static uint32_t LastTimeProxToAirStart;
static uint32_t LastProxToAirDuration;
-
-
// CARD TO READER - manchester
// Sequence D: 11110000 modulation with subcarrier during first half
// Sequence E: 00001111 modulation with subcarrier during second half
trigger = enable;
}
-
void iso14a_set_timeout(uint32_t timeout) {
iso14a_timeout = timeout;
if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
}
-
void iso14a_set_ATS_timeout(uint8_t *ats) {
uint8_t tb1;
if (ats[0] > 1) { // there is a format byte T0
if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
- if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
+
+ if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
tb1 = ats[3];
- } else {
+ else
tb1 = ats[2];
- }
+
fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
- fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ fwt = 4096 * (1 << fwi);
- iso14a_set_timeout(fwt/(8*16));
+ //iso14a_set_timeout(fwt/(8*16));
+ iso14a_set_timeout(fwt/128);
}
}
}
-
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
- BigBuf_free();
+ BigBuf_free(); BigBuf_Clear_ext(false);
// init trace buffer
clear_trace();
static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
{
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0};
GetParity(cmd, len, par);
CodeIso14443aAsTagPar(cmd, len, par);
{ .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
{ .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
{ .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
- //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+
{ .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
+ };
+ //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
//{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
- };
+
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
// Such a response is less time critical, so we can prepare them on the fly
LED_A_ON();
for(;;) {
+
+ WDT_HIT();
+
// Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
p_response = NULL;
} else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
- // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
uint16_t start = 4 * 4;
uint8_t emdata[34];
emlGetMemBt( emdata, start, 32);
AppendCrc14443a(emdata, 32);
EmSendCmdEx(emdata, sizeof(emdata), false);
- //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
- // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
- // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
- // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
- // 0x00,0x00};
- //AppendCrc14443a(data, sizeof(data)-2);
- //EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
} else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
uint8_t index = receivedCmd[1];
emlGetMemBt( emdata, 10+counter, 1);
AppendCrc14443a(emdata, sizeof(emdata)-2);
EmSendCmdEx(emdata, sizeof(emdata), false);
- p_response = NULL;
- //p_response = &responses[9];
-
+ p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
-
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
AppendCrc14443a(emdata, sizeof(emdata)-2);
EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
- //p_response = &responses[7];
} else {
p_response = &responses[5]; order = 7;
}
p_response = &responses[6]; order = 70;
}
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
AppendCrc14443a(emdata, 2);
EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
- //p_response = &responses[8]; // PACK response
uint32_t pwd = bytes_to_num(receivedCmd+1,4);
if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
default: {
// Never seen this command before
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
p_response = &dynamic_response_info;
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(p_response->response, p_response->response_n, par);
EmLogTrace(Uart.output,
// of bits specified in the delay parameter.
void PrepareDelayedTransfer(uint16_t delay)
{
+ delay &= 0x07;
+ if (!delay) return;
+
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
+ uint16_t i = 0;
- delay &= 0x07;
- if (delay) {
- for (uint16_t i = 0; i < delay; i++) {
- bitmask |= (0x01 << i);
- }
- ToSend[ToSendMax++] = 0x00;
- for (uint16_t i = 0; i < ToSendMax; i++) {
+ for (i = 0; i < delay; ++i)
+ bitmask |= (0x01 << i);
+
+ ToSend[++ToSendMax] = 0x00;
+
+ for (i = 0; i < ToSendMax; ++i) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
bits_shifted = bits_to_shift;
}
}
-}
//-------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
uint32_t ThisTransferTime = 0;
if (timing) {
- if(*timing == 0) { // Measure time
+
+ if (*timing != 0)
+ // Delay transfer (fine tuning - up to 7 MF clock ticks)
+ PrepareDelayedTransfer(*timing & 0x00000007);
+ else
+ // Measure time
*timing = (GetCountSspClk() + 8) & 0xfffffff8;
- } else {
- PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
- }
- if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
- while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
+
+
+ if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8))
+ Dbprintf("TransmitFor14443a: Missed timing");
+
+ // Delay transfer (multiple of 8 MF clock ticks)
+ while (GetCountSspClk() < (*timing & 0xfffffff8));
+
LastTimeProxToAirStart = *timing;
} else {
ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
+
while(GetCountSspClk() < ThisTransferTime);
+
LastTimeProxToAirStart = ThisTransferTime;
}
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
- c++;
- if(c >= len) {
+ ++c;
+ if(c >= len)
break;
- }
}
}
void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
- int last;
+ int last = 0;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
- last = 0;
size_t bytecount = nbytes(bits);
// Generate send structure for the data bits
ToSend[++ToSendMax] = SEC_Y;
// Convert to length of command:
- ToSendMax++;
+ ++ToSendMax;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
{
- CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+ //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+ CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity);
}
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
- uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+ uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3,
for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[1];
+ uint8_t par[1] = {0x00};
GetParity(&resp, 1, par);
EmLogTrace(Uart.output,
Uart.len,
}
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
}
int EmSendCmd(uint8_t *resp, uint16_t respLen){
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, false, par);
}
bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
{
- if (tracing) {
- // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
- // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
- // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
- uint16_t reader_modlen = reader_EndTime - reader_StartTime;
- uint16_t approx_fdt = tag_StartTime - reader_EndTime;
- uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
- reader_EndTime = tag_StartTime - exact_fdt;
- reader_StartTime = reader_EndTime - reader_modlen;
- if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
- return FALSE;
- } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
- } else {
- return TRUE;
- }
+ // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+ // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+ // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_EndTime = tag_StartTime - exact_fdt;
+ reader_StartTime = reader_EndTime - reader_modlen;
+
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
+ return FALSE;
+ else
+ return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
+
}
//-----------------------------------------------------------------------------
LED_A_ON();
// Log reader command in trace buffer
- if (tracing) {
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
- }
+ //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+ LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
- ReaderTransmitBitsPar(frame, len*8, par, timing);
+ //ReaderTransmitBitsPar(frame, len*8, par, timing);
+ ReaderTransmitBitsPar(frame, len<<3, par, timing);
}
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(frame, len/8, par);
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ //GetParity(frame, len/8, par);
+ GetParity(frame, len >> 3, par);
ReaderTransmitBitsPar(frame, len, par, timing);
}
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len, par);
- ReaderTransmitBitsPar(frame, len*8, par, timing);
+ //ReaderTransmitBitsPar(frame, len*8, par, timing);
+ ReaderTransmitBitsPar(frame, len<<3, par, timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
- if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- }
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
+ return FALSE;
+
+ //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
- if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- }
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
+ return FALSE;
+
+ //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
- uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
- uint8_t resp_par[MAX_PARITY_SIZE];
- byte_t uid_resp[4];
- size_t uid_resp_len;
+ uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
+ uint8_t resp_par[MAX_PARITY_SIZE] = {0};
+ byte_t uid_resp[4] = {0};
+ size_t uid_resp_len = 0;
uint8_t sak = 0x04; // cascade uid
int cascade_level = 0;
}
if (anticollision) {
- // clear uid
- if (uid_ptr) {
- memset(uid_ptr,0,10);
- }
+ // clear uid
+ if (uid_ptr)
+ memset(uid_ptr,0,10);
}
// check for proprietary anticollision:
- if ((resp[0] & 0x1F) == 0) {
- return 3;
- }
+ if ((resp[0] & 0x1F) == 0) return 3;
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
if (anticollision) {
// SELECT_ALL
- ReaderTransmit(sel_all, sizeof(sel_all), NULL);
- if (!ReaderReceive(resp, resp_par)) return 0;
-
- if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
- memset(uid_resp, 0, 4);
- uint16_t uid_resp_bits = 0;
- uint16_t collision_answer_offset = 0;
- // anti-collision-loop:
- while (Demod.collisionPos) {
- Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
- for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
- uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
- uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ memset(uid_resp, 0, 4);
+ uint16_t uid_resp_bits = 0;
+ uint16_t collision_answer_offset = 0;
+ // anti-collision-loop:
+ while (Demod.collisionPos) {
+ Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ }
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp_bits++;
+ // construct anticollosion command:
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+ sel_uid[2+i] = uid_resp[i];
+ }
+ collision_answer_offset = uid_resp_bits%8;
+ ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+ if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
}
- uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
- uid_resp_bits++;
- // construct anticollosion command:
- sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
- for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
- sel_uid[2+i] = uid_resp[i];
+ // finally, add the last bits and BCC of the UID
+ for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+ uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+ uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
- collision_answer_offset = uid_resp_bits%8;
- ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
- if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
- }
- // finally, add the last bits and BCC of the UID
- for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
- uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
- uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
- }
- } else { // no collision, use the response to SELECT_ALL as current uid
- memcpy(uid_resp, resp, 4);
- }
+ } else { // no collision, use the response to SELECT_ALL as current uid
+ memcpy(uid_resp, resp, 4);
+ }
+
} else {
if (cascade_level < num_cascades - 1) {
uid_resp[0] = 0x88;
uid_resp_len = 4;
// calculate crypto UID. Always use last 4 Bytes.
- if(cuid_ptr) {
+ if(cuid_ptr)
*cuid_ptr = bytes_to_num(uid_resp, 4);
- }
// Construct SELECT UID command
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
// Receive the SAK
if (!ReaderReceive(resp, resp_par)) return 0;
+
sak = resp[0];
- // Test if more parts of the uid are coming
+ // Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uid_resp_len = 3;
}
- if(uid_ptr && anticollision) {
+ if(uid_ptr && anticollision)
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
- }
if(p_hi14a_card) {
memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
ReaderTransmit(rats, sizeof(rats), NULL);
if (!(len = ReaderReceive(resp, resp_par))) return 0;
-
if(p_hi14a_card) {
memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
- uint8_t parity[MAX_PARITY_SIZE];
+ uint8_t parity[MAX_PARITY_SIZE] = {0x00};
uint8_t real_cmd[cmd_len+4];
real_cmd[0] = 0x0a; //I-Block
// put block number into the PCB
size_t lenbits = c->arg[1] >> 16;
uint32_t timeout = c->arg[2];
uint32_t arg0 = 0;
- byte_t buf[USB_CMD_DATA_SIZE];
- uint8_t par[MAX_PARITY_SIZE];
+ byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
- if(param & ISO14A_CONNECT) {
+ if (param & ISO14A_CONNECT)
clear_trace();
- }
set_tracing(TRUE);
- if(param & ISO14A_REQUEST_TRIGGER) {
+ if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(TRUE);
- }
- if(param & ISO14A_CONNECT) {
+
+ if (param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
}
}
- if(param & ISO14A_SET_TIMEOUT) {
+ if (param & ISO14A_SET_TIMEOUT)
iso14a_set_timeout(timeout);
- }
- if(param & ISO14A_APDU) {
+ if (param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
- if(param & ISO14A_RAW) {
+ if (param & ISO14A_RAW) {
if(param & ISO14A_APPEND_CRC) {
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
- if(param & ISO14A_REQUEST_TRIGGER) {
+ if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(FALSE);
- }
- if(param & ISO14A_NO_DISCONNECT) {
+
+ if (param & ISO14A_NO_DISCONNECT)
return;
- }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(FALSE);
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
- uint16_t i;
- uint32_t nttmp1, nttmp2;
-
if (nt1 == nt2) return 0;
- nttmp1 = nt1;
- nttmp2 = nt2;
+ uint16_t i;
+ uint32_t nttmp1 = nt1;
+ uint32_t nttmp2 = nt2;
- for (i = 1; i < 0xFFFF; i++) {
- nttmp1 = prng_successor(nttmp1, 1);
- if (nttmp1 == nt2) return i;
- nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
- }
+ for (i = 1; i < 0xFFFF; i += 8) {
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+1;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-1;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+2;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-2;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+3;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-3;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+4;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-4;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+5;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-5;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+6;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-6;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+7;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-7;
+/*
+ if ( prng_successor(nttmp1, i) == nt2) return i;
+ if ( prng_successor(nttmp2, i) == nt1) return -i;
+
+ if ( prng_successor(nttmp1, i+2) == nt2) return i+2;
+ if ( prng_successor(nttmp2, i+2) == nt1) return -(i+2);
+
+ if ( prng_successor(nttmp1, i+3) == nt2) return i+3;
+ if ( prng_successor(nttmp2, i+3) == nt1) return -(i+3);
+
+ if ( prng_successor(nttmp1, i+4) == nt2) return i+4;
+ if ( prng_successor(nttmp2, i+4) == nt1) return -(i+4);
+
+ if ( prng_successor(nttmp1, i+5) == nt2) return i+5;
+ if ( prng_successor(nttmp2, i+5) == nt1) return -(i+5);
+
+ if ( prng_successor(nttmp1, i+6) == nt2) return i+6;
+ if ( prng_successor(nttmp2, i+6) == nt1) return -(i+6);
+
+ if ( prng_successor(nttmp1, i+7) == nt2) return i+7;
+ if ( prng_successor(nttmp2, i+7) == nt1) return -(i+7);
+*/
+ }
return(-99999); // either nt1 or nt2 are invalid nonces
}
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
+void ReaderMifare(bool first_try, uint8_t block )
{
// Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- static uint8_t mf_nr_ar3;
-
+ //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c };
+ uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
+ uint8_t ks_list[8] = {0,0,0,0,0,0,0,0};
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
-
- if (first_try)
- iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
- // free eventually allocated BigBuf memory. We want all for tracing.
- BigBuf_free();
- clear_trace();
- set_tracing(TRUE);
+ mf_auth[1] = block;
+ AppendCrc14443a(mf_auth, 2);
byte_t nt_diff = 0;
- uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
- static byte_t par_low = 0;
- bool led_on = TRUE;
- uint8_t uid[10] = {0};
- uint32_t cuid;
uint32_t nt = 0;
- uint32_t previous_nt = 0;
- static uint32_t nt_attacked = 0;
- byte_t par_list[8] = {0x00};
- byte_t ks_list[8] = {0x00};
-
- #define PRNG_SEQUENCE_LENGTH (1 << 16);
- static uint32_t sync_time = 0;
- static int32_t sync_cycles = 0;
+ uint32_t previous_nt = 0;
+ uint32_t halt_time = 0;
+ uint32_t cuid = 0;
+
int catch_up_cycles = 0;
int last_catch_up = 0;
- uint16_t elapsed_prng_sequences;
- uint16_t consecutive_resyncs = 0;
int isOK = 0;
+
+ uint16_t elapsed_prng_sequences = 1;
+ uint16_t consecutive_resyncs = 0;
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+ uint16_t strategy = 0;
+
+ static uint32_t nt_attacked = 0;
+ static uint32_t sync_time = 0;
+ static int32_t sync_cycles = 0;
+ static uint8_t par_low = 0;
+ static uint8_t mf_nr_ar3 = 0;
+
+ #define PRNG_SEQUENCE_LENGTH (1 << 16)
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define MAX_STRATEGY 3
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+
+ clear_trace();
+ set_tracing(TRUE);
+
+ LED_A_ON();
+
+ if (first_try)
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
if (first_try) {
- mf_nr_ar3 = 0;
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH + 1100; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ mf_nr_ar3 = 0;
nt_attacked = 0;
- par[0] = 0;
- }
- else {
- // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
- mf_nr_ar3++;
+
+ } else {
+ // we were unsuccessful on a previous call.
+ // Try another READER nonce (first 3 parity bits remain the same)
+ ++mf_nr_ar3;
mf_nr_ar[3] = mf_nr_ar3;
par[0] = par_low;
}
-
- LED_A_ON();
- LED_B_OFF();
- LED_C_OFF();
-
-
- #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
- #define MAX_SYNC_TRIES 32
- #define NUM_DEBUG_INFOS 8 // per strategy
- #define MAX_STRATEGY 3
- uint16_t unexpected_random = 0;
- uint16_t sync_tries = 0;
- int16_t debug_info_nr = -1;
- uint16_t strategy = 0;
- int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
- uint32_t select_time;
- uint32_t halt_time;
-
- for(uint16_t i = 0; TRUE; ++i) {
- LED_C_ON();
+ LED_A_ON();
+ LED_C_ON();
+ for(uint16_t i = 0; TRUE; ++i) {
+
WDT_HIT();
// Test if the action was cancelled
}
if (strategy == 2) {
- // test with additional hlt command
+ // test with additional halt command
halt_time = 0;
int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
- if (len && MF_DBGLEVEL >= 3) {
- Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
- }
+
+ if (len && MF_DBGLEVEL >= 3)
+ Dbprintf("Unexpected response of %d bytes to halt command.", len);
}
if (strategy == 3) {
SpinDelay(200);
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(100);
+ sync_time = GetCountSspClk() & 0xfffffff8;
+ WDT_HIT();
}
- if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
+ if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
+ if (MF_DBGLEVEL >= 2) Dbprintf("Mifare: Can't select card\n");
continue;
}
- select_time = GetCountSspClk();
-
- elapsed_prng_sequences = 1;
- if (debug_info_nr == -1) {
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
- catch_up_cycles = 0;
- // if we missed the sync time already, advance to the next nonce repeat
- while(GetCountSspClk() > sync_time) {
- elapsed_prng_sequences++;
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
- }
-
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- } else {
- // collect some information on tag nonces for debugging:
- #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
- if (strategy == 0) {
- // nonce distances at fixed time after card select:
- sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
- } else if (strategy == 1) {
- // nonce distances at fixed time between authentications:
- sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
- } else if (strategy == 2) {
- // nonce distances at fixed time after halt:
- sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
- } else {
- // nonce_distances at fixed time after power on
- sync_time = DEBUG_FIXED_SYNC_CYCLES;
- }
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- }
+ // Sending timeslot of ISO14443a frame
+
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
+
+ //catch_up_cycles = 0;
+
+ // if we missed the sync time already, advance to the next nonce repeat
+ while(GetCountSspClk() > sync_time) {
+ ++elapsed_prng_sequences;
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ }
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
// Receive the (4 Byte) "random" nonce
- if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
+ if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
continue;
- }
-
- previous_nt = nt;
- nt = bytes_to_num(receivedAnswer, 4);
// Transmit reader nonce with fake par
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+ previous_nt = nt;
+ nt = bytes_to_num(receivedAnswer, 4);
+
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
continue; // continue trying...
}
}
+
if (++sync_tries > MAX_SYNC_TRIES) {
if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
break;
- } else { // continue for a while, just to collect some debug info
- debug_info[strategy][debug_info_nr] = nt_distance;
- debug_info_nr++;
- if (debug_info_nr == NUM_DEBUG_INFOS) {
- strategy++;
- debug_info_nr = 0;
- }
+ } else {
continue;
- }
}
- sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
- if (sync_cycles <= 0) {
- sync_cycles += PRNG_SEQUENCE_LENGTH;
}
- if (MF_DBGLEVEL >= 3) {
+
+ sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
+ if (sync_cycles <= 0)
+ sync_cycles += PRNG_SEQUENCE_LENGTH;
+
+ if (MF_DBGLEVEL >= 3)
Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
- }
+
continue;
}
}
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+
catch_up_cycles = -dist_nt(nt_attacked, nt);
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
+
+ // average?
catch_up_cycles /= elapsed_prng_sequences;
+
if (catch_up_cycles == last_catch_up) {
- consecutive_resyncs++;
- }
- else {
+ ++consecutive_resyncs;
+ } else {
last_catch_up = catch_up_cycles;
consecutive_resyncs = 0;
- }
+ }
+
if (consecutive_resyncs < 3) {
- if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
- }
- else {
- sync_cycles = sync_cycles + catch_up_cycles;
- if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ if (MF_DBGLEVEL >= 3)
+ Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+ } else {
+ sync_cycles += catch_up_cycles;
+
+ if (MF_DBGLEVEL >= 3)
+ Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+
last_catch_up = 0;
catch_up_cycles = 0;
consecutive_resyncs = 0;
continue;
}
- consecutive_resyncs = 0;
-
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
- led_on = !led_on;
- if(led_on) LED_B_ON(); else LED_B_OFF();
-
par_list[nt_diff] = SwapBits(par[0], 8);
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
nt_diff = (nt_diff + 1) & 0x07;
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
par[0] = par_low;
+
} else {
+ // No NACK.
if (nt_diff == 0 && first_try) {
par[0]++;
- if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
isOK = -2;
break;
}
} else {
+ // Why this?
par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
+
+ consecutive_resyncs = 0;
}
-
mf_nr_ar[3] &= 0x1F;
+
+ WDT_HIT();
- if (isOK == -4) {
- if (MF_DBGLEVEL >= 3) {
- for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
- for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
- Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
- }
- }
- }
+ // reset sync_time.
+ if ( isOK == 1) {
+ sync_time = 0;
+ sync_cycles = 0;
+ mf_nr_ar3 = 0;
+ nt_attacked = 0;
+ par[0] = 0;
}
- byte_t buf[28] = {0x00};
- memcpy(buf + 0, uid, 4);
+ uint8_t buf[28] = {0x00};
+ num_to_bytes(cuid, 4, buf);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
memcpy(buf + 16, ks_list, 8);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
- // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
-
set_tracing(FALSE);
}
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
- uint8_t response[MAX_MIFARE_FRAME_SIZE];
- uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+ uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
- {
+ // Interactive mode flag, means we need to send ACK
+ if(flags & FLAG_INTERACTIVE) {
//May just aswell send the collected ar_nr in the response aswell
uint8_t len = ar_nr_collected*5*4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
}
- if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
- {
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
-
- // C(red) A(yellow) B(green)
LEDsoff();
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+
// init trace buffer
clear_trace();
set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
// The response (tag -> reader) that we're receiving.
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
- // free eventually allocated BigBuf memory
- BigBuf_free();
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;