]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso14443a.c
update iClass chip identification
[proxmark3-svn] / armsrc / iso14443a.c
index 05ffb941735a300d68c92ea8d80ca249f2b245e1..5c7367a15e634ae035bdf2af4f26470a75df216c 100644 (file)
@@ -141,16 +141,40 @@ const uint8_t OddByteParity[256] = {
   1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 };
 
+
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
 }
 
 
-
 void iso14a_set_timeout(uint32_t timeout) {
        iso14a_timeout = timeout;
+       if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+}
+
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+       uint8_t tb1;
+       uint8_t fwi; 
+       uint32_t fwt;
+       
+       if (ats[0] > 1) {                                                       // there is a format byte T0
+               if ((ats[1] & 0x20) == 0x20) {                  // there is an interface byte TB(1)
+                       if ((ats[1] & 0x10) == 0x10) {          // there is an interface byte TA(1) preceding TB(1)
+                               tb1 = ats[3];
+                       } else {
+                               tb1 = ats[2];
+                       }
+                       fwi = (tb1 & 0xf0) >> 4;                        // frame waiting indicator (FWI)
+                       fwt = 256 * 16 * (1 << fwi);            // frame waiting time (FWT) in 1/fc
+                       
+                       iso14a_set_timeout(fwt/(8*16));
+               }
+       }
 }
 
+
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
@@ -243,26 +267,27 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 
        Uart.twoBits = (Uart.twoBits << 8) | bit;
        
-       if (Uart.state == STATE_UNSYNCD) {                                                                                              // not yet synced
+       if (Uart.state == STATE_UNSYNCD) {                                                                                      // not yet synced
        
-               if (Uart.highCnt < 7) {                                                                                                 // wait for a stable unmodulated signal
+               if (Uart.highCnt < 2) {                                                                                                 // wait for a stable unmodulated signal
                        if (Uart.twoBits == 0xffff) {
                                Uart.highCnt++;
                        } else {
                                Uart.highCnt = 0;
                        }
                } else {        
-                       Uart.syncBit = 0xFFFF; // not set
-                       // look for 00xx1111 (the start bit)
-                       if              ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-                       else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-                       else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-                       else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-                       else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-                       else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-                       else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-                       else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-                       if (Uart.syncBit != 0xFFFF) {
+                       Uart.syncBit = 0xFFFF;                                                                                          // not set
+                                                                                                                                                               // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
+                       if              ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8;           // mask is   11x11111 xxxxxxxx, 
+                                                                                                                                                               // check for 00x11111 xxxxxxxx
+                       else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7;           // both masks shifted right one bit, left padded with '1'
+                       else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6;           // ...
+                       else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
+                       else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
+                       else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
+                       else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
+                       else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
+                       if (Uart.syncBit != 0xFFFF) {                                                                           // found a sync bit
                                Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                                Uart.startTime -= Uart.syncBit;
                                Uart.endTime = Uart.startTime;
@@ -275,11 +300,9 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {                  
                        if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation in both halves - error
                                UartReset();
-                               Uart.highCnt = 6;
                        } else {                                                                                                                        // Modulation in first half = Sequence Z = logic "0"
                                if (Uart.state == STATE_MILLER_X) {                                                             // error - must not follow after X
                                        UartReset();
-                                       Uart.highCnt = 6;
                                } else {
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -334,12 +357,13 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                        if (Uart.len) {
                                                return TRUE;                                                                                    // we are finished with decoding the raw data sequence
                                        } else {
-                                               UartReset();                                    // Nothing receiver - start over
+                                               UartReset();                                                                                    // Nothing received - start over
+                                               Uart.highCnt = 1;
                                        }
                                }
                                if (Uart.state == STATE_START_OF_COMMUNICATION) {                               // error - must not follow directly after SOC
                                        UartReset();
-                                       Uart.highCnt = 6;
+                                       Uart.highCnt = 1;
                                } else {                                                                                                                // a logic "0"
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -527,12 +551,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        
        LEDsoff();
 
-       // We won't start recording the frames that we acquire until we trigger;
-       // a good trigger condition to get started is probably when we see a
-       // response from the tag.
-       // triggered == FALSE -- to wait first for card
-       bool triggered = !(param & 0x03); 
-       
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
        // Allocate memory from BigBuf for some buffers
        // free all previous allocations first
        BigBuf_free();
@@ -559,8 +579,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        bool TagIsActive = FALSE;
        bool ReaderIsActive = FALSE;
        
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
        
@@ -570,6 +588,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
        
+       // We won't start recording the frames that we acquire until we trigger;
+       // a good trigger condition to get started is probably when we see a
+       // response from the tag.
+       // triggered == FALSE -- to wait first for card
+       bool triggered = !(param & 0x03); 
+       
        // And now we loop, receiving samples.
        for(uint32_t rsamples = 0; TRUE; ) {
 
@@ -1002,6 +1026,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                .modulation_n = 0
        };
   
+       // We need to listen to the high-frequency, peak-detected path.
+       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
        BigBuf_free_keep_EM();
 
        // allocate buffers:
@@ -1030,9 +1057,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        int happened2 = 0;
        int cmdsRecvd = 0;
 
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
@@ -1358,6 +1382,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
@@ -1380,9 +1405,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
        // Set ADC to read field strength
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
        AT91C_BASE_ADC->ADC_MR =
-                               ADC_MODE_PRESCALE(32) |
-                               ADC_MODE_STARTUP_TIME(16) |
-                               ADC_MODE_SAMPLE_HOLD_TIME(8);
+                               ADC_MODE_PRESCALE(63) |
+                               ADC_MODE_STARTUP_TIME(1) |
+                               ADC_MODE_SAMPLE_HOLD_TIME(15);
        AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
@@ -1392,7 +1417,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
        // Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+       
        for(;;) {
                WDT_HIT();
 
@@ -1404,7 +1429,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
                        analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
                        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
                        if (analogCnt >= 32) {
-                               if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+                               if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
                                        vtime = GetTickCount();
                                        if (!timer) timer = vtime;
                                        // 50ms no field --> card to idle state
@@ -1479,14 +1504,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
        }
 
        // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-       for (i = 0; i < 2 ; ) {
+       uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+       for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = SEC_F;
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        i++;
                }
        }
-       
+
        LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
        return 0;
@@ -1588,7 +1614,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 
        // clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-       
+
        c = 0;
        for(;;) {
                WDT_HIT();
@@ -1598,7 +1624,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
                        if(ManchesterDecoding(b, offset, 0)) {
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
                                return TRUE;
-                       } else if (c++ > iso14a_timeout) {
+                       } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
                                return FALSE; 
                        }
                }
@@ -1796,6 +1822,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
        // reset the PCB block number
        iso14_pcb_blocknum = 0;
+
+       // set default timeout based on ATS
+       iso14a_set_ATS_timeout(resp);
+
        return 1;       
 }
 
@@ -1860,8 +1890,9 @@ void ReaderIso14443a(UsbCommand *c)
 {
        iso14a_command_t param = c->arg[0];
        uint8_t *cmd = c->d.asBytes;
-       size_t len = c->arg[1];
-       size_t lenbits = c->arg[2];
+       size_t len = c->arg[1] & 0xffff;
+       size_t lenbits = c->arg[1] >> 16;
+       uint32_t timeout = c->arg[2];
        uint32_t arg0 = 0;
        byte_t buf[USB_CMD_DATA_SIZE];
        uint8_t par[MAX_PARITY_SIZE];
@@ -1886,7 +1917,7 @@ void ReaderIso14443a(UsbCommand *c)
        }
 
        if(param & ISO14A_SET_TIMEOUT) {
-               iso14a_set_timeout(c->arg[2]);
+               iso14a_set_timeout(timeout);
        }
 
        if(param & ISO14A_APDU) {
@@ -1940,7 +1971,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
-                       if (nttmp2 == nt1) return -i;
+               if (nttmp2 == nt1) return -i;
                }
        
        return(-99999); // either nt1 or nt2 are invalid nonces
@@ -1963,6 +1994,10 @@ void ReaderMifare(bool first_try)
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
+       if (first_try) { 
+               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+       }
+       
        // free eventually allocated BigBuf memory. We want all for tracing.
        BigBuf_free();
        
@@ -1991,7 +2026,6 @@ void ReaderMifare(bool first_try)
 
        if (first_try) { 
                mf_nr_ar3 = 0;
-               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
                sync_time = GetCountSspClk() & 0xfffffff8;
                sync_cycles = 65536;                                                                    // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
                nt_attacked = 0;
@@ -2009,18 +2043,21 @@ void ReaderMifare(bool first_try)
        LED_B_OFF();
        LED_C_OFF();
        
-  
+
+       #define DARKSIDE_MAX_TRIES      32              // number of tries to sync on PRNG cycle. Then give up.
+       uint16_t unsuccessfull_tries = 0;
+       
        for(uint16_t i = 0; TRUE; i++) {
                
+               LED_C_ON();
                WDT_HIT();
 
                // Test if the action was cancelled
                if(BUTTON_PRESS()) {
+                       isOK = -1;
                        break;
                }
                
-               LED_C_ON();
-
                if(!iso14443a_select_card(uid, NULL, &cuid)) {
                        if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
                        continue;
@@ -2055,8 +2092,14 @@ void ReaderMifare(bool first_try)
                                nt_attacked = nt;
                        }
                        else {
-                               if (nt_distance == -99999) { // invalid nonce received, try again
-                                       continue;
+                               if (nt_distance == -99999) { // invalid nonce received
+                                       unsuccessfull_tries++;
+                                       if (!nt_attacked && unsuccessfull_tries > DARKSIDE_MAX_TRIES) {
+                                               isOK = -3;              // Card has an unpredictable PRNG. Give up      
+                                               break;
+                                       } else {
+                                               continue;               // continue trying...
+                                       }
                                }
                                sync_cycles = (sync_cycles - nt_distance);
                                if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
@@ -2118,6 +2161,10 @@ void ReaderMifare(bool first_try)
                        if (nt_diff == 0 && first_try)
                        {
                                par[0]++;
+                               if (par[0] == 0x00) {           // tried all 256 possible parities without success. Card doesn't send NACK.
+                                       isOK = -2;
+                                       break;
+                               }
                        } else {
                                par[0] = ((par[0] & 0x1F) + 1) | par_low;
                        }
@@ -2134,7 +2181,7 @@ void ReaderMifare(bool first_try)
        memcpy(buf + 16, ks_list, 8);
        memcpy(buf + 24, mf_nr_ar, 4);
                
-       cmd_send(CMD_ACK,isOK,0,0,buf,28);
+       cmd_send(CMD_ACK, isOK, 0, 0, buf, 28);
 
        // Thats it...
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@@ -2195,12 +2242,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
        uint8_t ar_nr_collected = 0;
 
-       // free eventually allocated BigBuf memory but keep Emulator Memory
-       BigBuf_free_keep_EM();
-       // clear trace
-       clear_trace();
-       set_tracing(TRUE);
-
        // Authenticate response - nonce
        uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
        
@@ -2238,13 +2279,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        if (_7BUID) {
                rATQA[0] = 0x44;
                rUIDBCC1[0] = 0x88;
+               rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
                rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
        }
 
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
        if (MF_DBGLEVEL >= 1)   {
                if (!_7BUID) {
                        Dbprintf("4B UID: %02x%02x%02x%02x", 
@@ -2256,15 +2294,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                }
        }
 
+       // We need to listen to the high-frequency, peak-detected path.
+       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+       // free eventually allocated BigBuf memory but keep Emulator Memory
+       BigBuf_free_keep_EM();
+
+       // clear trace
+       clear_trace();
+       set_tracing(TRUE);
+
+
        bool finished = FALSE;
        while (!BUTTON_PRESS() && !finished) {
                WDT_HIT();
 
                // find reader field
-               // Vref = 3300mV, and an 10:1 voltage divider on the input
-               // can measure voltages up to 33000 mV
                if (cardSTATE == MFEMUL_NOFIELD) {
-                       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+                       vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
                        if (vHf > MF_MINFIELDV) {
                                cardSTATE_TO_IDLE();
                                LED_A_ON();
@@ -2339,6 +2386,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
                                        break;
                                }
+
                                uint32_t ar = bytes_to_num(receivedCmd, 4);
                                uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
@@ -2445,6 +2493,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
                                                num_to_bytes(ans, 4, rAUTH_AT);
                                        }
+
                                        EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
                                        //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
                                        cardSTATE = MFEMUL_AUTH1;
@@ -2477,13 +2526,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                || receivedCmd[0] == 0xB0) { // transfer
                                        if (receivedCmd[1] >= 16 * 4) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
                                                break;
                                        }
 
                                        if (receivedCmd[1] / 4 != cardAUTHSC) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
                                                break;
                                        }
                                }
@@ -2625,7 +2674,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                if(ar_nr_collected > 1) {
                        Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
                        Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-                                        ar_nr_responses[0], // UID
+                                       ar_nr_responses[0], // UID
                                        ar_nr_responses[1], //NT
                                        ar_nr_responses[2], //AR1
                                        ar_nr_responses[3], //NR1
@@ -2645,6 +2694,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                }
        }
        if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",    tracing, BigBuf_get_traceLen());
+       
 }
 
 
@@ -2673,10 +2723,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
        uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
-       
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
        // free eventually allocated BigBuf memory
        BigBuf_free();
        // allocate the DMA buffer, used to stream samples from the FPGA
@@ -2688,8 +2736,6 @@ void RAMFUNC SniffMifare(uint8_t param) {
        bool ReaderIsActive = FALSE;
        bool TagIsActive = FALSE;
 
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
 
Impressum, Datenschutz