// Low frequency EM4x commands
//-----------------------------------------------------------------------------
-#include <stdio.h>
-#include <string.h>
-#include <inttypes.h>
-#include "proxmark3.h"
-#include "ui.h"
-#include "util.h"
-#include "graph.h"
-#include "cmdparser.h"
-#include "cmddata.h"
-#include "cmdlf.h"
#include "cmdlfem4x.h"
-#include "lfdemod.h"
-char *global_em410xId;
+uint64_t g_em410xid = 0;
static int CmdHelp(const char *Cmd);
+int usage_lf_em410x_sim(void) {
+ PrintAndLog("Simulating EM410x tag");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" uid - uid (10 HEX symbols)");
+ PrintAndLog(" clock - clock (32|64) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 410xsim 0F0368568B");
+ PrintAndLog(" lf em 410xsim 0F0368568B 32");
+ return 0;
+}
+
int CmdEMdemodASK(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
- int findone = (cmdp == '1') ? 1 : 0;
- UsbCommand c={CMD_EM410X_DEMOD};
- c.arg[0]=findone;
+ uint8_t findone = (cmdp == '1') ? 1 : 0;
+ UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
SendCommand(&c);
return 0;
}
*/
int CmdEM410xRead(const char *Cmd)
{
- uint32_t hi=0;
- uint64_t lo=0;
+ uint32_t hi = 0;
+ uint64_t lo = 0;
if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
- PrintAndLog("EM410x pattern found: ");
+
printEM410x(hi, lo);
- if (hi){
- PrintAndLog ("EM410x XL pattern found");
- return 0;
- }
- char id[12] = {0x00};
- //sprintf(id, "%010llx",lo);
- sprintf(id, "%010"PRIu64, lo);
-
- global_em410xId = id;
+ g_em410xid = lo;
return 1;
}
int CmdEM410xSim(const char *Cmd)
{
int i, n, j, binary[4], parity[4];
+ uint8_t uid[5] = {0x00};
char cmdp = param_getchar(Cmd, 0);
- uint8_t uid[5] = {0x00};
+ if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
- if (cmdp == 'h' || cmdp == 'H') {
- PrintAndLog("Usage: lf em4x em410xsim <UID> <clock>");
- PrintAndLog("");
- PrintAndLog(" sample: lf em4x em410xsim 0F0368568B");
- return 0;
- }
/* clock is 64 in EM410x tags */
uint8_t clock = 64;
PrintAndLog("UID must include 10 HEX symbols");
return 0;
}
+
param_getdec(Cmd, 1, &clock);
PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
PrintAndLog("Press pm3-button to about simulation");
-
/* clear our graph */
ClearGraph(0);
- /* write 9 start bits */
- for (i = 0; i < 9; i++)
- AppendGraph(0, clock, 1);
-
- /* for each hex char */
- parity[0] = parity[1] = parity[2] = parity[3] = 0;
- for (i = 0; i < 10; i++)
- {
- /* read each hex char */
- sscanf(&Cmd[i], "%1x", &n);
- for (j = 3; j >= 0; j--, n/= 2)
- binary[j] = n % 2;
-
- /* append each bit */
- AppendGraph(0, clock, binary[0]);
- AppendGraph(0, clock, binary[1]);
- AppendGraph(0, clock, binary[2]);
- AppendGraph(0, clock, binary[3]);
-
- /* append parity bit */
- AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
-
- /* keep track of column parity */
- parity[0] ^= binary[0];
- parity[1] ^= binary[1];
- parity[2] ^= binary[2];
- parity[3] ^= binary[3];
- }
+ /* write 9 start bits */
+ for (i = 0; i < 9; i++)
+ AppendGraph(0, clock, 1);
+
+ /* for each hex char */
+ parity[0] = parity[1] = parity[2] = parity[3] = 0;
+ for (i = 0; i < 10; i++)
+ {
+ /* read each hex char */
+ sscanf(&Cmd[i], "%1x", &n);
+ for (j = 3; j >= 0; j--, n/= 2)
+ binary[j] = n % 2;
+
+ /* append each bit */
+ AppendGraph(0, clock, binary[0]);
+ AppendGraph(0, clock, binary[1]);
+ AppendGraph(0, clock, binary[2]);
+ AppendGraph(0, clock, binary[3]);
- /* parity columns */
- AppendGraph(0, clock, parity[0]);
- AppendGraph(0, clock, parity[1]);
- AppendGraph(0, clock, parity[2]);
- AppendGraph(0, clock, parity[3]);
+ /* append parity bit */
+ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
- /* stop bit */
+ /* keep track of column parity */
+ parity[0] ^= binary[0];
+ parity[1] ^= binary[1];
+ parity[2] ^= binary[2];
+ parity[3] ^= binary[3];
+ }
+
+ /* parity columns */
+ AppendGraph(0, clock, parity[0]);
+ AppendGraph(0, clock, parity[1]);
+ AppendGraph(0, clock, parity[2]);
+ AppendGraph(0, clock, parity[3]);
+
+ /* stop bit */
AppendGraph(1, clock, 0);
CmdLFSim("0"); //240 start_gap.
* Changed by martin, 4000 x 4 = 16000,
* see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
*/
-int CmdEM410xWatch(const char *Cmd)
-{
+int CmdEM410xWatch(const char *Cmd) {
do {
if (ukbhit()) {
printf("\naborted via keyboard!\n");
break;
- }
-
+ }
CmdLFRead("s");
- getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
+ getSamples("6144",true);
} while (!CmdEM410xRead(""));
-
return 0;
}
//currently only supports manchester modulations
+// todo: helptext
int CmdEM410xWatchnSpoof(const char *Cmd)
{
+ // loops if the captured ID was in XL-format.
CmdEM410xWatch(Cmd);
- PrintAndLog("# Replaying captured ID: %s",global_em410xId);
+ PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid);
CmdLFaskSim("");
return 0;
}
bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
- if (rows*cols>size) return false;
+ if (rows*cols>size) return FALSE;
uint8_t colP=0;
//assume last col is a parity and do not test
for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
colP ^= BitStream[(rowNum*cols)+colNum];
}
- if (colP != pType) return false;
+ if (colP != pType) return FALSE;
}
- return true;
+ return TRUE;
}
bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
- if (rows*cols>size) return false;
+ if (rows*cols>size) return FALSE;
uint8_t rowP=0;
//assume last row is a parity row and do not test
for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
for (uint8_t colNum = 0; colNum < cols; colNum++) {
rowP ^= BitStream[(rowNum*cols)+colNum];
}
- if (rowP != pType) return false;
+ if (rowP != pType) return FALSE;
+ }
+ return TRUE;
+}
+
+// EM word parity test.
+// 9*5 = 45 bits in total
+// 012345678|r1
+// 012345678|r2
+// 012345678|r3
+// 012345678|r4
+// ------------
+//c012345678| 0
+// |- must be zero
+
+bool EMwordparitytest(uint8_t *bits){
+
+ // last row/col parity must be 0
+ if (bits[44] != 0 ) return FALSE;
+
+ // col parity check
+ uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8);
+ uint8_t c2 = bytebits_to_byte(bits+36, 8);
+ if ( c1 != c2 ) return FALSE;
+
+ // row parity check
+ uint8_t rowP = 0;
+ for ( uint8_t i = 0; i < 36; ++i ) {
+
+ rowP ^= bits[i];
+ if ( i>0 && (i % 9) == 0) {
+
+ if ( rowP != EVEN )
+ return FALSE;
+
+ rowP = 0;
+ }
}
- return true;
+ // all checks ok.
+ return TRUE;
+}
+
+
+//////////////// 4050 / 4450 commands
+int usage_lf_em4x50_dump(void) {
+ PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x50dump");
+ PrintAndLog(" lf em 4x50dump 11223344");
+ return 0;
+}
+int usage_lf_em4x50_read(void) {
+ PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to read. (0-15)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x50read 1");
+ PrintAndLog(" lf em 4x50read 1 11223344");
+ return 0;
+}
+int usage_lf_em4x50_write(void) {
+ PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to write to. (0-15)");
+ PrintAndLog(" data - data to write (hex)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x50write 1 deadc0de");
+ PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
+ return 0;
}
uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
{
if (size<45) return 0;
+
uint32_t code = bytebits_to_byte(BitStream,8);
code = code<<8 | bytebits_to_byte(BitStream+9,8);
code = code<<8 | bytebits_to_byte(BitStream+18,8);
code = code<<8 | bytebits_to_byte(BitStream+27,8);
+
if (verbose || g_debugMode){
for (uint8_t i = 0; i<5; i++){
if (i == 4) PrintAndLog(""); //parity byte spacer
}
return code;
}
-/* Read the transmitted data of an EM4x50 tag
+
+
+/* Read the transmitted data of an EM4x50 tag from the graphbuffer
* Format:
*
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* Word Read values. UID is stored in block 32.
*/
//completed by Marshmellow
-int EM4x50Read(const char *Cmd, bool verbose)
-{
+int EM4x50Read(const char *Cmd, bool verbose) {
uint8_t fndClk[] = {8,16,32,40,50,64,128};
int clk = 0;
int invert = 0;
break;
}
}
- if (!clk) return 0;
+ if (!clk) {
+ if (verbose || g_debugMode) PrintAndLog("ERROR: EM4x50 - didn't find a clock");
+ return 0;
+ }
} else tol = clk/8;
// look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
return (int)AllPTest;
}
-int CmdEM4x50Read(const char *Cmd)
-{
+int CmdEM4x50Read(const char *Cmd) {
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
return EM4x50Read(Cmd, true);
}
+int CmdEM4x50Write(const char *Cmd){
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
+ PrintAndLog("no implemented yet");
+ return 0;
+}
+int CmdEM4x50Dump(const char *Cmd){
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
+ PrintAndLog("no implemented yet");
+ return 0;
+}
-int CmdReadWord(const char *Cmd)
-{
- int Word = -1; //default to invalid word
- UsbCommand c;
+#define EM_PREAMBLE_LEN 6
+// download samples from device and copy to Graphbuffer
+bool downloadSamplesEM(){
- sscanf(Cmd, "%d", &Word);
+ // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
+ uint8_t got[6000];
+ GetFromBigBuf(got, sizeof(got), 0);
+ if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
+ PrintAndLog("command execution time out");
+ return FALSE;
+ }
+ setGraphBuf(got, sizeof(got));
+ return TRUE;
+}
+
+// em_demod
+bool doPreambleSearch(size_t *startIdx){
- if ( (Word > 15) | (Word < 0) ) {
- PrintAndLog("Word must be between 0 and 15");
- return 1;
+ // sanity check
+ if ( DemodBufferLen < EM_PREAMBLE_LEN) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
+ return FALSE;
}
+
+ // set size to 20 to only test first 14 positions for the preamble
+ size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
+ *startIdx = 0;
+ // skip first two 0 bits as they might have been missed in the demod
+ uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
- PrintAndLog("Reading word %d", Word);
+ if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
+ return FALSE;
+ }
+ return TRUE;
+}
+
+bool detectFSK(){
+ // detect fsk clock
+ if (!GetFskClock("", FALSE, FALSE)) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
+ return FALSE;
+ }
+ // demod
+ int ans = FSKrawDemod("0 0", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
+ return FALSE;
+ }
+ return TRUE;
+}
+// PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
+bool detectPSK(){
+ int ans = GetPskClock("", FALSE, FALSE);
+ if (ans <= 0) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
+ return FALSE;
+ }
+ //demod
+ //try psk1 -- 0 0 6 (six errors?!?)
+ ans = PSKDemod("0 0 6", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
+
+ //try psk1 inverted
+ ans = PSKDemod("0 1 6", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
+ return FALSE;
+ }
+ }
+ // either PSK1 or PSK1 inverted is ok from here.
+ // lets check PSK2 later.
+ return TRUE;
+}
+// try manchester - NOTE: ST only applies to T55x7 tags.
+bool detectASK_MAN(){
+ bool stcheck = FALSE;
+ int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
+ return FALSE;
+ }
+ return TRUE;
+}
+bool detectASK_BI(){
+ int ans = ASKbiphaseDemod("0 0 1", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
+
+ ans = ASKbiphaseDemod("0 1 1", FALSE);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
+
+// param: idx - start index in demoded data.
+bool setDemodBufferEM(uint32_t *word, size_t idx){
+
+ //test for even parity bits.
+ uint8_t parity[45] = {0};
+ memcpy( parity, DemodBuffer, 45);
+ if (!EMwordparitytest(parity) ){
+ PrintAndLog("DEBUG: Error - EM Parity tests failed");
+ return FALSE;
+ }
+
+ // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
+ if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity");
+ return FALSE;
+ }
+ setDemodBuf(DemodBuffer, 32, 0);
+ *word = bytebits_to_byteLSBF(DemodBuffer, 32);
+ return TRUE;
+}
+
+// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
+// should cover 90% of known used configs
+// the rest will need to be manually demoded for now...
+bool demodEM4x05resp(uint32_t *word) {
+ size_t idx = 0;
+ *word = 0;
+ if (detectASK_MAN() && doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
- c.cmd = CMD_EM4X_READ_WORD;
- c.d.asBytes[0] = 0x0; //Normal mode
- c.arg[0] = 0;
- c.arg[1] = Word;
- c.arg[2] = 0;
- SendCommand(&c);
+ if (detectASK_BI() && doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
+
+ if (detectFSK() && doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
+
+ if (detectPSK()) {
+ if (doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
+
+ psk1TOpsk2(DemodBuffer, DemodBufferLen);
+ if (doPreambleSearch( &idx ))
+ return setDemodBufferEM(word, idx);
+ }
+ return FALSE;
+}
+
+//////////////// 4205 / 4305 commands
+int usage_lf_em4x05_dump(void) {
+ PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05dump");
+ PrintAndLog(" lf em 4x05dump 11223344");
+ return 0;
+}
+int usage_lf_em4x05_read(void) {
+ PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to read. (0-15)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05read 1");
+ PrintAndLog(" lf em 4x05read 1 11223344");
+ return 0;
+}
+int usage_lf_em4x05_write(void) {
+ PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to write to. (0-15)");
+ PrintAndLog(" data - data to write (hex)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05write 1 deadc0de");
+ PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
+ return 0;
+}
+int usage_lf_em4x05_info(void) {
+ PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna.");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05info [h] <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05info");
+ PrintAndLog(" lf em 4x05info deadc0de");
return 0;
}
-int CmdReadWordPWD(const char *Cmd)
-{
- int Word = -1; //default to invalid word
- int Password = 0xFFFFFFFF; //default to blank password
- UsbCommand c;
+int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) {
+ UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
+ clearCommandBuffer();
+ SendCommand(&c);
+ UsbCommand resp;
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
+ PrintAndLog("Command timed out");
+ return -1;
+ }
+ if ( !downloadSamplesEM() ) {
+ return -1;
+ }
+ int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
+ if (graphJustNoise(GraphBuffer, testLen)) {
+ PrintAndLog("no tag found");
+ return -1;
+ }
+ return demodEM4x05resp(word);
+}
+
+int CmdEM4x05Dump(const char *Cmd) {
+ uint8_t addr = 0;
+ uint32_t pwd = 0;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
+
+ // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+ pwd = param_get32ex(Cmd, 0, 1, 16);
- sscanf(Cmd, "%d %x", &Word, &Password);
+ if ( pwd != 1 )
+ usePwd = true;
+
+ int success = 1;
+ uint32_t word = 0;
+ PrintAndLog("Addr | data | ascii");
+ PrintAndLog("-----+--------+------");
+ for (; addr < 16; addr++) {
+
+ if (addr == 2) {
+ if (usePwd) {
+ PrintAndLog(" %02u | %08X", addr, pwd, word );
+ } else {
+ PrintAndLog(" 02 | cannot read");
+ }
+ } else {
+ success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word);
+ }
+ }
+
+ return success;
+}
+
+int CmdEM4x05Read(const char *Cmd) {
+ uint8_t addr;
+ uint32_t pwd;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
+
+ addr = param_get8ex(Cmd, 0, 50, 10);
+ pwd = param_get32ex(Cmd, 1, 1, 16);
- if ( (Word > 15) | (Word < 0) ) {
- PrintAndLog("Word must be between 0 and 15");
+ if (addr > 15) {
+ PrintAndLog("Address must be between 0 and 15");
return 1;
}
+ if ( pwd == 1 ) {
+ PrintAndLog("Reading address %02u", addr);
+ }
+ else {
+ usePwd = true;
+ PrintAndLog("Reading address %02u | password %08X", addr, pwd);
+ }
- PrintAndLog("Reading word %d with password %08X", Word, Password);
-
- c.cmd = CMD_EM4X_READ_WORD;
- c.d.asBytes[0] = 0x1; //Password mode
- c.arg[0] = 0;
- c.arg[1] = Word;
- c.arg[2] = Password;
- SendCommand(&c);
- return 0;
+ uint32_t word = 0;
+ int isOk = EM4x05ReadWord_ext(addr, pwd, usePwd, &word);
+ if (isOk)
+ PrintAndLog("Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : "");
+ else
+ PrintAndLog("Read Address %02d | failed",addr);
+ return isOk;
}
-int CmdWriteWord(const char *Cmd)
-{
- int Word = 16; //default to invalid block
- int Data = 0xFFFFFFFF; //default to blank data
- UsbCommand c;
+int CmdEM4x05Write(const char *Cmd) {
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
+
+ bool usePwd = false;
+ uint8_t addr = 50; // default to invalid address
+ uint32_t data = 0; // default to blank data
+ uint32_t pwd = 1; // default to blank password
- sscanf(Cmd, "%x %d", &Data, &Word);
+ addr = param_get8ex(Cmd, 0, 50, 10);
+ data = param_get32ex(Cmd, 1, 0, 16);
+ pwd = param_get32ex(Cmd, 2, 1, 16);
- if (Word > 15) {
- PrintAndLog("Word must be between 0 and 15");
+ if ( addr > 15 ) {
+ PrintAndLog("Address must be between 0 and 15");
return 1;
}
+ if ( pwd == 1 )
+ PrintAndLog("Writing address %d data %08X", addr, data);
+ else {
+ usePwd = true;
+ PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
+ }
- PrintAndLog("Writing word %d with data %08X", Word, Data);
+ uint16_t flag = (addr << 8 ) | usePwd;
- c.cmd = CMD_EM4X_WRITE_WORD;
- c.d.asBytes[0] = 0x0; //Normal mode
- c.arg[0] = Data;
- c.arg[1] = Word;
- c.arg[2] = 0;
+ UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
+ clearCommandBuffer();
SendCommand(&c);
- return 0;
+ UsbCommand resp;
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
+ PrintAndLog("Error occurred, device did not respond during write operation.");
+ return -1;
+ }
+
+ if (!downloadSamplesEM())
+ return -1;
+
+ //need 0 bits demoded (after preamble) to verify write cmd
+ uint32_t dummy = 0;
+ int isOk = demodEM4x05resp(&dummy);
+ if (isOk)
+ PrintAndLog("Write Verified");
+ else
+ PrintAndLog("Write could not be verified");
+ return isOk;
}
-int CmdWriteWordPWD(const char *Cmd)
-{
- int Word = 16; //default to invalid word
- int Data = 0xFFFFFFFF; //default to blank data
- int Password = 0xFFFFFFFF; //default to blank password
- UsbCommand c;
-
- sscanf(Cmd, "%x %d %x", &Data, &Word, &Password);
+void printEM4x05config(uint32_t wordData) {
+ uint16_t datarate = (((wordData & 0x3F)+1)*2);
+ uint8_t encoder = ((wordData >> 6) & 0xF);
+ char enc[14];
+ memset(enc,0,sizeof(enc));
+
+ uint8_t PSKcf = (wordData >> 10) & 0x3;
+ char cf[10];
+ memset(cf,0,sizeof(cf));
+ uint8_t delay = (wordData >> 12) & 0x3;
+ char cdelay[33];
+ memset(cdelay,0,sizeof(cdelay));
+ uint8_t LWR = (wordData >> 14) & 0xF; //last word read
+
+ switch (encoder) {
+ case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
+ case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
+ case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
+ case 3: snprintf(enc,sizeof(enc),"Miller"); break;
+ case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
+ case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
+ case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
+ case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
+ case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
+ case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
+ default: snprintf(enc,sizeof(enc),"Unknown"); break;
+ }
+
+ switch (PSKcf) {
+ case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
+ case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
+ case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
+ case 3: snprintf(cf,sizeof(cf),"unknown"); break;
+ }
+
+ switch (delay) {
+ case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+ case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
+ case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
+ case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+ }
+ PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
+ PrintAndLog("Config Breakdown:", wordData);
+ PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
+ PrintAndLog(" Encoder: %u | %s", encoder, enc);
+ PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
+ PrintAndLog(" Delay: %u | %s", delay, cdelay);
+ PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
+ PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
+ PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
+ PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
+ PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
+ PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
+ PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
+ PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
+ PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
+}
+
+void printEM4x05info(uint32_t block0, uint32_t serial) {
+
+ uint8_t chipType = (block0 >> 1) & 0xF;
+ uint8_t cap = (block0 >> 5) & 3;
+ uint16_t custCode = (block0 >> 9) & 0x3FF;
- if (Word > 15) {
- PrintAndLog("Word must be between 0 and 15");
- return 1;
+ switch (chipType) {
+ case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
+ case 8: PrintAndLog("\n Chip Type: %u | EM4205", chipType); break;
+ case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
+ case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
+ //add more here when known
+ default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
+ }
+
+ switch (cap) {
+ case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
+ case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
+ case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
+ case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
+ default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
}
+
+ PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
+ if (serial != 0)
+ PrintAndLog("\n Serial #: %08X\n", serial);
+}
+
+void printEM4x05ProtectionBits(uint32_t word) {
+ for (uint8_t i = 0; i < 15; i++) {
+ PrintAndLog(" Word: %02u | %s", i, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+ if (i==14)
+ PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+ }
+}
+
+//quick test for EM4x05/EM4x69 tag
+bool EM4x05IsBlock0(uint32_t *word) {
+ return EM4x05ReadWord_ext(0, 0, FALSE, word);
+}
+
+int CmdEM4x05Info(const char *Cmd) {
+#define EM_SERIAL_BLOCK 1
+#define EM_CONFIG_BLOCK 4
+#define EM_PROT1_BLOCK 14
+#define EM_PROT2_BLOCK 15
+ uint32_t pwd;
+ uint32_t word = 0, block0 = 0, serial = 0;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info();
+
+ // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+ pwd = param_get32ex(Cmd, 0, 1, 16);
- PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password);
+ if ( pwd != 1 )
+ usePwd = true;
+
+ // read word 0 (chip info)
+ // block 0 can be read even without a password.
+ if ( !EM4x05IsBlock0(&block0) )
+ return -1;
- c.cmd = CMD_EM4X_WRITE_WORD;
- c.d.asBytes[0] = 0x1; //Password mode
- c.arg[0] = Data;
- c.arg[1] = Word;
- c.arg[2] = Password;
- SendCommand(&c);
- return 0;
+ // read word 1 (serial #) doesn't need pwd
+ // continue if failed, .. non blocking fail.
+ EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial);
+ printEM4x05info(block0, serial);
+
+ // read word 4 (config block)
+ // needs password if one is set
+ if ( EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != 1 )
+ return 0;
+
+ printEM4x05config(word);
+
+ // read word 14 and 15 to see which is being used for the protection bits
+ if ( EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != 1 ) {
+ return 0;
+ }
+ // if status bit says this is not the used protection word
+ if (!(word & 0x8000)) {
+ if ( EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != 1 )
+ return 0;
+ }
+ //something went wrong
+ if (!(word & 0x8000)) return 0;
+ printEM4x05ProtectionBits(word);
+ return 1;
}
-static command_t CommandTable[] =
-{
- {"help", CmdHelp, 1, "This help"},
- {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
- {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
- {"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
- {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
- {"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
- {"em410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
- {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"},
- {"readword", CmdReadWord, 1, "<Word> -- Read EM4xxx word data"},
- {"readwordPWD", CmdReadWordPWD, 1, "<Word> <Password> -- Read EM4xxx word data in password mode"},
- {"writeword", CmdWriteWord, 1, "<Data> <Word> -- Write EM4xxx word data"},
- {"writewordPWD", CmdWriteWordPWD, 1, "<Data> <Word> <Password> -- Write EM4xxx word data in password mode"},
+static command_t CommandTable[] = {
+ {"help", CmdHelp, 1, "This help"},
+ {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
+ {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
+ {"410xsim", CmdEM410xSim, 0, "simulate EM410x tag"},
+ {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
+ {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
+ {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
+ {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
+ {"4x05info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"},
+ {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
+ {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
+ {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
+ {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
+ {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
{NULL, NULL, 0, NULL}
};