#include "lfdemod.h"
#include "lfsampling.h"
#include "protocols.h"
-#include "usb_cdc.h" //test
+#include "usb_cdc.h" // for usb_poll_validate_length
/**
* Function to do a modulation and then get samples.
sample_config sc = { 0,0,1, divisor_used, 0};
setSamplingConfig(&sc);
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
/* Make sure the tag is reset */
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
DoAcquisition_config(false);
}
-
-
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
}
}
-
-
void WriteTIbyte(uint8_t b)
{
int i = 0;
// clear buffer
uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
- memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
+ BigBuf_Clear_ext(false);
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
}
}
-
-
-
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
-
-
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use tiread to check");
+ DbpString("Now use `lf ti read` to check");
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
- #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
- #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
i = 0;
for(;;) {
//wait until SSC_CLK goes HIGH
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
return;
}
LED_D_OFF();
//wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if(BUTTON_PRESS()) {
+ if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
DbpString("Stopped");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
return;
}
WDT_HIT();
SpinDelayUs(gap);
}
}
+
}
}
memset(dest+(*n), c ^ *phase, clock);
*phase ^= 1;
}
+ *n += clock;
+}
+
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
}
// args clock, ask/man or askraw, invert, transmission separator
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
- if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+ if (phase==1) { //run a second set inverted to keep phase in check
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert, &n, clk, encoding);
}
- if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
}
}
}
-
- if (separator==1) Dbprintf("sorry but separator option not yet available");
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
//DEBUG
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
//i+=16;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
-
- if (ledcontrol)
- LED_A_ON();
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
//carrier can be 2,4 or 8
//i+=16;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- if (ledcontrol)
- LED_A_ON();
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_OFF();
*high = hi;
*low = lo;
- return;
+ break;
}
// reset
}
hi2 = hi = lo = idx = 0;
WDT_HIT();
}
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
- //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
size_t size;
int idx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
DoAcquisition_default(-1,true);
// FSK demodulator
- //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
size = 50*128*2; //big enough to catch 2 sequences of largest format
idx = AWIDdemodFSK(dest, &size);
- if (idx>0 && size==96){
- // Index map
- // 0 10 20 30 40 50 60
- // | | | | | | |
- // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
- // -----------------------------------------------------------------------------
- // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
- // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
- // |---26 bit---| |-----117----||-------------142-------------|
- // b = format bit len, o = odd parity of last 3 bits
- // f = facility code, c = card number
- // w = wiegand parity
- // (26 bit format shown)
-
- //get raw ID before removing parities
- uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
- uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
- uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
-
- size = removeParity(dest, idx+8, 4, 1, 88);
- // ok valid card found!
-
- // Index map
- // 0 10 20 30 40 50 60
- // | | | | | | |
- // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
- // -----------------------------------------------------------------------------
- // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
- // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
- // |26 bit| |-117--| |-----142------|
- // b = format bit len, o = odd parity of last 3 bits
- // f = facility code, c = card number
- // w = wiegand parity
- // (26 bit format shown)
-
- uint32_t fc = 0;
- uint32_t cardnum = 0;
- uint32_t code1 = 0;
- uint32_t code2 = 0;
- uint8_t fmtLen = bytebits_to_byte(dest,8);
- if (fmtLen==26){
- fc = bytebits_to_byte(dest+9, 8);
- cardnum = bytebits_to_byte(dest+17, 16);
- code1 = bytebits_to_byte(dest+8,fmtLen);
- Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
- } else {
- cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
- if (fmtLen>32){
- code1 = bytebits_to_byte(dest+8,fmtLen-32);
- code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
- Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
- } else{
- code1 = bytebits_to_byte(dest+8,fmtLen);
- Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
- }
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
+ if (idx<=0 || size!=96) continue;
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+ // -----------------------------------------------------------------------------
+ // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+ // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+ // |---26 bit---| |-----117----||-------------142-------------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+ uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+ uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+ size = removeParity(dest, idx+8, 4, 1, 88);
+ if (size != 66) continue;
+ // ok valid card found!
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+ // -----------------------------------------------------------------------------
+ // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+ // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // |26 bit| |-117--| |-----142------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ uint32_t code2 = 0;
+ uint8_t fmtLen = bytebits_to_byte(dest,8);
+ if (fmtLen==26){
+ fc = bytebits_to_byte(dest+9, 8);
+ cardnum = bytebits_to_byte(dest+17, 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ if (fmtLen>32){
+ code1 = bytebits_to_byte(dest+8,fmtLen-32);
+ code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else{
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
- // reset
}
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ break;
+ }
+ // reset
idx = 0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
int clk=0, invert=0, errCnt=0, maxErr=20;
uint32_t hi=0;
uint64_t lo=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
if (ledcontrol) LED_A_OFF();
*high=lo>>32;
*low=lo & 0xFFFFFFFF;
- return;
+ break;
}
}
WDT_HIT();
hi = lo = size = idx = 0;
clk = invert = errCnt = 0;
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
uint8_t version=0;
uint8_t facilitycode=0;
uint16_t number=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
//LED_A_OFF();
*high=code;
*low=code2;
- return;
+ break;
}
code=code2=0;
version=facilitycode=0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*------------------------------
* T5555/T5557/T5567/T5577 routines
*------------------------------
- */
-
-/* NOTE: T55x7/T5555 configuration register definitions moved to protocols.h */
-
-/*
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
+ *
* Relevant communication times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
-#define READ_GAP 52*8
-
-// VALUES TAKEN FROM EM4x function: SendForward
-// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
-// WRITE_GAP = 128; (16*8)
-// WRITE_1 = 256 32*8; (32*8)
-
-// These timings work for 4469/4269/4305 (with the 55*8 above)
-// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
-
-// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
-// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
-// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
-// T0 = TIMER_CLOCK1 / 125000 = 192
-// 1 Cycle = 8 microseconds(us) == 1 field clock
+#define READ_GAP 15*8
void TurnReadLFOn(int delay) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelayUs(WRITE_GAP);
}
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+ LED_A_ON();
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 in mode.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // reset tag - op code 00
+ T55xxWriteBit(0);
+ T55xxWriteBit(0);
+
+ // Turn field on to read the response
+ TurnReadLFOn(READ_GAP);
+
+ // Acquisition
+ doT55x7Acquisition(BigBuf_max_traceLen());
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
+}
+
// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
LED_A_ON();
bool PwdMode = arg & 0x1;
uint8_t Page = (arg & 0x2)>>1;
// turn field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- cmd_send(CMD_ACK,0,0,0,0,0);
LED_A_OFF();
}
-// Read one card block in page 0
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+ T55xxWriteBlockExt(Data, Block, Pwd, arg);
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Read one card block in page [page]
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
LED_A_ON();
bool PwdMode = arg0 & 0x1;
TurnReadLFOn(READ_GAP);
// Acquisition
- doT55x7Acquisition();
+ doT55x7Acquisition(12000);
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
// write last block first and config block last (if included)
- for (uint8_t i = numblocks; i > startblock; i--)
- T55xxWriteBlock(blockdata[i-1],i-1,0,0);
+ for (uint8_t i = numblocks+startblock; i > startblock; i--) {
+ T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
+ }
}
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
uint32_t data[] = {0,0,0,0,0,0,0};
- //int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
uint8_t last_block = 0;
if (longFMT) {
// Build the 6 data blocks for supplied 84bit ID
last_block = 6;
// load preamble (1D) & long format identifier (9E manchester encoded)
- data[1] = 0x1D96A900 | manchesterEncode2Bytes((hi2 >> 16) & 0xF);
+ data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
// load raw id from hi2, hi, lo to data blocks (manchester encoded)
data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
data[3] = manchesterEncode2Bytes(hi >> 16);
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
// load preamble
- data[1] = 0x1D000000 | manchesterEncode2Bytes(hi & 0xFFF);
+ data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
data[2] = manchesterEncode2Bytes(lo >> 16);
data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
}
// load chip config block
data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
DbpString("DONE!");
}
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
//Program the 2 data blocks for supplied 64bit UID
// and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
WriteT55xx(data, 0, 3);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
DbpString("DONE!");
}
// Clone Indala 224-bit tag by UID to T55x7
-void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7)
-{
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
//Program the 7 data blocks for supplied 224bit UID
uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
// and the block 0 for Indala224 format
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
WriteT55xx(data, 0, 8);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
DbpString("DONE!");
}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+ uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+ if (Q5) data[0] = ( ((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ // Program the data blocks for supplied ID and the block 0 config
+ WriteT55xx(data, 0, 3);
+ LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
int i, id_bit;
uint64_t id = EM410X_HEADER;
uint64_t rev_id = 0; // reversed ID
LED_D_ON();
// Write EM410x ID
- uint32_t data[] = {0, id>>32, id & 0xFFFF};
- if (card) {
- clock = (card & 0xFF00) >> 8;
- clock = (clock == 0) ? 64 : clock;
- Dbprintf("Clock rate: %d", clock);
- clock = GetT55xxClockBit(clock);
+ uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+ clock = (card & 0xFF00) >> 8;
+ clock = (clock == 0) ? 64 : clock;
+ Dbprintf("Clock rate: %d", clock);
+ if (card & 0xFF) { //t55x7
+ clock = GetT55xxClockBit(clock);
if (clock == 0) {
Dbprintf("Invalid clock rate: %d", clock);
return;
}
-
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
- } else {
- data[0] = (0x1F << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+ } else { //t5555 (Q5)
+ clock = (clock-2)>>1; //n = (RF-2)/2
+ data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
}
WriteT55xx(data, 0, 3);
#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
-
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t * forward_ptr; //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+
uint8_t Prepare_Cmd( uint8_t cmd ) {
- //--------------------------------------------------------------------
*forward_ptr++ = 0; //start bit
*forward_ptr++ = 0; //second pause for 4050 code
// prepares address bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
- //--------------------------------------------------------------------
register uint8_t line_parity;
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
- //--------------------------------------------------------------------
register uint8_t line_parity;
register uint8_t column_parity;
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
- LED_D_ON();
-
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
-
+
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
SpinDelayUs(16*8); //16 cycles on (8us each)
else {
//These timings work for 4469/4269/4305 (with the 55*8 above)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ SpinDelayUs(20*8); //16-4 cycles off (8us each) //23
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
+ SpinDelayUs(12*8); //16 cycles on (8us each) //9
}
}
}
//Wait for command to complete
SpinDelay(20);
-
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t fwd_bit_count;
- uint8_t *dest = BigBuf_get_addr();
- uint16_t bufferlength = BigBuf_max_traceLen();
- uint32_t i = 0;
// Clear destination buffer before sending the command
- memset(dest, 0x80, bufferlength);
+ BigBuf_Clear_ext(false);
+ LED_A_ON();
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
SendForward(fwd_bit_count);
// Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= bufferlength) break;
- }
- }
+ DoAcquisition_default(0,TRUE);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_A_OFF();
cmd_send(CMD_ACK,0,0,0,0,0);
- LED_D_OFF();
}
-void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-
+void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
+
+ bool PwdMode = (flag & 0xF);
+ uint8_t Address = (flag >> 8) & 0xFF;
uint8_t fwd_bit_count;
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ LED_A_ON();
//If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
+ if (PwdMode) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
SendForward(fwd_bit_count);
//Wait for write to complete
- SpinDelay(20);
+ SpinDelay(10);
+
+ //Capture response if one exists
+ DoAcquisition_default(20, TRUE);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ LED_A_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+/*
+Reading a COTAG.
+
+COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
+because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
+
+READER START SEQUENCE:
+burst 800 us, gap 2.2 msecs
+burst 3.6 msecs gap 2.2 msecs
+burst 800 us gap 2.2 msecs
+pulse 3.6 msecs
+
+This triggers a COTAG tag to response
+*/
+void Cotag(uint32_t arg0) {
+
+#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
+#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
+
+ uint8_t rawsignal = arg0 & 0xF;
+
+ LED_A_ON();
+
+ // Switching to LF image on FPGA. This might empty BigBuff
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ // Set up FPGA, 132kHz to power up the tag
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ // start clock - 1.5ticks is 1us
+ StartTicks();
+
+ //send COTAG start pulse
+ ON(740) OFF
+ ON(3330) OFF
+ ON(740) OFF
+ ON(1000)
+
+ switch(rawsignal) {
+ case 0: doCotagAcquisition(50000); break;
+ case 1: doCotagAcquisitionManchester(); break;
+ case 2: DoAcquisition_config(TRUE); break;
+ }
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}