+/*****************************************************************************
+ * WARNING
+ *
+ * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
+ *
+ * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
+ * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
+ * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
+ *
+ * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
+ *
+ *****************************************************************************
+ *
+ * This file is part of loclass. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, or, at your option, any later version.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with loclass. If not, see <http://www.gnu.org/licenses/>.
+ *
+ *
+ ****************************************************************************/
+
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
-#include <time.h>
+#include "util.h"
+#include "util_posix.h"
#include "cipherutils.h"
#include "cipher.h"
#include "ikeys.h"
#include "elite_crack.h"
#include "fileutils.h"
-#include "des.h"
+#include "mbedtls/des.h"
/**
* @brief Permutes a key from standard NIST format to Iclass specific format
- * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
+ * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
*
- * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below.
+ * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below.
*
- * 1 0 1 1 1 1 1 1 bf
- * 0 0 0 0 0 0 0 1 01
- * 0 0 1 0 1 1 0 1 2d
- * 0 0 1 0 1 0 1 0 2a
- * 1 1 1 1 1 0 0 1 f9
- * 0 1 0 0 0 1 0 0 44
- * 1 0 0 0 1 1 0 1 8d
- * 0 1 1 0 1 1 0 0 6c
+ * 1 0 1 1 1 1 1 1 bf
+ * 0 0 0 0 0 0 0 1 01
+ * 0 0 1 0 1 1 0 1 2d
+ * 0 0 1 0 1 0 1 0 2a
+ * 1 1 1 1 1 0 0 1 f9
+ * 0 1 0 0 0 1 0 0 44
+ * 1 0 0 0 1 1 0 1 8d
+ * 0 1 1 0 1 1 0 0 6c
*
- * 8 0 b 8 b a 9 e
- * a d 9 8 b 7 0 a
+ * 8 0 b 8 b a 9 e
+ * a d 9 8 b 7 0 a
*
* @param key
* @param dest
int i;
for(i = 0 ; i < 8 ; i++)
{
- dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) |
+ dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) |
(((key[6] & (0x80 >> i)) >> (7-i)) << 6) |
(((key[5] & (0x80 >> i)) >> (7-i)) << 5) |
(((key[4] & (0x80 >> i)) >> (7-i)) << 4) |
int i;
for(i = 0 ; i < 8 ; i++)
{
- dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) |
+ dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) |
(((key[1] & (0x80 >> i)) >> (7-i)) << 6) |
(((key[2] & (0x80 >> i)) >> (7-i)) << 5) |
(((key[3] & (0x80 >> i)) >> (7-i)) << 4) |
k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7];
k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7];
k[2] = rr(swap( csn[2]+k[1] ));
- k[3] = rr(swap( csn[3]+k[0] ));
- k[4] = ~rr(swap( csn[4]+k[2] ))+1;
- k[5] = ~rr(swap( csn[5]+k[3] ))+1;
+ k[3] = rl(swap( csn[3]+k[0] ));
+ k[4] = ~rr( csn[4]+k[2] )+1;
+ k[5] = ~rl( csn[5]+k[3] )+1;
k[6] = rr( csn[6]+(k[4]^0x3c) );
k[7] = rl( csn[7]+(k[5]^0xc3) );
int i;
for(i = 7; i >=0; i--)
k[i] = k[i] & 0x7F;
}
+/**
+Definition 14. Define the rotate key function rk : (F 82 ) 8 Ć N ā (F 82 ) 8 as
+rk(x [0] . . . x [7] , 0) = x [0] . . . x [7]
+rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n)
+**/
+void rk(uint8_t *key, uint8_t n, uint8_t *outp_key)
+{
+
+ memcpy(outp_key, key, 8);
+
+ uint8_t j;
+
+ while(n-- > 0)
+ for(j=0; j < 8 ; j++)
+ outp_key[j] = rl(outp_key[j]);
+
+ return;
+}
+
+static mbedtls_des_context ctx_enc = { {0} };
+static mbedtls_des_context ctx_dec = { {0} };
+
+void desdecrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output)
+{
+ uint8_t key_std_format[8] = {0};
+ permutekey_rev(iclass_key, key_std_format);
+ mbedtls_des_setkey_dec( &ctx_dec, key_std_format);
+ mbedtls_des_crypt_ecb(&ctx_dec,input,output);
+}
+void desencrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output)
+{
+ uint8_t key_std_format[8] = {0};
+ permutekey_rev(iclass_key, key_std_format);
+ mbedtls_des_setkey_enc( &ctx_enc, key_std_format);
+ mbedtls_des_crypt_ecb(&ctx_enc,input,output);
+}
+
+/**
+ * @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select.
+ * @param key unpermuted custom key
+ * @param hash1 hash1
+ * @param key_sel output key_sel=h[hash1[i]]
+ */
+void hash2(uint8_t *key64, uint8_t *outp_keytable)
+{
+ /**
+ *Expected:
+ * High Security Key Table
+
+00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
+10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
+20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
+30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
+40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
+50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
+60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
+70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
+
+**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/
+ uint8_t key64_negated[8] = {0};
+ uint8_t z[8][8]={{0},{0}};
+ uint8_t temp_output[8]={0};
+ //calculate complement of key
+ int i;
+ for(i=0;i<8;i++)
+ key64_negated[i]= ~key64[i];
+
+ // Once again, key is on iclass-format
+ desencrypt_iclass(key64, key64_negated, z[0]);
+
+ prnlog("\nHigh security custom key (Kcus):");
+ printvar("z0 ", z[0],8);
+
+ uint8_t y[8][8]={{0},{0}};
+ // y[0]=DES_dec(z[0],~key)
+ // Once again, key is on iclass-format
+ desdecrypt_iclass(z[0], key64_negated, y[0]);
+ printvar("y0 ", y[0],8);
+
+ for(i=1; i<8; i++)
+ {
+
+ // z [i] = DES dec (rk(K cus , i), z [iā1] )
+ rk(key64, i, temp_output);
+ //y [i] = DES enc (rk(K cus , i), y [iā1] )
+
+ desdecrypt_iclass(temp_output,z[i-1], z[i]);
+ desencrypt_iclass(temp_output,y[i-1], y[i]);
+
+ }
+ if(outp_keytable != NULL)
+ {
+ for(i = 0 ; i < 8 ; i++)
+ {
+ memcpy(outp_keytable+i*16,y[i],8);
+ memcpy(outp_keytable+8+i*16,z[i],8);
+ }
+ }else
+ {
+ printarr_human_readable("hash2", outp_keytable,128);
+ }
+}
/**
* @brief Reads data from the iclass-reader-attack dump file.
* @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows:
- * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
- * .. N times...
+ * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
+ * .. N times...
*
- * So the first attack, with 3 bytes to recover would be : ... 03000145
- * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
- * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
+ * So the first attack, with 3 bytes to recover would be : ... 03000145
+ * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
+ * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
*
* @param cc_nr an array to store cc_nr into (12 bytes)
* @param csn an arracy ot store CSN into (8 bytes)
* @param keytable where to write found values.
* @return
*/
-int bruteforceItem(dumpdata item, uint16_t keytable[])
-{
+int bruteforceItem(dumpdata item, uint16_t keytable[]) {
int errors = 0;
uint8_t key_sel_p[8] = { 0 };
uint8_t div_key[8] = {0};
uint8_t key_index[8] = {0};
hash1(item.csn, key_index);
+ printvar("CSN ", item.csn, 8);
+ printvar("HASH1", key_index, 8);
/*
* Determine which bytes to retrieve. A hash is typically
* Only the lower eight bits correspond to the (hopefully cracked) key-value.
**/
uint8_t bytes_to_recover[3] = {0};
- uint8_t numbytes_to_recover = 0 ;
- int i;
- for(i =0 ; i < 8 ; i++)
- {
- if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue;
- bytes_to_recover[numbytes_to_recover++] = key_index[i];
- keytable[key_index[i]] |= BEING_CRACKED;
+ uint8_t numbytes_to_recover = 0;
- if(numbytes_to_recover > 3)
- {
+ for (int i = 0; i < 8; i++) {
+ if (keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue;
+ if (numbytes_to_recover == 3) {
prnlog("The CSN requires > 3 byte bruteforce, not supported");
- printvar("CSN", item.csn,8);
- printvar("HASH1", key_index,8);
-
//Before we exit, reset the 'BEING_CRACKED' to zero
- keytable[bytes_to_recover[0]] &= ~BEING_CRACKED;
- keytable[bytes_to_recover[1]] &= ~BEING_CRACKED;
- keytable[bytes_to_recover[2]] &= ~BEING_CRACKED;
-
+ keytable[bytes_to_recover[0]] &= ~BEING_CRACKED;
+ keytable[bytes_to_recover[1]] &= ~BEING_CRACKED;
+ keytable[bytes_to_recover[2]] &= ~BEING_CRACKED;
return 1;
+ } else {
+ bytes_to_recover[numbytes_to_recover++] = key_index[i];
+ keytable[key_index[i]] |= BEING_CRACKED;
}
}
uint32_t endmask = 1 << 8*numbytes_to_recover;
- for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++)
+ for (int i = 0; i < numbytes_to_recover; i++) {
prnlog("Bruteforcing byte %d", bytes_to_recover[i]);
+ }
- while(!found && !(brute & endmask))
- {
+ while (!found && !(brute & endmask)) {
//Update the keytable with the brute-values
- for(i =0 ; i < numbytes_to_recover; i++)
- {
+ for(int i = 0 ; i < numbytes_to_recover; i++) {
keytable[bytes_to_recover[i]] &= 0xFF00;
- keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF);
+ keytable[bytes_to_recover[i]] |= ((brute >> (i*8)) & 0xFF);
}
// Piece together the key
- key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF;
- key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF;
- key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF;
- key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF;
+ key_sel[0] = keytable[key_index[0]] & 0xFF;
+ key_sel[1] = keytable[key_index[1]] & 0xFF;
+ key_sel[2] = keytable[key_index[2]] & 0xFF;
+ key_sel[3] = keytable[key_index[3]] & 0xFF;
+ key_sel[4] = keytable[key_index[4]] & 0xFF;
+ key_sel[5] = keytable[key_index[5]] & 0xFF;
+ key_sel[6] = keytable[key_index[6]] & 0xFF;
+ key_sel[7] = keytable[key_index[7]] & 0xFF;
//Permute from iclass format to standard format
permutekey_rev(key_sel,key_sel_p);
//Diversify
diversifyKey(item.csn, key_sel_p, div_key);
//Calc mac
- doMAC(item.cc_nr, div_key,calculated_MAC);
+ doMAC(item.cc_nr, div_key, calculated_MAC);
- if(memcmp(calculated_MAC, item.mac, 4) == 0)
- {
- for(i =0 ; i < numbytes_to_recover; i++)
- prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]);
+ if (memcmp(calculated_MAC, item.mac, 4) == 0) {
+ for (int i = 0; i < numbytes_to_recover; i++)
+ prnlog("=> %d: 0x%02x", bytes_to_recover[i], 0xFF & keytable[bytes_to_recover[i]]);
found = true;
break;
}
brute++;
- if((brute & 0xFFFF) == 0)
- {
+ if ((brute & 0xFFFF) == 0) {
printf("%d",(brute >> 16) & 0xFF);
fflush(stdout);
}
}
- if(! found)
- {
- prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover);
- printvar("CSN",item.csn,8);
+
+ if (!found) {
+ prnlog("\nFailed to recover %d bytes", numbytes_to_recover);
errors++;
//Before we exit, reset the 'BEING_CRACKED' to zero
- for(i =0 ; i < numbytes_to_recover; i++)
- {
- keytable[bytes_to_recover[i]] &= 0xFF;
- keytable[bytes_to_recover[i]] |= CRACK_FAILED;
+ for (int i = 0; i < numbytes_to_recover; i++) {
+ keytable[bytes_to_recover[i]] &= ~BEING_CRACKED;
}
-
- }else
- {
- for(i =0 ; i < numbytes_to_recover; i++)
- {
- keytable[bytes_to_recover[i]] &= 0xFF;
- keytable[bytes_to_recover[i]] |= CRACKED;
+ } else {
+ for (int i = 0; i < numbytes_to_recover; i++) {
+ keytable[bytes_to_recover[i]] &= ~BEING_CRACKED;
+ keytable[bytes_to_recover[i]] |= CRACKED;
}
-
}
+
return errors;
}
/**
* From dismantling iclass-paper:
- * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
- * Then he can simply recover the master custom key K_cus by computing
- * K_cus = ~DES(z[0] , y[0] ) .
+ * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
+ * Then he can simply recover the master custom key K_cus by computing
+ * K_cus = ~DES(z[0] , y[0] ) .
*
- * Furthermore, the adversary is able to verify that he has the correct K cus by
- * checking whether z [0] = DES enc (K_cus , ~K_cus ).
+ * Furthermore, the adversary is able to verify that he has the correct K cus by
+ * checking whether z [0] = DES enc (K_cus , ~K_cus ).
* @param keytable an array (128 bytes) of hash2(kcus)
* @param master_key where to put the master key
* @return 0 for ok, 1 for failz
*/
int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] )
{
- des_context ctx_e = {DES_ENCRYPT,{0}};
+ mbedtls_des_context ctx_e = { {0} };
uint8_t z_0[8] = {0};
uint8_t y_0[8] = {0};
permutekey_rev(z_0, z_0_rev);
// ~K_cus = DESenc(z[0], y[0])
- des_setkey_enc( &ctx_e, z_0_rev );
- des_crypt_ecb(&ctx_e, y_0, key64_negated);
+ mbedtls_des_setkey_enc( &ctx_e, z_0_rev );
+ mbedtls_des_crypt_ecb(&ctx_e, y_0, key64_negated);
int i;
for(i = 0; i < 8 ; i++)
uint8_t key64_stdformat[8] = {0};
permutekey_rev(key64, key64_stdformat);
- des_setkey_enc( &ctx_e, key64_stdformat );
- des_crypt_ecb(&ctx_e, key64_negated, result);
+ mbedtls_des_setkey_enc( &ctx_e, key64_stdformat );
+ mbedtls_des_crypt_ecb(&ctx_e, key64_negated, result);
prnlog("\nHigh security custom key (Kcus):");
printvar("Std format ", key64_stdformat,8);
printvar("Iclass format", key64,8);
uint8_t i;
int errors = 0;
size_t itemsize = sizeof(dumpdata);
- clock_t t1 = clock();
+ uint64_t t1 = msclock();
dumpdata* attack = (dumpdata* ) malloc(itemsize);
- for(i = 0 ; i * itemsize < dumpsize ; i++ )
+ for (i = 0 ; i * itemsize < dumpsize ; i++ )
{
memcpy(attack,dump+i*itemsize, itemsize);
errors += bruteforceItem(*attack, keytable);
}
free(attack);
- clock_t t2 = clock();
- float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC );
- prnlog("\nPerformed full crack in %f seconds",diff);
+ t1 = msclock() - t1;
+ float diff = (float)t1 / 1000.0;
+ prnlog("\nPerformed full crack in %f seconds", diff);
// Pick out the first 16 bytes of the keytable.
// The keytable is now in 16-bit ints, where the upper 8 bits
// master key calculation
uint8_t first16bytes[16] = {0};
- for(i = 0 ; i < 16 ; i++)
- {
+ for (int i = 0; i < 16; i++) {
first16bytes[i] = keytable[i] & 0xFF;
- if(!(keytable[i] & CRACKED))
- {
- prnlog("Error, we are missing byte %d, custom key calculation will fail...", i);
+ if (!(keytable[i] & CRACKED)) {
+ prnlog("Error, we are missing byte %d, cannot calculate custom key.", i);
+ return 1;
}
}
errors += calculateMasterKey(first16bytes, NULL);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
+ if (fsize < 0) {
+ prnlog("Error, when getting fsize");
+ fclose(f);
+ return 1;
+ }
+
uint8_t *dump = malloc(fsize);
- size_t bytes_read = fread(dump, fsize, 1, f);
+ size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
- if (bytes_read < fsize)
- {
- prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
- }
- return bruteforceDump(dump,fsize,keytable);
+ if (bytes_read < fsize) {
+ prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
+ }
+
+ uint8_t res = bruteforceDump(dump,fsize,keytable);
+ free(dump);
+ return res;
}
/**
*
**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
**/
uint16_t keytable[128] = {0};
- //save some time...
- startvalue = 0x7B0000;
- errors |= bruteforceFile("iclass_dump.bin",keytable);
+
+ //Test a few variants
+ if(fileExists("iclass_dump.bin"))
+ {
+ errors |= bruteforceFile("iclass_dump.bin",keytable);
+ }else if(fileExists("loclass/iclass_dump.bin")){
+ errors |= bruteforceFile("loclass/iclass_dump.bin",keytable);
+ }else if(fileExists("client/loclass/iclass_dump.bin")){
+ errors |= bruteforceFile("client/loclass/iclass_dump.bin",keytable);
+ }else{
+ prnlog("Error: The file iclass_dump.bin was not found!");
+ }
}
return errors;
}
prnlog("[+] Iclass key permutation OK!");
return 0;
}
+int _testHash1()
+{
+ uint8_t csn[8]= {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0};
+ uint8_t k[8] = {0};
+ hash1(csn, k);
+ uint8_t expected[8] = {0x7E,0x72,0x2F,0x40,0x2D,0x02,0x51,0x42};
+ if(memcmp(k,expected,8) != 0)
+ {
+ prnlog("Error with hash1!");
+ printarr("calculated", k, 8);
+ printarr("expected", expected, 8);
+ return 1;
+ }
+ return 0;
+}
int testElite()
{
prnlog("[+] Testing iClass Elite functinality...");
- prnlog("[+] Testing key diversification ...");
+ prnlog("[+] Testing hash2");
+ uint8_t k_cus[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39};
+
+ /**
+ *Expected:
+ * High Security Key Table
+
+00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
+10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
+20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
+30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
+40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
+50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
+60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
+70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
+
+
+
+**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
+ */
+ uint8_t keytable[128] = {0};
+ hash2(k_cus, keytable);
+ printarr_human_readable("Hash2", keytable, 128);
+ if(keytable[3] == 0xA1 && keytable[0x30] == 0xA3 && keytable[0x6F] == 0x95)
+ {
+ prnlog("[+] Hash2 looks fine...");
+ }
int errors = 0 ;
+ prnlog("[+] Testing hash1...");
+ errors += _testHash1();
+ prnlog("[+] Testing key diversification ...");
errors +=_test_iclass_key_permutation();
errors += _testBruteforce();
+
return errors;
}