- pskCleanWave(dest,*bitLen);
- int clk2 = DetectpskNRZClock(dest, *bitLen, *clk);
- *clk=clk2;
- uint32_t i;
- uint8_t high=0, low=128;
- uint32_t gLen = *bitLen;
- if (gLen > 1280) gLen=1280;
- // get high
- for (i=0; i<gLen; ++i){
- if (dest[i]>high) high = dest[i];
- if (dest[i]<low) low=dest[i];
- }
- //fudge high/low bars by 25%
- high = (uint8_t)((((int)(high)-128)*.75)+128);
- low = (uint8_t)((((int)(low)-128)*.80)+128);
-
- //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
- int lastBit = 0; //set first clock check
- uint32_t bitnum = 0; //output counter
- uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- if (*clk==32)tol=2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- uint32_t iii = 0;
- uint8_t errCnt =0;
- uint32_t bestStart = *bitLen;
- uint32_t maxErr = (*bitLen/1000);
- uint32_t bestErrCnt = maxErr;
- //uint8_t midBit=0;
- uint8_t curBit=0;
- uint8_t bitHigh=0;
- uint8_t ignorewin=*clk/8;
- //PrintAndLog("DEBUG - lastbit - %d",lastBit);
- //loop to find first wave that works - align to clock
- for (iii=0; iii < gLen; ++iii){
- if ((dest[iii]>=high)||(dest[iii]<=low)){
- lastBit=iii-*clk;
- //loop through to see if this start location works
- for (i = iii; i < *bitLen; ++i) {
- //if we found a high bar and we are at a clock bit
- if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- //curBit=1-*invert;
- //dest[bitnum]=curBit;
- ignorewin=*clk/8;
- bitnum++;
- //else if low bar found and we are at a clock point
- }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- ignorewin=*clk/8;
- //curBit=*invert;
- //dest[bitnum]=curBit;
- bitnum++;
- //else if no bars found
- }else if(dest[i]<high && dest[i]>low) {
- if (ignorewin==0){
- bitHigh=0;
- }else ignorewin--;
- //if we are past a clock point
- if (i>=lastBit+*clk+tol){ //clock val
- //dest[bitnum]=curBit;
- lastBit+=*clk;
- bitnum++;
- }
- //else if bar found but we are not at a clock bit and we did not just have a clock bit
- }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
- //error bar found no clock...
- errCnt++;
- }
- if (bitnum>=1000) break;
- }
- //we got more than 64 good bits and not all errors
- if ((bitnum > (64+errCnt)) && (errCnt<(maxErr))) {
- //possible good read
- if (errCnt==0){
- bestStart = iii;
- bestErrCnt=errCnt;
- break; //great read - finish
- }
- if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
- if (errCnt<bestErrCnt){ //set this as new best run
- bestErrCnt=errCnt;
- bestStart = iii;
- }
- }
- }
- }
- if (bestErrCnt<maxErr){
- //best run is good enough set to best run and set overwrite BinStream
- iii=bestStart;
- lastBit=bestStart-*clk;
- bitnum=0;
- for (i = iii; i < *bitLen; ++i) {
- //if we found a high bar and we are at a clock bit
- if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- curBit=1-*invert;
- dest[bitnum]=curBit;
- ignorewin=*clk/8;
- bitnum++;
- //else if low bar found and we are at a clock point
- }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- curBit=*invert;
- dest[bitnum]=curBit;
- ignorewin=*clk/8;
- bitnum++;
- //else if no bars found
- }else if(dest[i]<high && dest[i]>low) {
- if (ignorewin==0){
- bitHigh=0;
- }else ignorewin--;
- //if we are past a clock point
- if (i>=lastBit+*clk+tol){ //clock val
- lastBit+=*clk;
- dest[bitnum]=curBit;
- bitnum++;
- }
- //else if bar found but we are not at a clock bit and we did not just have a clock bit
- }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
- //error bar found no clock...
- bitHigh=1;
- dest[bitnum]=77;
- bitnum++;
- errCnt++;
- }
- if (bitnum >=1000) break;
- }
- *bitLen=bitnum;
+ //26 bit 40134 format (don't know other formats)
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+ uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
+ size_t startidx = 0;
+ if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
+ // if didn't find preamble try again inverting
+ if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
+ *invert ^= 1;
+ }
+ if (*size != 64 && *size != 224) return -2;
+ if (*invert==1)
+ for (size_t i = startidx; i < *size; i++)
+ bitStream[i] ^= 1;
+
+ return (int) startidx;
+}
+
+// by marshmellow - demodulate NRZ wave - requires a read with strong signal
+// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
+ if (justNoise(dest, *size)) return -1;
+ *clk = DetectNRZClock(dest, *size, *clk);
+ if (*clk==0) return -2;
+ size_t i, gLen = 4096;
+ if (gLen>*size) gLen = *size-20;
+ int high, low;
+ if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
+
+ uint8_t bit=0;
+ //convert wave samples to 1's and 0's
+ for(i=20; i < *size-20; i++){
+ if (dest[i] >= high) bit = 1;
+ if (dest[i] <= low) bit = 0;
+ dest[i] = bit;
+ }
+ //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
+ size_t lastBit = 0;
+ size_t numBits = 0;
+ for(i=21; i < *size-20; i++) {
+ //if transition detected or large number of same bits - store the passed bits
+ if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
+ memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
+ numBits += (i - lastBit + (*clk/4)) / *clk;
+ lastBit = i-1;
+ }
+ }
+ *size = numBits;
+ return 0;
+}
+
+//by marshmellow
+//detects the bit clock for FSK given the high and low Field Clocks
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
+{
+ uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
+ uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t rfLensFnd = 0;
+ uint8_t lastFCcnt = 0;
+ uint16_t fcCounter = 0;
+ uint16_t rfCounter = 0;
+ uint8_t firstBitFnd = 0;
+ size_t i;
+ if (size == 0) return 0;
+
+ uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+ rfLensFnd=0;
+ fcCounter=0;
+ rfCounter=0;
+ firstBitFnd=0;
+ //PrintAndLog("DEBUG: fcTol: %d",fcTol);
+ // prime i to first peak / up transition
+ for (i = 160; i < size-20; i++)
+ if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
+ break;
+
+ for (; i < size-20; i++){
+ fcCounter++;
+ rfCounter++;
+
+ if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
+ continue;
+ // else new peak
+ // if we got less than the small fc + tolerance then set it to the small fc
+ // if it is inbetween set it to the last counter
+ if (fcCounter < fcHigh && fcCounter > fcLow)
+ fcCounter = lastFCcnt;
+ else if (fcCounter < fcLow+fcTol)
+ fcCounter = fcLow;
+ else //set it to the large fc
+ fcCounter = fcHigh;
+
+ //look for bit clock (rf/xx)
+ if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
+ //not the same size as the last wave - start of new bit sequence
+ if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
+ for (int ii=0; ii<15; ii++){
+ if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
+ rfCnts[ii]++;
+ rfCounter = 0;
+ break;
+ }
+ }
+ if (rfCounter > 0 && rfLensFnd < 15){
+ //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+ rfCnts[rfLensFnd]++;
+ rfLens[rfLensFnd++] = rfCounter;
+ }
+ } else {
+ firstBitFnd++;
+ }
+ rfCounter=0;
+ lastFCcnt=fcCounter;
+ }
+ fcCounter=0;
+ }
+ uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+
+ for (i=0; i<15; i++){
+ //get highest 2 RF values (might need to get more values to compare or compare all?)
+ if (rfCnts[i]>rfCnts[rfHighest]){
+ rfHighest3=rfHighest2;
+ rfHighest2=rfHighest;
+ rfHighest=i;
+ } else if(rfCnts[i]>rfCnts[rfHighest2]){
+ rfHighest3=rfHighest2;
+ rfHighest2=i;
+ } else if(rfCnts[i]>rfCnts[rfHighest3]){
+ rfHighest3=i;
+ }
+ if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+ }
+ // set allowed clock remainder tolerance to be 1 large field clock length+1
+ // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
+ uint8_t tol1 = fcHigh+1;
+
+ if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+
+ // loop to find the highest clock that has a remainder less than the tolerance
+ // compare samples counted divided by
+ // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
+ int ii=7;
+ for (; ii>=2; ii--){
+ if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+ if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+ if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+ if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
+ break;
+ }
+ }
+ }
+ }
+
+ if (ii<2) return 0; // oops we went too far
+
+ return clk[ii];
+}
+
+//by marshmellow
+//countFC is to detect the field clock lengths.
+//counts and returns the 2 most common wave lengths
+//mainly used for FSK field clock detection
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
+{
+ uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t fcLensFnd = 0;
+ uint8_t lastFCcnt = 0;
+ uint8_t fcCounter = 0;
+ size_t i;
+ if (size < 180) return 0;
+
+ // prime i to first up transition
+ for (i = 160; i < size-20; i++)
+ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+ break;
+
+ for (; i < size-20; i++){
+ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+ // new up transition
+ fcCounter++;
+ if (fskAdj){
+ //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+ if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+ //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
+ if ((fcCounter==9) || fcCounter==4) fcCounter++;
+ // save last field clock count (fc/xx)
+ lastFCcnt = fcCounter;
+ }
+ // find which fcLens to save it to:
+ for (int ii=0; ii<15; ii++){
+ if (fcLens[ii]==fcCounter){
+ fcCnts[ii]++;
+ fcCounter=0;
+ break;
+ }
+ }
+ if (fcCounter>0 && fcLensFnd<15){
+ //add new fc length
+ fcCnts[fcLensFnd]++;
+ fcLens[fcLensFnd++]=fcCounter;
+ }
+ fcCounter=0;
+ } else {
+ // count sample
+ fcCounter++;
+ }
+ }
+
+ uint8_t best1=14, best2=14, best3=14;
+ uint16_t maxCnt1=0;
+ // go through fclens and find which ones are bigest 2
+ for (i=0; i<15; i++){
+ // get the 3 best FC values
+ if (fcCnts[i]>maxCnt1) {
+ best3=best2;
+ best2=best1;
+ maxCnt1=fcCnts[i];
+ best1=i;
+ } else if(fcCnts[i]>fcCnts[best2]){
+ best3=best2;
+ best2=i;
+ } else if(fcCnts[i]>fcCnts[best3]){
+ best3=i;
+ }
+ if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
+ }
+ if (fcLens[best1]==0) return 0;
+ uint8_t fcH=0, fcL=0;
+ if (fcLens[best1]>fcLens[best2]){
+ fcH=fcLens[best1];
+ fcL=fcLens[best2];