]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/cmdlfem4x.c
CHG: `lf read` - forgot a var
[proxmark3-svn] / client / cmdlfem4x.c
index 79e8a8fe107366e77d8bdd36e974c1c827149539..a0bddb2af3779054c1d43746ff699e3b59b620a3 100644 (file)
@@ -8,28 +8,17 @@
 // Low frequency EM4x commands
 //-----------------------------------------------------------------------------
 
-#include <stdio.h>
-#include <string.h>
-#include <inttypes.h>
-#include "proxmark3.h"
-#include "ui.h"
-#include "util.h"
-#include "graph.h"
-#include "cmdparser.h"
-#include "cmddata.h"
-#include "cmdlf.h"
 #include "cmdlfem4x.h"
-#include "lfdemod.h"
-char *global_em410xId;
+
+uint64_t g_em410xid = 0;
 
 static int CmdHelp(const char *Cmd);
 
 int CmdEMdemodASK(const char *Cmd)
 {
        char cmdp = param_getchar(Cmd, 0);
-       int findone = (cmdp == '1') ? 1 : 0;    
-       UsbCommand c={CMD_EM410X_DEMOD};
-       c.arg[0]=findone;
+       uint8_t findone = (cmdp == '1') ? 1 : 0;
+       UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
        SendCommand(&c);
        return 0;
 }
@@ -47,85 +36,93 @@ int CmdEM410xRead(const char *Cmd)
        uint32_t hi=0;
        uint64_t lo=0;
 
-       if(!AskEm410xDemod("", &hi, &lo)) return 0;
+       if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
        PrintAndLog("EM410x pattern found: ");
        printEM410x(hi, lo);
        if (hi){
                PrintAndLog ("EM410x XL pattern found");
                return 0;
        }
-       char id[12] = {0x00};
-       sprintf(id, "%010llx",lo);
-       
-       global_em410xId = id;
+       g_em410xid = lo;
        return 1;
 }
 
+
+int usage_lf_em410x_sim(void) {
+       PrintAndLog("Simulating EM410x tag");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em4x em410xsim [h] <uid> <clock>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       uid       - uid (10 HEX symbols)");
+       PrintAndLog("       clock     - clock (32|64) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em4x em410xsim 0F0368568B");
+       PrintAndLog("      lf em4x em410xsim 0F0368568B 32");
+       return 0;
+}
+
 // emulate an EM410X tag
 int CmdEM410xSim(const char *Cmd)
 {
        int i, n, j, binary[4], parity[4];
+       uint8_t uid[5] = {0x00};
 
        char cmdp = param_getchar(Cmd, 0);
-       uint8_t uid[5] = {0x00};
+       if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
 
-       if (cmdp == 'h' || cmdp == 'H') {
-               PrintAndLog("Usage:  lf em4x 410xsim <UID>");
-               PrintAndLog("");
-               PrintAndLog("     sample: lf em4x 410xsim 0F0368568B");
-               return 0;
-       }
+       /* clock is 64 in EM410x tags */
+       uint8_t clock = 64;
 
        if (param_gethex(Cmd, 0, uid, 10)) {
                PrintAndLog("UID must include 10 HEX symbols");
                return 0;
        }
        
-       PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X", uid[0],uid[1],uid[2],uid[3],uid[4]);
+       param_getdec(Cmd, 1, &clock);
+       
+       PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X  clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
        PrintAndLog("Press pm3-button to about simulation");
 
-       /* clock is 64 in EM410x tags */
-       int clock = 64;
-
        /* clear our graph */
        ClearGraph(0);
 
-               /* write 9 start bits */
-               for (i = 0; i < 9; i++)
-                       AppendGraph(0, clock, 1);
-
-               /* for each hex char */
-               parity[0] = parity[1] = parity[2] = parity[3] = 0;
-               for (i = 0; i < 10; i++)
-               {
-                       /* read each hex char */
-                       sscanf(&Cmd[i], "%1x", &n);
-                       for (j = 3; j >= 0; j--, n/= 2)
-                               binary[j] = n % 2;
-
-                       /* append each bit */
-                       AppendGraph(0, clock, binary[0]);
-                       AppendGraph(0, clock, binary[1]);
-                       AppendGraph(0, clock, binary[2]);
-                       AppendGraph(0, clock, binary[3]);
-
-                       /* append parity bit */
-                       AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
-
-                       /* keep track of column parity */
-                       parity[0] ^= binary[0];
-                       parity[1] ^= binary[1];
-                       parity[2] ^= binary[2];
-                       parity[3] ^= binary[3];
-               }
+       /* write 9 start bits */
+       for (i = 0; i < 9; i++)
+               AppendGraph(0, clock, 1);
+
+       /* for each hex char */
+       parity[0] = parity[1] = parity[2] = parity[3] = 0;
+       for (i = 0; i < 10; i++)
+       {
+               /* read each hex char */
+               sscanf(&Cmd[i], "%1x", &n);
+               for (j = 3; j >= 0; j--, n/= 2)
+                       binary[j] = n % 2;
+
+               /* append each bit */
+               AppendGraph(0, clock, binary[0]);
+               AppendGraph(0, clock, binary[1]);
+               AppendGraph(0, clock, binary[2]);
+               AppendGraph(0, clock, binary[3]);
 
-               /* parity columns */
-               AppendGraph(0, clock, parity[0]);
-               AppendGraph(0, clock, parity[1]);
-               AppendGraph(0, clock, parity[2]);
-               AppendGraph(0, clock, parity[3]);
+               /* append parity bit */
+               AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
 
-               /* stop bit */
+               /* keep track of column parity */
+               parity[0] ^= binary[0];
+               parity[1] ^= binary[1];
+               parity[2] ^= binary[2];
+               parity[3] ^= binary[3];
+       }
+
+       /* parity columns */
+       AppendGraph(0, clock, parity[0]);
+       AppendGraph(0, clock, parity[1]);
+       AppendGraph(0, clock, parity[2]);
+       AppendGraph(0, clock, parity[3]);
+
+       /* stop bit */
        AppendGraph(1, clock, 0);
  
        CmdLFSim("0"); //240 start_gap.
@@ -140,7 +137,6 @@ int CmdEM410xSim(const char *Cmd)
  *       rate gets lower, then grow the number of samples
  *  Changed by martin, 4000 x 4 = 16000, 
  *  see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
-
 */
 int CmdEM410xWatch(const char *Cmd)
 {
@@ -151,59 +147,202 @@ int CmdEM410xWatch(const char *Cmd)
                }
                
                CmdLFRead("s");
-               getSamples("8192",true); //capture enough to get 2 full messages                
+               //getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)      
+               getSamples("6144",true);
        } while (!CmdEM410xRead(""));
 
        return 0;
 }
 
 //currently only supports manchester modulations
+// todo: helptext
 int CmdEM410xWatchnSpoof(const char *Cmd)
 {
+       // loops if the captured ID was in XL-format.
        CmdEM410xWatch(Cmd);
-       PrintAndLog("# Replaying captured ID: %s",global_em410xId);
+       PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid);
        CmdLFaskSim("");
        return 0;
 }
 
+int CmdEM410xWrite(const char *Cmd)
+{
+       uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
+       int card = 0xFF; // invalid card value
+       uint32_t clock = 0; // invalid clock value
+
+       sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
+
+       // Check ID
+       if (id == 0xFFFFFFFFFFFFFFFF) {
+               PrintAndLog("Error! ID is required.\n");
+               return 0;
+       }
+       if (id >= 0x10000000000) {
+               PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
+               return 0;
+       }
+
+       // Check Card
+       if (card == 0xFF) {
+               PrintAndLog("Error! Card type required.\n");
+               return 0;
+       }
+       if (card < 0) {
+               PrintAndLog("Error! Bad card type selected.\n");
+               return 0;
+       }
+
+       // Check Clock
+               // Default: 64
+       if (clock == 0)
+               clock = 64;
+
+       // Allowed clock rates: 16, 32, 40 and 64
+       if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
+               PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
+               return 0;
+       }
+
+       if (card == 1) {
+               PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
+               // NOTE: We really should pass the clock in as a separate argument, but to
+               //   provide for backwards-compatibility for older firmware, and to avoid
+               //   having to add another argument to CMD_EM410X_WRITE_TAG, we just store
+               //   the clock rate in bits 8-15 of the card value
+               card = (card & 0xFF) | ((clock << 8) & 0xFF00);
+       }       else if (card == 0) {
+               PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
+               card = (card & 0xFF) | ((clock << 8) & 0xFF00);
+       } else {
+               PrintAndLog("Error! Bad card type selected.\n");
+               return 0;
+       }
+
+       UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
+       SendCommand(&c);
+       return 0;
+}
+
 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
 {
-       if (rows*cols>size) return false;
+       if (rows*cols>size) return FALSE;
        uint8_t colP=0;
-       //assume last row is a parity row and do not test
+       //assume last col is a parity and do not test
        for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
                for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
                        colP ^= BitStream[(rowNum*cols)+colNum];
                }
-               if (colP != pType) return false;
+               if (colP != pType) return FALSE;
        }
-       return true;
+       return TRUE;
 }
 
 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
 {
-       if (rows*cols>size) return false;
+       if (rows*cols>size) return FALSE;
        uint8_t rowP=0;
        //assume last row is a parity row and do not test
        for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
                for (uint8_t colNum = 0; colNum < cols; colNum++) {
                        rowP ^= BitStream[(rowNum*cols)+colNum];
                }
-               if (rowP != pType) return false;
+               if (rowP != pType) return FALSE;
+       }
+       return TRUE;
+}
+
+// EM word parity test.
+// 9*5 = 45 bits in total
+// 012345678|r1
+// 012345678|r2
+// 012345678|r3
+// 012345678|r4
+// ------------
+//c012345678| 0  
+//            |- must be zero
+
+bool EMwordparitytest(uint8_t *bits){
+
+       // last row/col parity must be 0
+       if (bits[44] != 0 ) return FALSE;
+       
+       // col parity check
+       uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8);
+       uint8_t c2 = bytebits_to_byte(bits+36, 8);
+       if ( c1 != c2 ) return FALSE;
+
+       // row parity check
+       uint8_t rowP = 0;
+       for ( uint8_t i = 0; i < 36; ++i ) {
+
+               rowP ^= bits[i];
+               if ( i>0 && (i % 9) == 0) {
+                       
+                       if ( rowP != EVEN )     
+                               return FALSE;
+
+                       rowP = 0;
+               }
        }
-       return true;
+       // all checks ok.
+       return TRUE;
+}
+
+
+//////////////// 4050 / 4450 commands
+int usage_lf_em4x50_dump(void) {
+       PrintAndLog("Dump EM4x50/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x50dump [h] <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x50dump");
+       PrintAndLog("      lf em 4x50dump 11223344");
+       return 0;
+}
+int usage_lf_em4x50_read(void) {
+       PrintAndLog("Read EM 4x50/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x50read [h] <address> <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       address   - memory address to read. (0-15)");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x50read 1");
+       PrintAndLog("      lf em 4x50read 1 11223344");
+       return 0;
+}
+int usage_lf_em4x50_write(void) {
+       PrintAndLog("Write EM 4x50/4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x50write [h] <address> <data> <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       address   - memory address to write to. (0-15)");
+       PrintAndLog("       data      - data to write (hex)");  
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x50write 1 deadc0de");
+       PrintAndLog("      lf em 4x50write 1 deadc0de 11223344");
+       return 0;
 }
 
 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
 {
        if (size<45) return 0;
+       
        uint32_t code = bytebits_to_byte(BitStream,8);
        code = code<<8 | bytebits_to_byte(BitStream+9,8);
        code = code<<8 | bytebits_to_byte(BitStream+18,8);
        code = code<<8 | bytebits_to_byte(BitStream+27,8);
+       
        if (verbose || g_debugMode){
                for (uint8_t i = 0; i<5; i++){
-                       if (i == 4) PrintAndLog("");
+                       if (i == 4) PrintAndLog(""); //parity byte spacer
                        PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
                            BitStream[i*9],
                            BitStream[i*9+1],
@@ -222,10 +361,11 @@ uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool
                else
                        PrintAndLog("Parity Failed");
        }
-       //PrintAndLog("Code: %08x",code);
        return code;
 }
-/* Read the transmitted data of an EM4x50 tag
+
+
+/* Read the transmitted data of an EM4x50 tag from the graphbuffer
  * Format:
  *
  *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
@@ -244,95 +384,108 @@ uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool
  * is stored in the blocks defined in the control word First and Last
  * Word Read values. UID is stored in block 32.
  */
-int EM4x50Read(const char *Cmd, bool verbose)
-{
-       uint8_t fndClk[]={0,8,16,32,40,50,64};
+ //completed by Marshmellow
+int EM4x50Read(const char *Cmd, bool verbose) {
+       uint8_t fndClk[] = {8,16,32,40,50,64,128};
        int clk = 0; 
        int invert = 0;
-       sscanf(Cmd, "%i %i", &clk, &invert);
        int tol = 0;
        int i, j, startblock, skip, block, start, end, low, high, minClk;
-       bool complete= false;
+       bool complete = false;
        int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
-       save_restoreGB(1);
        uint32_t Code[6];
        char tmp[6];
-
        char tmp2[20];
-       high= low= 0;
+       int phaseoff;
+       high = low = 0;
        memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
-               
+
+       // get user entry if any
+       sscanf(Cmd, "%i %i", &clk, &invert);
+       
+       // save GraphBuffer - to restore it later       
+       save_restoreGB(1);
+
        // first get high and low values
-       for (i = 0; i < GraphTraceLen; i++)
-       {
+       for (i = 0; i < GraphTraceLen; i++) {
                if (GraphBuffer[i] > high)
                        high = GraphBuffer[i];
                else if (GraphBuffer[i] < low)
                        low = GraphBuffer[i];
        }
 
-       // populate a buffer with pulse lengths
-       i= 0;
-       j= 0;
-       minClk= 255;
-       while (i < GraphTraceLen)
-       {
+       i = 0;
+       j = 0;
+       minClk = 255;
+       // get to first full low to prime loop and skip incomplete first pulse
+       while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
+               ++i;
+       while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+               ++i;
+       skip = i;
+
+       // populate tmpbuff buffer with pulse lengths
+       while (i < GraphTraceLen) {
                // measure from low to low
-               while ((GraphBuffer[i] > low) && (i<GraphTraceLen))
+               while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
                        ++i;
                start= i;
-               while ((GraphBuffer[i] < high) && (i<GraphTraceLen))
+               while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
                        ++i;
-               while ((GraphBuffer[i] > low) && (i<GraphTraceLen))
+               while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
                        ++i;
                if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
                        break;
                }
                tmpbuff[j++]= i - start;
-               if (i-start < minClk) minClk = i-start;
+               if (i-start < minClk && i < GraphTraceLen) {
+                       minClk = i - start;
+               }
        }
        // set clock
-       if (!clk){
+       if (!clk) {
                for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
                        tol = fndClk[clkCnt]/8;
-                       if (fndClk[clkCnt]-tol >= minClk) { 
+                       if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { 
                                clk=fndClk[clkCnt];
                                break;
                        }
                }
-       }
+               if (!clk) {
+                       PrintAndLog("ERROR: EM4x50 - didn't find a clock");
+                       return 0;
+               }
+       } else tol = clk/8;
 
        // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
-       start= -1;
-       skip= 0;
-       for (i= 0; i < j - 4 ; ++i)
-       {
+       start = -1;
+       for (i= 0; i < j - 4 ; ++i) {
                skip += tmpbuff[i];
-               if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
-                       if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol)
-                               if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol)
-                                       if (tmpbuff[i+3] >= clk-tol)
+               if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)  //3 clocks
+                       if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol)  //2 clocks
+                               if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
+                                       if (tmpbuff[i+3] >= clk-tol)  //1.5 to 2 clocks - depends on bit following
                                        {
                                                start= i + 4;
                                                break;
                                        }
        }
-       startblock= i + 4;
+       startblock = i + 4;
 
        // skip over the remainder of LW
-       skip += tmpbuff[i+1] + tmpbuff[i+2] + clk + clk/8;
-       
-       int phaseoff = tmpbuff[i+3]-clk;
-
+       skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
+       if (tmpbuff[i+3]>clk) 
+               phaseoff = tmpbuff[i+3]-clk;
+       else
+               phaseoff = 0;
        // now do it again to find the end
        end = skip;
-       for (i += 3; i < j - 4 ; ++i)
-       {
+       for (i += 3; i < j - 4 ; ++i) {
                end += tmpbuff[i];
-               if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3 + tol)
-                       if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2 + tol)
-                               if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3 + tol)
-                                       if (tmpbuff[i+3] >= clk-tol)
+               if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)  //3 clocks
+                       if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol)  //2 clocks
+                               if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
+                                       if (tmpbuff[i+3] >= clk-tol)  //1.5 to 2 clocks - depends on bit following
                                        {
                                                complete= true;
                                                break;
@@ -342,51 +495,46 @@ int EM4x50Read(const char *Cmd, bool verbose)
        // report back
        if (verbose || g_debugMode) {
                if (start >= 0) {
-                       PrintAndLog("\nNote: should print 45 bits then 0177 (end of block)");
-                       PrintAndLog("      for each block");
-                       PrintAndLog("      Also, sometimes the demod gets out of sync and ");
-                       PrintAndLog("      inverts the output - when this happens the 0177");
-                       PrintAndLog("      will be 3 extra 1's at the end");
-                       PrintAndLog("        'data askedge' command may fix that");
+                       PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
                }       else {
-                       PrintAndLog("No data found!");
+                       PrintAndLog("No data found!, clock tried:%d",clk);
                        PrintAndLog("Try again with more samples.");
+                       PrintAndLog("  or after a 'data askedge' command to clean up the read");
                        return 0;
                }
-               if (!complete)
-               {
-                       PrintAndLog("*** Warning!");
-                       PrintAndLog("Partial data - no end found!");
-                       PrintAndLog("Try again with more samples.");
-               }
        } else if (start < 0) return 0;
-       start=skip;
+       start = skip;
        snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
        // get rid of leading crap 
-       snprintf(tmp, sizeof(tmp),"%i",skip);
+       snprintf(tmp, sizeof(tmp), "%i", skip);
        CmdLtrim(tmp);
        bool pTest;
-       bool AllPTest=true;
+       bool AllPTest = true;
        // now work through remaining buffer printing out data blocks
        block = 0;
        i = startblock;
-       while (block < 6)
-       {
+       while (block < 6) {
                if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
                skip = phaseoff;
                
                // look for LW before start of next block
-               for ( ; i < j - 4 ; ++i)
-               {
+               for ( ; i < j - 4 ; ++i) {
                        skip += tmpbuff[i];
                        if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
                                if (tmpbuff[i+1] >= clk-tol)
                                        break;
                }
+               if (i >= j-4) break; //next LW not found
                skip += clk;
-               phaseoff = tmpbuff[i+1]-clk;
+               if (tmpbuff[i+1]>clk)
+                       phaseoff = tmpbuff[i+1]-clk;
+               else
+                       phaseoff = 0;
                i += 2;
-               if (ASKmanDemod(tmp2, false, false)<1) return 0;
+               if (ASKDemod(tmp2, false, false, 1) < 1) {
+                       save_restoreGB(0);
+                       return 0;
+               }
                //set DemodBufferLen to just one block
                DemodBufferLen = skip/clk;
                //test parities
@@ -394,26 +542,32 @@ int EM4x50Read(const char *Cmd, bool verbose)
                pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
                AllPTest &= pTest;
                //get output
-               Code[block]=OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
-               if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d",start, skip/clk);
+               Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
+               if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
                //skip to start of next block
                snprintf(tmp,sizeof(tmp),"%i",skip);
                CmdLtrim(tmp);
                block++;
-               if (i>=end) break; //in case chip doesn't output 6 blocks
+               if (i >= end) break; //in case chip doesn't output 6 blocks
        }
        //print full code:
        if (verbose || g_debugMode || AllPTest){
-               PrintAndLog("Found data at sample: %i - using clock: %i",skip,clk);    
-               //PrintAndLog("\nSummary:");
-               end=block;
-               for (block=0; block<end; block++){
+               if (!complete) {
+                       PrintAndLog("*** Warning!");
+                       PrintAndLog("Partial data - no end found!");
+                       PrintAndLog("Try again with more samples.");
+               }
+               PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);    
+               end = block;
+               for (block=0; block < end; block++){
                        PrintAndLog("Block %d: %08x",block,Code[block]);
                }
-               if (AllPTest)
+               if (AllPTest) {
                        PrintAndLog("Parities Passed");
-               else
+               } else {
                        PrintAndLog("Parities Failed");
+                       PrintAndLog("Try cleaning the read samples with 'data askedge'");
+               }
        }
 
        //restore GraphBuffer
@@ -421,200 +575,533 @@ int EM4x50Read(const char *Cmd, bool verbose)
        return (int)AllPTest;
 }
 
-int CmdEM4x50Read(const char *Cmd)
-{
+int CmdEM4x50Read(const char *Cmd) {
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();        
        return EM4x50Read(Cmd, true);
 }
+int CmdEM4x50Write(const char *Cmd){
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
+       PrintAndLog("no implemented yet");
+       return 0;
+}
+int CmdEM4x50Dump(const char *Cmd){
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
+       PrintAndLog("no implemented yet");
+       return 0;
+}
 
-int CmdEM410xWrite(const char *Cmd)
-{
-       uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
-       int card = 0xFF; // invalid card value
-       unsigned int clock = 0; // invalid clock value
-
-       sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
-
-       // Check ID
-       if (id == 0xFFFFFFFFFFFFFFFF) {
-               PrintAndLog("Error! ID is required.\n");
-               return 0;
-       }
-       if (id >= 0x10000000000) {
-               PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
-               return 0;
+#define EM_PREAMBLE_LEN 6
+// download samples from device and copy to Graphbuffer
+bool downloadSamplesEM(){
+       
+       // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
+       uint8_t got[6000];
+       GetFromBigBuf(got, sizeof(got), 0);
+       if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
+               PrintAndLog("command execution time out");
+               return FALSE;
        }
+       setGraphBuf(got, sizeof(got));
+       return TRUE;
+}
 
-       // Check Card
-       if (card == 0xFF) {
-               PrintAndLog("Error! Card type required.\n");
-               return 0;
-       }
-       if (card < 0) {
-               PrintAndLog("Error! Bad card type selected.\n");
-               return 0;
+// em_demod 
+bool doPreambleSearch(size_t *startIdx){
+       
+       // sanity check
+       if ( DemodBufferLen < EM_PREAMBLE_LEN) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
+               return FALSE;
        }
 
-       // Check Clock
-       if (card == 1)
-       {
-               // Default: 64
-               if (clock == 0)
-                       clock = 64;
+       // set size to 20 to only test first 14 positions for the preamble
+       size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
+       *startIdx = 0; 
+       // skip first two 0 bits as they might have been missed in the demod
+       uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
+       
+       if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
+               return FALSE;
+       } 
+       return TRUE;
+}
 
-               // Allowed clock rates: 16, 32 and 64
-               if ((clock != 16) && (clock != 32) && (clock != 64)) {
-                       PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32 and 64.\n", clock);
-                       return 0;
-               }
+bool detectFSK(){
+       // detect fsk clock
+       if (!GetFskClock("", FALSE, FALSE)) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
+               return FALSE;
        }
-       else if (clock != 0)
-       {
-               PrintAndLog("Error! Clock rate is only supported on T55x7 tags.\n");
-               return 0;
+       // demod
+       int ans = FSKrawDemod("0 0", FALSE);
+       if (!ans) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
+               return FALSE;
+       }
+       return TRUE;
+}
+// PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
+bool detectPSK(){      
+       int     ans = GetPskClock("", FALSE, FALSE);
+       if (ans <= 0) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
+               return FALSE;
        }
+       //demod
+       //try psk1 -- 0 0 6 (six errors?!?)
+       ans = PSKDemod("0 0 6", FALSE);
+       if (!ans) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
 
-       if (card == 1) {
-               PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
-               // NOTE: We really should pass the clock in as a separate argument, but to
-               //   provide for backwards-compatibility for older firmware, and to avoid
-               //   having to add another argument to CMD_EM410X_WRITE_TAG, we just store
-               //   the clock rate in bits 8-15 of the card value
-               card = (card & 0xFF) | (((uint64_t)clock << 8) & 0xFF00);
+               //try psk1 inverted
+               ans = PSKDemod("0 1 6", FALSE);
+               if (!ans) {
+                       if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
+                       return FALSE;
+               }
        }
-       else if (card == 0)
-               PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
-       else {
-               PrintAndLog("Error! Bad card type selected.\n");
-               return 0;
+       // either PSK1 or PSK1 inverted is ok from here.
+       // lets check PSK2 later.
+       return TRUE;
+}
+// try manchester - NOTE: ST only applies to T55x7 tags.
+bool detectASK_MAN(){
+       bool stcheck = FALSE;
+       int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
+       if (!ans) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
+               return FALSE;
+       } 
+       return TRUE;
+}
+bool detectASK_BI(){
+       int ans = ASKbiphaseDemod("0 0 1", FALSE);
+       if (!ans) { 
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
+               
+               ans = ASKbiphaseDemod("0 1 1", FALSE);
+               if (!ans) {
+                       if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
+                       return FALSE;
+               }
        }
+       return TRUE;
+}
 
-       UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
-       SendCommand(&c);
+// param: idx - start index in demoded data.
+bool setDemodBufferEM(uint32_t *word, size_t idx){
 
-       return 0;
+       //test for even parity bits.
+       uint8_t parity[45] = {0};
+       memcpy( parity, DemodBuffer, 45);
+       if (!EMwordparitytest(parity) ){
+               PrintAndLog("DEBUG: Error - EM Parity tests failed");
+               return FALSE;
+       }
+                  
+    // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)       
+       if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity");
+               return FALSE;
+       }
+       setDemodBuf(DemodBuffer, 32, 0);
+       *word = bytebits_to_byteLSBF(DemodBuffer, 32);
+       return TRUE;
 }
 
-int CmdReadWord(const char *Cmd)
-{
-       int Word = -1; //default to invalid word
-       UsbCommand c;
+// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE 
+// should cover 90% of known used configs
+// the rest will need to be manually demoded for now...
+bool demodEM4x05resp(uint32_t *word) {
+       size_t idx = 0; 
        
-       sscanf(Cmd, "%d", &Word);
+       if (detectASK_MAN() && doPreambleSearch( &idx ))
+               return setDemodBufferEM(word, idx);
        
-       if ( (Word > 15) | (Word < 0) ) {
-               PrintAndLog("Word must be between 0 and 15");
-               return 1;
-       }
+       if (detectASK_BI() && doPreambleSearch( &idx ))
+               return setDemodBufferEM(word, idx);
        
-       PrintAndLog("Reading word %d", Word);
+       if (detectFSK() && doPreambleSearch( &idx ))
+               return setDemodBufferEM(word, idx);
        
-       c.cmd = CMD_EM4X_READ_WORD;
-       c.d.asBytes[0] = 0x0; //Normal mode
-       c.arg[0] = 0;
-       c.arg[1] = Word;
-       c.arg[2] = 0;
-       SendCommand(&c);
+       if (detectPSK()) {
+               if (doPreambleSearch( &idx ))
+                       return setDemodBufferEM(word, idx);
+               
+               psk1TOpsk2(DemodBuffer, DemodBufferLen);
+               if (doPreambleSearch( &idx ))
+                       return setDemodBufferEM(word, idx);
+       }
+       return FALSE;
+}
+
+//////////////// 4205 / 4305 commands
+int usage_lf_em4x05_dump(void) {
+       PrintAndLog("Dump EM4x05/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05dump [h] <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05dump");
+       PrintAndLog("      lf em 4x05dump 11223344");
+       return 0;
+}
+int usage_lf_em4x05_read(void) {
+       PrintAndLog("Read EM4x05/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05read [h] <address> <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       address   - memory address to read. (0-15)");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05read 1");
+       PrintAndLog("      lf em 4x05read 1 11223344");
+       return 0;
+}
+int usage_lf_em4x05_write(void) {
+       PrintAndLog("Write EM4x05/4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05write [h] <address> <data> <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       address   - memory address to write to. (0-15)");
+       PrintAndLog("       data      - data to write (hex)");  
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05write 1 deadc0de");
+       PrintAndLog("      lf em 4x05write 1 deadc0de 11223344");
+       return 0;
+}
+int usage_lf_em4x05_info(void) {
+       PrintAndLog("Tag information EM4205/4305/4469//4569 tags.  Tag must be on antenna.");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05info [h] <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05info");
+       PrintAndLog("      lf em 4x05info deadc0de");
        return 0;
 }
 
-int CmdReadWordPWD(const char *Cmd)
-{
-       int Word = -1; //default to invalid word
-       int Password = 0xFFFFFFFF; //default to blank password
-       UsbCommand c;
+int CmdEM4x05Dump(const char *Cmd) {
+       uint8_t addr = 0;
+       uint32_t pwd = 0;
+       bool usePwd = false;
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
+
+       // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+       pwd = param_get32ex(Cmd, 0, 1, 16);
        
-       sscanf(Cmd, "%d %x", &Word, &Password);
+       if ( pwd != 1 )
+               usePwd = true;
+
+       int success = 1;
+       PrintAndLog("Addr | data   | ascii");
+       PrintAndLog("-----+--------+------");
+       for (; addr < 16; addr++) {
+               if (addr == 2) {
+                       if (usePwd) {
+                               PrintAndLog(" %02u | %08X", addr, pwd);
+                       } else {
+                               PrintAndLog(" 02 | cannot read");
+                       }
+               } else {
+                       //success &= EM4x05Read(addr, pwd, usePwd);
+               }
+       }
+
+       return success;
+}
+//ICEMAN;  mentalnote to self: -1 is not doable for uint32_t..
+int CmdEM4x05Read(const char *Cmd) {
+       int addr, pwd;
+       bool usePwd = false;
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
+
+       addr = param_get8ex(Cmd, 0, -1, 10);
+       pwd =  param_get32ex(Cmd, 1, -1, 16);
        
-       if ( (Word > 15) | (Word < 0) ) {
-               PrintAndLog("Word must be between 0 and 15");
+       if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
+               PrintAndLog("Address must be between 0 and 15");
                return 1;
        }
+       if ( pwd == -1 )
+               PrintAndLog("Reading address %d", addr);
+       else {
+               usePwd = true;
+               PrintAndLog("Reading address %d | password %08X", addr, pwd);
+       }
        
-       PrintAndLog("Reading word %d with password %08X", Word, Password);
-       
-       c.cmd = CMD_EM4X_READ_WORD;
-       c.d.asBytes[0] = 0x1; //Password mode
-       c.arg[0] = 0;
-       c.arg[1] = Word;
-       c.arg[2] = Password;
+       UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
+       clearCommandBuffer();
        SendCommand(&c);
-       return 0;
+       UsbCommand resp;        
+       if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
+               PrintAndLog("Command timed out");
+               return -1;
+       }
+
+       if (!downloadSamplesEM())
+               return -1;
+       
+       int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
+       if (graphJustNoise(GraphBuffer, testLen)) {
+               PrintAndLog("Tag not found");
+               return -1;
+       }
+
+       //attempt demod
+       uint32_t word = 0;
+       int isOk = demodEM4x05resp(&word);
+       if (isOk)
+               PrintAndLog("Got Address %02d | %08X",addr, word);
+       else
+               PrintAndLog("Read failed");
+       
+       return isOk;
 }
 
-int CmdWriteWord(const char *Cmd)
-{
-       int Word = 16; //default to invalid block
-       int Data = 0xFFFFFFFF; //default to blank data
-       UsbCommand c;
+int CmdEM4x05Write(const char *Cmd) {
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
        
-       sscanf(Cmd, "%x %d", &Data, &Word);
+       bool usePwd = false;            
+       int addr = 16; // default to invalid address
+       int data = 0xFFFFFFFF; // default to blank data
+       int pwd = 0xFFFFFFFF; // default to blank password
        
-       if (Word > 15) {
-               PrintAndLog("Word must be between 0 and 15");
+       addr = param_get8ex(Cmd, 0, -1, 10);
+       data = param_get32ex(Cmd, 1, -1, 16);
+       pwd =  param_get32ex(Cmd, 2, -1, 16);
+       
+       if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
+               PrintAndLog("Address must be between 0 and 15");
                return 1;
        }
+       if ( pwd == -1 )
+               PrintAndLog("Writing address %d data %08X", addr, data);        
+       else {
+               usePwd = true;
+               PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);               
+       }
        
-       PrintAndLog("Writing word %d with data %08X", Word, Data);
+       uint16_t flag = (addr << 8 ) | usePwd;
        
-       c.cmd = CMD_EM4X_WRITE_WORD;
-       c.d.asBytes[0] = 0x0; //Normal mode
-       c.arg[0] = Data;
-       c.arg[1] = Word;
-       c.arg[2] = 0;
+       UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
+       clearCommandBuffer();
        SendCommand(&c);
-       return 0;
+       UsbCommand resp;        
+       if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
+               PrintAndLog("Error occurred, device did not respond during write operation.");
+               return -1;
+       }
+       
+       if (!downloadSamplesEM())
+               return -1;
+
+
+       //attempt demod:
+       //need 0 bits demoded (after preamble) to verify write cmd
+       uint32_t dummy = 0;
+       int isOk = demodEM4x05resp(&dummy);
+       if (isOk)
+               PrintAndLog("Write Verified");
+       else
+               PrintAndLog("Write could not be verified");     
+       return isOk;
 }
 
-int CmdWriteWordPWD(const char *Cmd)
-{
-       int Word = 16; //default to invalid word
-       int Data = 0xFFFFFFFF; //default to blank data
-       int Password = 0xFFFFFFFF; //default to blank password
-       UsbCommand c;
+void printEM4x05config(uint32_t wordData) {
+       uint16_t datarate = (((wordData & 0x3F)+1)*2);
+       uint8_t encoder = ((wordData >> 6) & 0xF);
+       char enc[14];
+       memset(enc,0,sizeof(enc));
+
+       uint8_t PSKcf = (wordData >> 10) & 0x3;
+       char cf[10];
+       memset(cf,0,sizeof(cf));
+       uint8_t delay = (wordData >> 12) & 0x3;
+       char cdelay[33];
+       memset(cdelay,0,sizeof(cdelay));
+       uint8_t LWR = (wordData >> 14) & 0xF; //last word read
+
+       switch (encoder) {
+               case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
+               case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
+               case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
+               case 3: snprintf(enc,sizeof(enc),"Miller"); break;
+               case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
+               case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
+               case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
+               case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
+               case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
+               case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
+               default: snprintf(enc,sizeof(enc),"Unknown"); break;
+       }
+
+       switch (PSKcf) {
+               case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
+               case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
+               case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
+               case 3: snprintf(cf,sizeof(cf),"unknown"); break;
+       }
+
+       switch (delay) {
+               case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+               case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
+               case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
+               case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+       }
+       PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
+       PrintAndLog("Config Breakdown:", wordData);
+       PrintAndLog(" Data Rate:  %02u | RF/%u", wordData & 0x3F, datarate);
+       PrintAndLog("   Encoder:   %u | %s", encoder, enc);
+       PrintAndLog("    PSK CF:   %u | %s", PSKcf, cf);
+       PrintAndLog("     Delay:   %u | %s", delay, cdelay);
+       PrintAndLog(" LastWordR:  %02u | Address of last word for default read", LWR);
+       PrintAndLog(" ReadLogin:   %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");       
+       PrintAndLog("   ReadHKL:   %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");    
+       PrintAndLog("WriteLogin:   %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");    
+       PrintAndLog("  WriteHKL:   %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required"); 
+       PrintAndLog("    R.A.W.:   %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
+       PrintAndLog("   Disable:   %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
+       PrintAndLog("    R.T.F.:   %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
+       PrintAndLog("    Pigeon:   %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
+}
+
+void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
+       switch (chipType) {
+               case 9: PrintAndLog("\n Chip Type:   %u | EM4305", chipType); break;
+               case 4: PrintAndLog(" Chip Type:   %u | Unknown", chipType); break;
+               case 2: PrintAndLog(" Chip Type:   %u | EM4469", chipType); break;
+               //add more here when known
+               default: PrintAndLog(" Chip Type:   %u Unknown", chipType); break;
+       }
+
+       switch (cap) {
+               case 3: PrintAndLog("  Cap Type:   %u | 330pF",cap); break;
+               case 2: PrintAndLog("  Cap Type:   %u | %spF",cap, (chipType==2)? "75":"210"); break;
+               case 1: PrintAndLog("  Cap Type:   %u | 250pF",cap); break;
+               case 0: PrintAndLog("  Cap Type:   %u | no resonant capacitor",cap); break;
+               default: PrintAndLog("  Cap Type:   %u | unknown",cap); break;
+       }
+
+       PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
+       if (serial != 0) {
+               PrintAndLog("\n  Serial #: %08X\n", serial);
+       }
+}
+
+void printEM4x05ProtectionBits(uint32_t wordData) {
+       for (uint8_t i = 0; i < 15; i++) {
+               PrintAndLog("      Word:  %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+               if (i==14) {
+                       PrintAndLog("      Word:  %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+               }
+       }
+}
+
+//quick test for EM4x05/EM4x69 tag
+bool EM4x05Block0Test(uint32_t *wordData) {
+//     return (EM4x05ReadWord_ext(0,0,false,wordData) == 1);
+       return false;
+}
+
+int CmdEM4x05Info(const char *Cmd) {
+       /*
+       uint32_t pwd;
+       uint32_t wordData = 0;
+       bool usePwd = false;
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info();
+
+       // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+       pwd = param_get32ex(Cmd, 0, 1, 16);
        
-       sscanf(Cmd, "%x %d %x", &Data, &Word, &Password);
+       if ( pwd != 1 )
+               usePwd = true;
+
+       // read word 0 (chip info)
+       // block 0 can be read even without a password.
+       if ( !EM4x05Block0Test(&wordData) ) 
+               return -1;
        
-       if (Word > 15) {
-               PrintAndLog("Word must be between 0 and 15");
-               return 1;
+       uint8_t chipType = (wordData >> 1) & 0xF;
+       uint8_t cap = (wordData >> 5) & 3;
+       uint16_t custCode = (wordData >> 9) & 0x3FF;
+       
+       // read word 1 (serial #) doesn't need pwd
+       wordData = 0;
+       if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
+               //failed, but continue anyway...
        }
+       printEM4x05info(chipType, cap, custCode, wordData);
+
+       // read word 4 (config block) 
+       // needs password if one is set
+       wordData = 0;
+       if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 )
+               return 0;
        
-       PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password);
+       printEM4x05config(wordData);
+
+       // read word 14 and 15 to see which is being used for the protection bits
+       wordData = 0;
+       if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
+               return 0;
+       }
+       // if status bit says this is not the used protection word
+       if (!(wordData & 0x8000)) {
+               if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
+                       return 0;
+               }
+       }
+       if (!(wordData & 0x8000)) {
+               //something went wrong
+               return 0;
+       }
+       printEM4x05ProtectionBits(wordData);
        
-       c.cmd = CMD_EM4X_WRITE_WORD;
-       c.d.asBytes[0] = 0x1; //Password mode
-       c.arg[0] = Data;
-       c.arg[1] = Word;
-       c.arg[2] = Password;
-       SendCommand(&c);
-       return 0;
+       */
+       return 1;
 }
 
-static command_t CommandTable[] =
-{
-       {"help", CmdHelp, 1, "This help"},
-       {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},  
-       {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"},
-       {"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
-       {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
-       {"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
-       {"em410xwrite", CmdEM410xWrite, 1, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
-       {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"},
-       {"readword", CmdReadWord, 1, "<Word> -- Read EM4xxx word data"},
-       {"readwordPWD", CmdReadWordPWD, 1, "<Word> <Password> -- Read EM4xxx word data in password mode"},
-       {"writeword", CmdWriteWord, 1, "<Data> <Word> -- Write EM4xxx word data"},
-       {"writewordPWD", CmdWriteWordPWD, 1, "<Data> <Word> <Password> -- Write EM4xxx word data in password mode"},
+static command_t CommandTable[] = {
+       {"help",                CmdHelp,                        1, "This help"},
+       {"410xdemod",   CmdEMdemodASK,          0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},  
+       {"410xread",    CmdEM410xRead,          1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
+       {"410xsim",             CmdEM410xSim,           0, "<UID> -- Simulate EM410x tag"},
+       {"410xwatch",   CmdEM410xWatch,         0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
+       {"410xspoof",   CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
+       {"410xwrite",   CmdEM410xWrite,         0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
+       {"4x05dump",    CmdEM4x05Dump,          0, "dump EM4205/4305 tag"},
+       {"4x05info",    CmdEM4x05Info,      0, "Tag information EM4x05/EM4x69"},
+       {"4x05read",    CmdEM4x05Read,          0, "read word data from EM4205/4305"},
+       {"4x05write",   CmdEM4x05Write,         0, "write word data to EM4205/4305"},
+       {"4x50read",    CmdEM4x50Read,          0, "read word data from EM4x50"},
+       {"4x50write",   CmdEM4x50Write,         0, "write word data to EM4x50"},
+       {"4x50dump",    CmdEM4x50Dump,          0, "dump EM4x50 tag"},
        {NULL, NULL, 0, NULL}
 };
 
-int CmdLFEM4X(const char *Cmd)
-{
+int CmdLFEM4X(const char *Cmd) {
+       clearCommandBuffer();
        CmdsParse(CommandTable, Cmd);
        return 0;
 }
 
-int CmdHelp(const char *Cmd)
-{
+int CmdHelp(const char *Cmd) {
        CmdsHelp(CommandTable);
        return 0;
 }
Impressum, Datenschutz