-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
#include "crapto1.h"
#include "mifareutil.h"
#include "BigBuf.h"
+#include "parity.h"
+
static uint32_t iso14a_timeout;
int rsamples = 0;
uint8_t trigger = 0;
#define SEC_Y 0x00
#define SEC_Z 0xc0
-const uint8_t OddByteParity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
- return OddByteParity[bt];
-}
-
void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
{
uint16_t paritybit_cnt = 0;
for (uint16_t i = 0; i < iLen; i++) {
// Generate the parity bits
- parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+ parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
if (paritybit_cnt == 7) {
par[paritybyte_cnt] = parityBits; // save 8 Bits parity
parityBits = 0; // and advance to next Parity Byte
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
-
LEDsoff();
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- // triggered == FALSE -- to wait first for card
- bool triggered = !(param & 0x03);
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free();
-
+
+ // init trace buffer
+ clear_trace();
+ set_tracing(TRUE);
+
// The command (reader -> tag) that we're receiving.
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
// The DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
- // init trace buffer
- clear_trace();
- set_tracing(TRUE);
-
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
bool TagIsActive = FALSE;
bool ReaderIsActive = FALSE;
- iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
// Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ // triggered == FALSE -- to wait first for card
+ bool triggered = !(param & 0x03);
+
// And now we loop, receiving samples.
for(uint32_t rsamples = 0; TRUE; ) {
}
/* And ready to receive another command. */
UartReset();
- //UartInit(receivedCmd, receivedCmdPar);
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DemodReset();
}
} // main cycle
- DbpString("COMMAND FINISHED");
-
FpgaDisableSscDma();
+ LEDsoff();
+
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
- LEDsoff();
+
+ set_tracing(FALSE);
}
//-----------------------------------------------------------------------------
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
// -> need 273 bytes buffer
-// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits
-#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 370 //273
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
// Retrieve and store the current buffer index
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
{
-
+ uint32_t counters[] = {0,0,0};
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint8_t ar_nr_collected = 0;
uint8_t sak;
-
- uint8_t blockzeros[512];
- memset(blockzeros, 0x00, sizeof(blockzeros));
// PACK response to PWD AUTH for EV1/NTAG
- uint8_t response8[4];
+ uint8_t response8[4] = {0,0,0,0};
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
- uint8_t response1[2];
+ uint8_t response1[2] = {0,0};
switch (tagType) {
case 1: { // MIFARE Classic
response8[0] = 0x80;
response8[1] = 0x80;
ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+ // uid not supplied then get from emulator memory
+ if (data[0]==0) {
+ uint16_t start = 4 * (0+12);
+ uint8_t emdata[8];
+ emlGetMemBt( emdata, start, sizeof(emdata));
+ memcpy(data, emdata, 3); //uid bytes 0-2
+ memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+ flags |= FLAG_7B_UID_IN_DATA;
+ }
} break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
response3a[0] = sak & 0xFB;
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
- uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
+ uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
// TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
- // Prepare GET_VERSION (different for EV-1 / NTAG)
+ // Prepare GET_VERSION (different for UL EV-1 / NTAG)
//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
- uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+ //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+
+ // Prepare CHK_TEARING
+ //uint8_t response9[] = {0xBD,0x90,0x3f};
- #define TAG_RESPONSE_COUNT 9
+ #define TAG_RESPONSE_COUNT 10
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
{ .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
{ .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
{ .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
{ .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
- { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
+ //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
{ .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
+ //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
};
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
.modulation_n = 0
};
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
BigBuf_free_keep_EM();
// allocate buffers:
int happened2 = 0;
int cmdsRecvd = 0;
- // We need to listen to the high-frequency, peak-detected path.
- iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
// Clean receive command buffer
-
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
uint8_t block = receivedCmd[1];
- if ( tagType == 7 ) {
-
- if ( block < 4 ) {
- //NTAG 215
- uint8_t start = 4 * block;
-
- uint8_t blockdata[50] = {
- data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
- data[3],data[4],data[5],data[6],
- data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
- 0xe1,0x10,0x12,0x00,
- 0x03,0x00,0xfe,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,
- 0x00,0x00};
- ComputeCrc14443(CRC_14443_A, blockdata+start, 16, blockdata+start+17, blockdata+start+18);
- EmSendCmdEx( blockdata+start, 18, false);
- } else {
- ComputeCrc14443(CRC_14443_A, blockzeros,16, blockzeros+17,blockzeros+18);
- EmSendCmdEx(blockzeros,18,false);
- }
+ // if Ultralight or NTAG (4 byte blocks)
+ if ( tagType == 7 || tagType == 2 ) {
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * (block+12);
+ uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+ emlGetMemBt( emdata, start, 16);
+ AppendCrc14443a(emdata, 16);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
-
- } else {
- EmSendCmdEx(data+(4*block),16,false);
+ } else { // all other tags (16 byte block tags)
+ EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
}
- } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ -- just returns all zeros.
- uint8_t len = (receivedCmd[2]- receivedCmd[1] ) * 4;
- ComputeCrc14443(CRC_14443_A, blockzeros,len, blockzeros+len+1, blockzeros+len+2);
- EmSendCmdEx(blockzeros,len+2,false);
- p_response = NULL;
+ } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
+
+ uint8_t emdata[MAX_FRAME_SIZE];
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ int start = (receivedCmd[1]+12) * 4;
+ int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+ emlGetMemBt( emdata, start, len);
+ AppendCrc14443a(emdata, len);
+ EmSendCmdEx(emdata, len+2, false);
+ p_response = NULL;
+
+ } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
+ // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * 4;
+ uint8_t emdata[34];
+ emlGetMemBt( emdata, start, 32);
+ AppendCrc14443a(emdata, 32);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
+ // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
+ // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
+ // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
+ // 0x00,0x00};
+ //AppendCrc14443a(data, sizeof(data)-2);
+ //EmSendCmdEx(data,sizeof(data),false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
+ uint8_t index = receivedCmd[1];
+ uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
+ if ( counters[index] > 0) {
+ num_to_bytes(counters[index], 3, data);
+ AppendCrc14443a(data, sizeof(data)-2);
+ }
+ EmSendCmdEx(data,sizeof(data),false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
+ // number of counter
+ uint8_t counter = receivedCmd[1];
+ uint32_t val = bytes_to_num(receivedCmd+2,4);
+ counters[counter] = val;
+
+ // send ACK
+ uint8_t ack[] = {0x0a};
+ EmSendCmdEx(ack,sizeof(ack),false);
+ p_response = NULL;
+
+ } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint8_t emdata[3];
+ uint8_t counter=0;
+ if (receivedCmd[1]<3) counter = receivedCmd[1];
+ emlGetMemBt( emdata, 10+counter, 1);
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[9];
+
} else if(receivedCmd[0] == 0x50) { // Received a HALT
if (tracing) {
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
- p_response = &responses[7];
+ uint8_t emdata[10];
+ emlGetMemBt( emdata, 0, 8 );
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[7];
} else {
p_response = &responses[5]; order = 7;
}
ar_nr_responses[8], // AR2
ar_nr_responses[9] // NR2
);
+ Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT1
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[7], // NT2
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
}
uint8_t len = ar_nr_collected*5*4;
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
{
if ( tagType == 7 ) {
- p_response = &responses[8]; // PACK response
+ uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+ uint8_t emdata[4];
+ emlGetMemBt( emdata, start, 2);
+ AppendCrc14443a(emdata, 2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[8]; // PACK response
+ uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+
+ if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
}
- }
- else {
+ } else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
-
+ case 0x02:
+ case 0x03: { // IBlock (command no CID)
+ dynamic_response_info.response[0] = receivedCmd[0];
+ dynamic_response_info.response[1] = 0x90;
+ dynamic_response_info.response[2] = 0x00;
+ dynamic_response_info.response_n = 3;
+ } break;
case 0x0B:
- case 0x0A: { // IBlock (command)
+ case 0x0A: { // IBlock (command CID)
dynamic_response_info.response[0] = receivedCmd[0];
dynamic_response_info.response[1] = 0x00;
dynamic_response_info.response[2] = 0x90;
dynamic_response_info.response_n = 2;
} break;
- case 0xBA: { //
- memcpy(dynamic_response_info.response,"\xAB\x00",2);
- dynamic_response_info.response_n = 2;
+ case 0xBA: { // ping / pong
+ dynamic_response_info.response[0] = 0xAB;
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response_n = 2;
} break;
case 0xCA:
case 0xC2: { // Readers sends deselect command
- memcpy(dynamic_response_info.response,"\xCA\x00",2);
- dynamic_response_info.response_n = 2;
+ dynamic_response_info.response[0] = 0xCA;
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response_n = 2;
} break;
default: {
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
- Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
- LED_A_OFF();
+ set_tracing(FALSE);
BigBuf_free_keep_EM();
+ LED_A_OFF();
+
+ if (MF_DBGLEVEL >= 4){
+ Dbprintf("-[ Wake ups after halt [%d]", happened);
+ Dbprintf("-[ Messages after halt [%d]", happened2);
+ Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+ }
}
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
-
+
delay &= 0x07;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
- if(BUTTON_PRESS()) {
- break;
- }
+ if(BUTTON_PRESS()) break;
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
}
}
-
void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
{
CodeIso14443aBitsAsReaderPar(frame, bits, par);
}
}
-
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
ReaderTransmitBitsPar(frame, len, par, timing);
}
-
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
return Demod.len;
}
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[]
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0, NULL);
+ ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
// Receive the ATQA
if(!ReaderReceive(resp, resp_par)) return 0;
memset(p_hi14a_card->uid,0,10);
}
+ if (anticollision) {
// clear uid
if (uid_ptr) {
memset(uid_ptr,0,10);
}
+ }
// check for proprietary anticollision:
if ((resp[0] & 0x1F) == 0) {
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+ if (anticollision) {
// SELECT_ALL
ReaderTransmit(sel_all, sizeof(sel_all), NULL);
if (!ReaderReceive(resp, resp_par)) return 0;
} else { // no collision, use the response to SELECT_ALL as current uid
memcpy(uid_resp, resp, 4);
}
+ } else {
+ if (cascade_level < num_cascades - 1) {
+ uid_resp[0] = 0x88;
+ memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+ } else {
+ memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
+ }
+ }
uid_resp_len = 4;
// calculate crypto UID. Always use last 4 Bytes.
// Construct SELECT UID command
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
- memcpy(sel_uid+2, uid_resp, 4); // the UID
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
AppendCrc14443a(sel_uid, 7); // calculate and add CRC
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
uid_resp[0] = uid_resp[1];
uid_resp[1] = uid_resp[2];
uid_resp[2] = uid_resp[3];
-
uid_resp_len = 3;
}
- if(uid_ptr) {
+ if(uid_ptr && anticollision) {
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
}
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
- arg0 = iso14443a_select_card(NULL,card,NULL);
+ arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
}
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
LEDsoff();
}
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
+ uint16_t i;
+ uint32_t nttmp1, nttmp2;
+
if (nt1 == nt2) return 0;
- uint16_t i;
- uint32_t nttmp1 = nt1;
- uint32_t nttmp2 = nt2;
+ nttmp1 = nt1;
+ nttmp2 = nt2;
- for (i = 1; i < 32768; i++) {
+ for (i = 1; i < 0xFFFF; i++) {
nttmp1 = prng_successor(nttmp1, 1);
if (nttmp1 == nt2) return i;
nttmp2 = prng_successor(nttmp2, 1);
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try) {
+void ReaderMifare(bool first_try)
+{
+ // Mifare AUTH
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ static uint8_t mf_nr_ar3;
+
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
+
+ if (first_try) {
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ }
+
// free eventually allocated BigBuf memory. We want all for tracing.
BigBuf_free();
clear_trace();
set_tracing(TRUE);
- // Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
- static uint8_t mf_nr_ar3 = 0;
-
- uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
- uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
-
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
- uint8_t uid[10] = {0x00};
- //uint32_t cuid = 0x00;
+ uint8_t uid[10] ={0};
+ uint32_t cuid;
uint32_t nt = 0;
uint32_t previous_nt = 0;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
+ #define PRNG_SEQUENCE_LENGTH (1 << 16);
static uint32_t sync_time = 0;
- static uint32_t sync_cycles = 0;
+ static int32_t sync_cycles = 0;
int catch_up_cycles = 0;
int last_catch_up = 0;
+ uint16_t elapsed_prng_sequences;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
- int numWrongDistance = 0;
-
if (first_try) {
mf_nr_ar3 = 0;
- iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
nt_attacked = 0;
- nt = 0;
par[0] = 0;
}
else {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
- LED_C_ON();
+
+
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define NUM_DEBUG_INFOS 8 // per strategy
+ #define MAX_STRATEGY 3
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+ int16_t debug_info_nr = -1;
+ uint16_t strategy = 0;
+ int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+ uint32_t select_time;
+ uint32_t halt_time;
for(uint16_t i = 0; TRUE; i++) {
+ LED_C_ON();
WDT_HIT();
// Test if the action was cancelled
- if(BUTTON_PRESS()) break;
-
- if (numWrongDistance > 1000) {
- isOK = 0;
+ if(BUTTON_PRESS()) {
+ isOK = -1;
break;
}
- //if(!iso14443a_select_card(uid, NULL, &cuid)) {
- if(!iso14443a_select_card(uid, NULL, NULL)) {
+ if (strategy == 2) {
+ // test with additional hlt command
+ halt_time = 0;
+ int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+ if (len && MF_DBGLEVEL >= 3) {
+ Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+ }
+ }
+
+ if (strategy == 3) {
+ // test with FPGA power off/on
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(100);
+ }
+
+ if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
+ select_time = GetCountSspClk();
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
- catch_up_cycles = 0;
+ elapsed_prng_sequences = 1;
+ if (debug_info_nr == -1) {
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
- // if we missed the sync time already, advance to the next nonce repeat
- while(GetCountSspClk() > sync_time) {
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
- }
+ // if we missed the sync time already, advance to the next nonce repeat
+ while(GetCountSspClk() > sync_time) {
+ elapsed_prng_sequences++;
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ }
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ } else {
+ // collect some information on tag nonces for debugging:
+ #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+ if (strategy == 0) {
+ // nonce distances at fixed time after card select:
+ sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 1) {
+ // nonce distances at fixed time between authentications:
+ sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 2) {
+ // nonce distances at fixed time after halt:
+ sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else {
+ // nonce_distances at fixed time after power on
+ sync_time = DEBUG_FIXED_SYNC_CYCLES;
+ }
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ }
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
nt_attacked = nt;
- }
- else {
-
- // invalid nonce received, try again
- if (nt_distance == -99999) {
- numWrongDistance++;
- if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
- continue;
+ } else {
+ if (nt_distance == -99999) { // invalid nonce received
+ unexpected_random++;
+ if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+ isOK = -3; // Card has an unpredictable PRNG. Give up
+ break;
+ } else {
+ continue; // continue trying...
+ }
+ }
+ if (++sync_tries > MAX_SYNC_TRIES) {
+ if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ break;
+ } else { // continue for a while, just to collect some debug info
+ debug_info[strategy][debug_info_nr] = nt_distance;
+ debug_info_nr++;
+ if (debug_info_nr == NUM_DEBUG_INFOS) {
+ strategy++;
+ debug_info_nr = 0;
+ }
+ continue;
+ }
+ }
+ sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+ if (sync_cycles <= 0) {
+ sync_cycles += PRNG_SEQUENCE_LENGTH;
+ }
+ if (MF_DBGLEVEL >= 3) {
+ Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
}
-
- sync_cycles = (sync_cycles - nt_distance);
- if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
continue;
}
}
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
catch_up_cycles = -dist_nt(nt_attacked, nt);
- if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
+ if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
+ catch_up_cycles /= elapsed_prng_sequences;
if (catch_up_cycles == last_catch_up) {
consecutive_resyncs++;
}
else {
sync_cycles = sync_cycles + catch_up_cycles;
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ last_catch_up = 0;
+ catch_up_cycles = 0;
+ consecutive_resyncs = 0;
}
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
- if (ReaderReceive(receivedAnswer, receivedAnswerPar))
- {
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
- if (nt_diff == 0)
- {
+ if (nt_diff == 0) {
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
}
if (nt_diff == 0 && first_try)
{
par[0]++;
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ isOK = -2;
+ break;
+ }
} else {
par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
}
+
mf_nr_ar[3] &= 0x1F;
- byte_t buf[28] = {0x00};
+ if (isOK == -4) {
+ if (MF_DBGLEVEL >= 3) {
+ for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+ Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+ }
+ }
+ }
+ }
+ byte_t buf[28];
memcpy(buf + 0, uid, 4);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
- set_tracing(FALSE);
+ // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
-}
+ set_tracing(FALSE);
+}
- /*
+/**
*MIFARE 1K simulate.
*
*@param flags :
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
- //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
- uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
+ uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
+ //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rSAK1[] = {0x04, 0xda, 0x17};
uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
- //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+ //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
- // free eventually allocated BigBuf memory but keep Emulator Memory
- BigBuf_free_keep_EM();
-
- // clear trace
- clear_trace();
- set_tracing(TRUE);
-
// Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
}
- // We need to listen to the high-frequency, peak-detected path.
- iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
if (MF_DBGLEVEL >= 1) {
if (!_7BUID) {
Dbprintf("4B UID: %02x%02x%02x%02x",
}
}
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // free eventually allocated BigBuf memory but keep Emulator Memory
+ BigBuf_free_keep_EM();
+
+ // clear trace
+ clear_trace();
+ set_tracing(TRUE);
+
+
bool finished = FALSE;
- while (!BUTTON_PRESS() && !finished) {
+ while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
WDT_HIT();
// find reader field
ar_nr_responses[8], // AR2
ar_nr_responses[9] // NR2
);
+ Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT1
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[7], // NT2
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) {
- Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+ Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
ar_nr_responses[0], // UID1
ar_nr_responses[1], // UID2
ar_nr_responses[2], // NT
}
}
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+
+ set_tracing(FALSE);
}
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
- // free eventually allocated BigBuf memory
- BigBuf_free();
-
// C(red) A(yellow) B(green)
LEDsoff();
// init trace buffer
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free();
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
bool ReaderIsActive = FALSE;
bool TagIsActive = FALSE;
- iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
/* And ready to receive another command. */
- //UartInit(receivedCmd, receivedCmdPar);
- UartReset();
+ UartInit(receivedCmd, receivedCmdPar);
/* And also reset the demod code */
DemodReset();
// And ready to receive another response.
DemodReset();
-
// And reset the Miller decoder including its (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
}
} // main cycle
- DbpString("COMMAND FINISHED");
-
FpgaDisableSscDma();
MfSniffEnd();
-
- Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
LEDsoff();
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+ set_tracing(FALSE);
}