (100 * (data[i]-rest)) / rest;
-                       output[i] = (tmp > 60)? 100:0;
-               }
-       }
-       
-       for (j=0; j<len; ++j)
-               data[j] = output[j];
-               
-       free(output);
-}
-
-void iceFsk3(int * data, const size_t len){
+void iceIIR_Butterworth(int *data, const size_t len){
 
        int i,j;
        
        int * output =  (int* ) malloc(sizeof(int) * len);      
+       if ( !output ) return;
+       
+       // clear mem
        memset(output, 0x00, len);
-       float fc           = 0.1125f;          // center frequency
-       size_t adjustedLen = len;
        
+       size_t adjustedLen = len;
+       float fc = 0.1125f;          // center frequency
+               
     // create very simple low-pass filter to remove images (2nd-order Butterworth)
     float complex iir_buf[3] = {0,0,0};
     float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
     float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
     
-    float sample           = 0;      // input sample read from file
+    float sample           = 0;      // input sample read from array
     float complex x_prime  = 1.0f;   // save sample for estimating frequency
     float complex x;
                
-       for (i=0; i<adjustedLen; ++i) {
+       for (i = 0; i < adjustedLen; ++i) {
 
-               sample = data[i]+128;
+               sample = data[i];
                
         // remove DC offset and mix to complex baseband
         x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
@@ -407,70 +135,36 @@ void iceFsk3(int * data, const size_t len){
         float freq = cargf(x*conjf(x_prime));
         x_prime = x;    // retain this sample for next iteration
 
-               output[i] =(freq > 0)? 10 : -10;
+               output[i] =(freq > 0) ? 127 : -127;
     } 
 
        // show data
+       //memcpy(data, output, adjustedLen);
        for (j=0; j<adjustedLen; ++j)
                data[j] = output[j];
-               
-       CmdLtrim("30");
-       adjustedLen -= 30;
-       
-       // zero crossings.
-       for (j=0; j<adjustedLen; ++j){
-               if ( data[j] == 10) break;
-       }
-       int startOne =j;
-       
-       for (;j<adjustedLen; ++j){
-               if ( data[j] == -10 ) break;
-       }
-       int stopOne = j-1;
-       
-       int fieldlen = stopOne-startOne;
-       
-       fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
-       fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
-       if ( fieldlen != 40 && fieldlen != 50){
-               printf("Detected field Length: %d \n", fieldlen);
-               printf("Can only handle 40 or 50.  Aborting...\n");
-               return;
-       }
-       
-       // FSK sequence start == 000111
-       int startPos = 0;
-       for (i =0; i<adjustedLen; ++i){
-               int dec = 0;
-               for ( j = 0; j < 6*fieldlen; ++j){
-                       dec += data[i + j];
-               }
-               if (dec == 0) {
-                       startPos = i;
-                       break;
-               }
-       }
        
-       printf("000111 position: %d \n", startPos);
+       free(output);
+}
 
-       startPos += 6*fieldlen+5;
-       
-       int bit =0;
-       printf("BINARY\n");
-       printf("R/40 :  ");
-       for (i =startPos ; i < adjustedLen; i += 40){
-               bit = data[i]>0 ? 1:0;
-               printf("%d", bit );
+void iceSimple_Filter(int *data, const size_t len, uint8_t k){
+// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications
+// parameter K
+#define FILTER_SHIFT 4 
+
+       int32_t filter_reg = 0;
+       int16_t input, output;
+       int8_t shift = (k <=8 ) ? k : FILTER_SHIFT;
+
+       for (int i = 0; i < len; ++i){
+
+               input = data[i];
+               // Update filter with current sample
+               filter_reg = filter_reg - (filter_reg >> shift) + input;
+
+               // Scale output for unity gain
+               output = filter_reg >> shift;
+               data[i] = output;
        }
-       printf("\n");   
-       
-       printf("R/50 :  ");
-       for (i =startPos ; i < adjustedLen; i += 50){
-               bit = data[i]>0 ? 1:0;
-               printf("%d", bit );     }
-       printf("\n");   
-       
-       free(output);
 }
 
 float complex cexpf (float complex Z)
Impressum, Datenschutz