//-----------------------------------------------------------------------------
// Based on ISO14443a implementation. Still in experimental phase.
// Contribution made during a security research at Radboud University Nijmegen
-//
+//
// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
//
// We still have sometimes a demodulation error when snooping iClass communication.
// The resulting trace of a read-block-03 command may look something like this:
//
-// + 22279: : 0c 03 e8 01
+// + 22279: : 0c 03 e8 01
//
// ...with an incorrect answer...
//
//
// A correct trace should look like this:
//
-// + 21112: : 0c 03 e8 01
-// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
+// + 21112: : 0c 03 e8 01
+// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
//
//-----------------------------------------------------------------------------
+#include "iclass.h"
+
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
+#include "printf.h"
#include "common.h"
#include "cmd.h"
+#include "iso14443a.h"
+#include "iso15693.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "iso14443crc.h"
#include "iso15693tools.h"
+#include "protocols.h"
+#include "optimized_cipher.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+#include "fpgaloader.h"
+
+// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
+// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
+// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
+// 56,64us = 24 ssp_clk_cycles
+#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
+// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
+#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
+// times in samples @ 212kHz when acting as reader
+#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
+#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
-static int timeout = 4096;
-
-
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
static struct {
- enum {
- STATE_UNSYNCD,
- STATE_START_OF_COMMUNICATION,
- STATE_RECEIVING
- } state;
- uint16_t shiftReg;
- int bitCnt;
- int byteCnt;
- int byteCntMax;
- int posCnt;
- int nOutOfCnt;
- int OutOfCnt;
- int syncBit;
- int samples;
- int highCnt;
- int swapper;
- int counter;
- int bitBuffer;
- int dropPosition;
- uint8_t *output;
+ enum {
+ STATE_UNSYNCD,
+ STATE_START_OF_COMMUNICATION,
+ STATE_RECEIVING
+ } state;
+ uint16_t shiftReg;
+ int bitCnt;
+ int byteCnt;
+ int byteCntMax;
+ int posCnt;
+ int nOutOfCnt;
+ int OutOfCnt;
+ int syncBit;
+ int samples;
+ int highCnt;
+ int swapper;
+ int counter;
+ int bitBuffer;
+ int dropPosition;
+ uint8_t *output;
} Uart;
-static RAMFUNC int OutOfNDecoding(int bit)
-{
+static RAMFUNC int OutOfNDecoding(int bit) {
//int error = 0;
int bitright;
- if(!Uart.bitBuffer) {
+ if (!Uart.bitBuffer) {
Uart.bitBuffer = bit ^ 0xFF0;
- return FALSE;
- }
- else {
+ return false;
+ } else {
Uart.bitBuffer <<= 4;
Uart.bitBuffer ^= bit;
}
-
- /*if(Uart.swapper) {
+
+ /*if (Uart.swapper) {
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.swapper = 0;
- if(Uart.byteCnt > 15) { return TRUE; }
+ if (Uart.byteCnt > 15) { return true; }
}
else {
Uart.swapper = 1;
}*/
- if(Uart.state != STATE_UNSYNCD) {
+ if (Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+ if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
bit = 0x00;
- }
- else {
+ } else {
bit = 0x01;
}
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+ if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
bitright = 0x00;
- }
- else {
+ } else {
bitright = 0x01;
}
- if(bit != bitright) { bit = bitright; }
+ if (bit != bitright) {
+ bit = bitright;
+ }
+
-
// So, now we only have to deal with *bit*, lets see...
- if(Uart.posCnt == 1) {
+ if (Uart.posCnt == 1) {
// measurement first half bitperiod
- if(!bit) {
+ if (!bit) {
// Drop in first half means that we are either seeing
// an SOF or an EOF.
- if(Uart.nOutOfCnt == 1) {
+ if (Uart.nOutOfCnt == 1) {
// End of Communication
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
- if(Uart.byteCnt == 0) {
+ if (Uart.byteCnt == 0) {
// Its not straightforward to show single EOFs
- // So just leave it and do not return TRUE
+ // So just leave it and do not return true
Uart.output[0] = 0xf0;
Uart.byteCnt++;
+ } else {
+ return true;
}
- else {
- return TRUE;
- }
- }
- else if(Uart.state != STATE_START_OF_COMMUNICATION) {
+ } else if (Uart.state != STATE_START_OF_COMMUNICATION) {
// When not part of SOF or EOF, it is an error
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 4;
}
}
- }
- else {
+ } else {
// measurement second half bitperiod
// Count the bitslot we are in... (ISO 15693)
Uart.nOutOfCnt++;
-
- if(!bit) {
- if(Uart.dropPosition) {
- if(Uart.state == STATE_START_OF_COMMUNICATION) {
+
+ if (!bit) {
+ if (Uart.dropPosition) {
+ if (Uart.state == STATE_START_OF_COMMUNICATION) {
//error = 1;
- }
- else {
+ } else {
//error = 7;
}
// It is an error if we already have seen a drop in current frame
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
- }
- else {
+ } else {
Uart.dropPosition = Uart.nOutOfCnt;
}
}
Uart.posCnt = 0;
-
- if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
+
+ if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
Uart.nOutOfCnt = 0;
-
- if(Uart.state == STATE_START_OF_COMMUNICATION) {
- if(Uart.dropPosition == 4) {
+
+ if (Uart.state == STATE_START_OF_COMMUNICATION) {
+ if (Uart.dropPosition == 4) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 256;
- }
- else if(Uart.dropPosition == 3) {
+ } else if (Uart.dropPosition == 3) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 4;
//Uart.output[Uart.byteCnt] = 0xdd;
//Uart.byteCnt++;
- }
- else {
+ } else {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
}
Uart.dropPosition = 0;
- }
- else {
+ } else {
// RECEIVING DATA
// 1 out of 4
- if(!Uart.dropPosition) {
+ if (!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 9;
- }
- else {
+ } else {
Uart.shiftReg >>= 2;
-
+
// Swap bit order
Uart.dropPosition--;
- //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
- //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
-
+ //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
+ //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
+
Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
Uart.bitCnt += 2;
Uart.dropPosition = 0;
- if(Uart.bitCnt == 8) {
+ if (Uart.bitCnt == 8) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
Uart.bitCnt = 0;
}
}
}
- }
- else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
+ } else if (Uart.nOutOfCnt == Uart.OutOfCnt) {
// RECEIVING DATA
// 1 out of 256
- if(!Uart.dropPosition) {
+ if (!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 3;
- }
- else {
+ } else {
Uart.dropPosition--;
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
Uart.byteCnt++;
}
}
- /*if(error) {
+ /*if (error) {
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = error & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
- return TRUE;
+ return true;
}*/
}
- }
- else {
+ } else {
bit = Uart.bitBuffer & 0xf0;
bit >>= 4;
bit ^= 0x0F; // drops become 1s ;-)
- if(bit) {
+ if (bit) {
// should have been high or at least (4 * 128) / fc
// according to ISO this should be at least (9 * 128 + 20) / fc
- if(Uart.highCnt == 8) {
+ if (Uart.highCnt == 8) {
// we went low, so this could be start of communication
// it turns out to be safer to choose a less significant
// syncbit... so we check whether the neighbour also represents the drop
Uart.posCnt = 1; // apparently we are busy with our first half bit period
Uart.syncBit = bit & 8;
Uart.samples = 3;
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
- if(Uart.syncBit && (Uart.bitBuffer & 8)) {
+ if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
+ else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+ if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
+ else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+ if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
+ if (Uart.syncBit && (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.posCnt = 0;
Uart.samples = 3;
}
- }
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
+ } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
Uart.syncBit <<= 4;
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.dropPosition = 0;
Uart.shiftReg = 0;
//error = 0;
- }
- else {
+ } else {
Uart.highCnt = 0;
}
- }
- else {
- if(Uart.highCnt < 8) {
- Uart.highCnt++;
- }
+ } else if (Uart.highCnt < 8) {
+ Uart.highCnt++;
}
}
- return FALSE;
+ return false;
}
+
//=============================================================================
// Manchester
//=============================================================================
static struct {
- enum {
- DEMOD_UNSYNCD,
+ enum {
+ DEMOD_UNSYNCD,
DEMOD_START_OF_COMMUNICATION,
DEMOD_START_OF_COMMUNICATION2,
DEMOD_START_OF_COMMUNICATION3,
DEMOD_END_OF_COMMUNICATION,
DEMOD_END_OF_COMMUNICATION2,
DEMOD_MANCHESTER_F,
- DEMOD_ERROR_WAIT
- } state;
- int bitCount;
- int posCount;
- int syncBit;
- uint16_t shiftReg;
- int buffer;
- int buffer2;
- int buffer3;
- int buff;
- int samples;
- int len;
+ DEMOD_ERROR_WAIT
+ } state;
+ int bitCount;
+ int posCount;
+ int syncBit;
+ uint16_t shiftReg;
+ int buffer;
+ int buffer2;
+ int buffer3;
+ int buff;
+ int samples;
+ int len;
enum {
SUB_NONE,
SUB_FIRST_HALF,
SUB_SECOND_HALF,
SUB_BOTH
- } sub;
- uint8_t *output;
+ } sub;
+ uint8_t *output;
} Demod;
-static RAMFUNC int ManchesterDecoding(int v)
-{
+static RAMFUNC int ManchesterDecoding(int v) {
int bit;
int modulation;
int error = 0;
Demod.buffer2 = Demod.buffer3;
Demod.buffer3 = v;
- if(Demod.buff < 3) {
+ if (Demod.buff < 3) {
Demod.buff++;
- return FALSE;
+ return false;
}
- if(Demod.state==DEMOD_UNSYNCD) {
+ if (Demod.state==DEMOD_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
+ Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
- if(bit & 0x08) {
+ if (bit & 0x08) {
Demod.syncBit = 0x08;
}
- if(bit & 0x04) {
- if(Demod.syncBit) {
+ if (bit & 0x04) {
+ if (Demod.syncBit) {
bit <<= 4;
}
Demod.syncBit = 0x04;
}
- if(bit & 0x02) {
- if(Demod.syncBit) {
+ if (bit & 0x02) {
+ if (Demod.syncBit) {
bit <<= 2;
}
Demod.syncBit = 0x02;
}
- if(bit & 0x01 && Demod.syncBit) {
+ if (bit & 0x01 && Demod.syncBit) {
Demod.syncBit = 0x01;
}
-
- if(Demod.syncBit) {
+
+ if (Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.samples = 0;
- if(Demod.posCount) {
- //if(trigger) LED_A_OFF(); // Not useful in this case...
- switch(Demod.syncBit) {
+ if (Demod.posCount) {
+ switch (Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x02: Demod.samples = 1; break;
case 0x01: Demod.samples = 0; break;
}
// SOF must be long burst... otherwise stay unsynced!!!
- if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
+ if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
Demod.state = DEMOD_UNSYNCD;
}
- }
- else {
+ } else {
// SOF must be long burst... otherwise stay unsynced!!!
- if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
+ if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
Demod.state = DEMOD_UNSYNCD;
error = 0x88;
}
error = 0;
}
- }
- else {
+ } else {
+ // state is DEMOD is in SYNC from here on.
modulation = bit & Demod.syncBit;
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
- if(Demod.posCount==0) {
+ if (Demod.posCount == 0) {
Demod.posCount = 1;
- if(modulation) {
+ if (modulation) {
Demod.sub = SUB_FIRST_HALF;
- }
- else {
+ } else {
Demod.sub = SUB_NONE;
}
- }
- else {
+ } else {
Demod.posCount = 0;
- /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
- if(Demod.state!=DEMOD_ERROR_WAIT) {
- Demod.state = DEMOD_ERROR_WAIT;
- Demod.output[Demod.len] = 0xaa;
- error = 0x01;
- }
- }*/
- //else if(modulation) {
- if(modulation) {
- if(Demod.sub == SUB_FIRST_HALF) {
+ if (modulation) {
+ if (Demod.sub == SUB_FIRST_HALF) {
Demod.sub = SUB_BOTH;
- }
- else {
+ } else {
Demod.sub = SUB_SECOND_HALF;
}
- }
- else if(Demod.sub == SUB_NONE) {
- if(Demod.state == DEMOD_SOF_COMPLETE) {
+ } else if (Demod.sub == SUB_NONE) {
+ if (Demod.state == DEMOD_SOF_COMPLETE) {
Demod.output[Demod.len] = 0x0f;
Demod.len++;
Demod.state = DEMOD_UNSYNCD;
-// error = 0x0f;
- return TRUE;
- }
- else {
+ return true;
+ } else {
Demod.state = DEMOD_ERROR_WAIT;
error = 0x33;
}
- /*if(Demod.state!=DEMOD_ERROR_WAIT) {
- Demod.state = DEMOD_ERROR_WAIT;
- Demod.output[Demod.len] = 0xaa;
- error = 0x01;
- }*/
}
switch(Demod.state) {
case DEMOD_START_OF_COMMUNICATION:
- if(Demod.sub == SUB_BOTH) {
- //Demod.state = DEMOD_MANCHESTER_D;
+ if (Demod.sub == SUB_BOTH) {
Demod.state = DEMOD_START_OF_COMMUNICATION2;
Demod.posCount = 1;
Demod.sub = SUB_NONE;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd2;
}
break;
case DEMOD_START_OF_COMMUNICATION2:
- if(Demod.sub == SUB_SECOND_HALF) {
+ if (Demod.sub == SUB_SECOND_HALF) {
Demod.state = DEMOD_START_OF_COMMUNICATION3;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd3;
}
break;
case DEMOD_START_OF_COMMUNICATION3:
- if(Demod.sub == SUB_SECOND_HALF) {
-// Demod.state = DEMOD_MANCHESTER_D;
+ if (Demod.sub == SUB_SECOND_HALF) {
Demod.state = DEMOD_SOF_COMPLETE;
- //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
- //Demod.len++;
- }
- else {
+ } else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd4;
case DEMOD_MANCHESTER_E:
// OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
// 00001111 = 1 (0 in 14443)
- if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
+ if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_MANCHESTER_D;
- }
- else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
+ } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_MANCHESTER_E;
- }
- else if(Demod.sub == SUB_BOTH) {
+ } else if (Demod.sub == SUB_BOTH) {
Demod.state = DEMOD_MANCHESTER_F;
- }
- else {
+ } else {
Demod.state = DEMOD_ERROR_WAIT;
error = 0x55;
}
case DEMOD_MANCHESTER_F:
// Tag response does not need to be a complete byte!
- if(Demod.len > 0 || Demod.bitCount > 0) {
- if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
- Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
+ if (Demod.len > 0 || Demod.bitCount > 0) {
+ if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
+ Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
}
Demod.state = DEMOD_UNSYNCD;
- return TRUE;
- }
- else {
+ return true;
+ } else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x03;
break;
}
- /*if(Demod.bitCount>=9) {
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;
- Demod.len++;
-
- Demod.parityBits <<= 1;
- Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
-
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- }*/
- if(Demod.bitCount>=8) {
+ if (Demod.bitCount >= 8) {
Demod.shiftReg >>= 1;
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
Demod.len++;
Demod.shiftReg = 0;
}
- if(error) {
+ if (error) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
- return TRUE;
+ return true;
}
}
} // end (state != UNSYNCED)
- return FALSE;
+ return false;
}
//=============================================================================
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIClass(void)
-{
+void RAMFUNC SnoopIClass(void) {
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ //int triggered = false; // false to wait first for card
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- //int triggered = FALSE; // FALSE to wait first for card
-
- // The command (reader -> tag) that we're receiving.
+ // The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
- // The response (tag -> reader) that we're receiving.
- uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
- // reset traceLen to 0
- iso14a_set_tracing(TRUE);
- iso14a_clear_trace();
- iso14a_set_trigger(FALSE);
-
- // The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
- int lastRxCounter;
- int8_t *upTo;
- int smpl;
- int maxBehindBy = 0;
-
- // Count of samples received so far, so that we can include timing
- // information in the trace buffer.
- int samples = 0;
- rsamples = 0;
-
- // Set up the demodulator for tag -> reader responses.
+ #define ICLASS_BUFFER_SIZE 32
+ uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
+ // The response (tag -> reader) that we're receiving.
+ uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ // free all BigBuf memory
+ BigBuf_free();
+ // The DMA buffer, used to stream samples from the FPGA
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+ set_tracing(true);
+ clear_trace();
+ iso14a_set_trigger(false);
+
+ int lastRxCounter;
+ uint8_t *upTo;
+ int smpl;
+ int maxBehindBy = 0;
+
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ int samples = 0;
+ rsamples = 0;
+
+ // Set up the demodulator for tag -> reader responses.
Demod.output = tagToReaderResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
- // Setup for the DMA.
- FpgaSetupSsc();
- upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ // Setup for the DMA.
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+ upTo = dmaBuf;
+ lastRxCounter = DMA_BUFFER_SIZE;
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
- // And the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
+ // And the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
Uart.output = readerToTagCmd;
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
- Uart.state = STATE_UNSYNCD;
+ Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
+ Uart.state = STATE_UNSYNCD;
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
uint32_t time_0 = GetCountSspClk();
uint32_t time_start = 0;
uint32_t time_stop = 0;
- int div = 0;
- //int div2 = 0;
- int decbyte = 0;
- int decbyter = 0;
-
- // And now we loop, receiving samples.
- for(;;) {
- LED_A_ON();
- WDT_HIT();
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
- if(behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- if(behindBy > 400) {
- Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
- goto done;
- }
- }
- if(behindBy < 1) continue;
+ int div = 0;
+ //int div2 = 0;
+ int decbyte = 0;
+ int decbyter = 0;
- LED_A_OFF();
- smpl = upTo[0];
- upTo++;
- lastRxCounter -= 1;
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
- upTo -= DMA_BUFFER_SIZE;
- lastRxCounter += DMA_BUFFER_SIZE;
- AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
- }
-
- //samples += 4;
- samples += 1;
-
- if(smpl & 0xF) {
- decbyte ^= (1 << (3 - div));
- }
-
- // FOR READER SIDE COMMUMICATION...
+ // And now we loop, receiving samples.
+ for (;;) {
+ LED_A_ON();
+ WDT_HIT();
+ int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
+ if (behindBy > maxBehindBy) {
+ maxBehindBy = behindBy;
+ if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
+ Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
+ goto done;
+ }
+ }
+ if (behindBy < 1) continue;
+
+ LED_A_OFF();
+ smpl = upTo[0];
+ upTo++;
+ lastRxCounter -= 1;
+ if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
+ upTo -= DMA_BUFFER_SIZE;
+ lastRxCounter += DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
- decbyter <<= 2;
- decbyter ^= (smpl & 0x30);
+ //samples += 4;
+ samples += 1;
- div++;
-
- if((div + 1) % 2 == 0) {
- smpl = decbyter;
- if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
- rsamples = samples - Uart.samples;
- time_stop = (GetCountSspClk()-time_0) << 4;
- LED_C_ON();
-
- //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
- //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
- if(tracing) {
+ if (smpl & 0xF) {
+ decbyte ^= (1 << (3 - div));
+ }
+
+ // FOR READER SIDE COMMUMICATION...
+
+ decbyter <<= 2;
+ decbyter ^= (smpl & 0x30);
+
+ div++;
+
+ if ((div + 1) % 2 == 0) {
+ smpl = decbyter;
+ if (OutOfNDecoding((smpl & 0xF0) >> 4)) {
+ rsamples = samples - Uart.samples;
+ time_stop = (GetCountSspClk()-time_0) << 4;
+
+ //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
+ //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
- }
-
+ LogTrace_ISO15693(Uart.output, Uart.byteCnt, time_start*32, time_stop*32, parity, true);
- /* And ready to receive another command. */
- Uart.state = STATE_UNSYNCD;
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- Demod.state = DEMOD_UNSYNCD;
- LED_B_OFF();
- Uart.byteCnt = 0;
- }else{
- time_start = (GetCountSspClk()-time_0) << 4;
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ Demod.state = DEMOD_UNSYNCD;
+ Uart.byteCnt = 0;
+ } else {
+ time_start = (GetCountSspClk()-time_0) << 4;
+ }
+ decbyter = 0;
}
- decbyter = 0;
- }
- if(div > 3) {
- smpl = decbyte;
- if(ManchesterDecoding(smpl & 0x0F)) {
- time_stop = (GetCountSspClk()-time_0) << 4;
+ if (div > 3) {
+ smpl = decbyte;
+ if (ManchesterDecoding(smpl & 0x0F)) {
+ time_stop = (GetCountSspClk()-time_0) << 4;
- rsamples = samples - Demod.samples;
- LED_B_ON();
+ rsamples = samples - Demod.samples;
- if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
+ LogTrace_ISO15693(Demod.output, Demod.len, time_start*32, time_stop*32, parity, false);
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = tagToReaderResponse;
+ Demod.state = DEMOD_UNSYNCD;
+ } else {
+ time_start = (GetCountSspClk()-time_0) << 4;
}
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = tagToReaderResponse;
- Demod.state = DEMOD_UNSYNCD;
- LED_C_OFF();
- }else{
- time_start = (GetCountSspClk()-time_0) << 4;
+ div = 0;
+ decbyte = 0x00;
}
-
- div = 0;
- decbyte = 0x00;
- }
- //}
- if(BUTTON_PRESS()) {
- DbpString("cancelled_a");
- goto done;
- }
- }
+ if (BUTTON_PRESS()) {
+ DbpString("cancelled_a");
+ goto done;
+ }
+ }
- DbpString("COMMAND FINISHED");
+ DbpString("COMMAND FINISHED");
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+ Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
done:
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
- LED_D_OFF();
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+ Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+ Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
+ LEDsoff();
}
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
- int i;
- for(i = 0; i < 8; i++) {
+ int i;
+ for (i = 0; i < 8; i++) {
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
}
}
-//-----------------------------------------------------------------------------
-// Wait for commands from reader
-// Stop when button is pressed
-// Or return TRUE when command is captured
-//-----------------------------------------------------------------------------
-static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
-{
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
- // only, since we are receiving, not transmitting).
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
- // Now run a `software UART' on the stream of incoming samples.
- Uart.output = received;
- Uart.byteCntMax = maxLen;
- Uart.state = STATE_UNSYNCD;
-
- for(;;) {
- WDT_HIT();
-
- if(BUTTON_PRESS()) return FALSE;
-
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
- if(OutOfNDecoding(b & 0x0f)) {
- *len = Uart.byteCnt;
- return TRUE;
- }
- }
- }
+// Encode SOF only
+static void CodeIClassTagSOF() {
+ ToSendReset();
+ ToSend[++ToSendMax] = 0x1D;
+ ToSendMax++;
}
+static void AppendCrc(uint8_t *data, int len) {
+ ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
+}
-//-----------------------------------------------------------------------------
-// Prepare tag messages
-//-----------------------------------------------------------------------------
-static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
-{
- //So far a dummy implementation, not used
- //int lastProxToAirDuration =0;
- int i;
- ToSendReset();
+/**
+ * @brief Does the actual simulation
+ */
+int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
- // Send SOF
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
-
- for(i = 0; i < len; i++) {
- int j;
- uint8_t b = cmd[i];
-
- // Data bits
- for(j = 0; j < 8; j++) {
- if(b & 1) {
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
- } else {
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- }
- b >>= 1;
- }
- }
+ // free eventually allocated BigBuf memory
+ BigBuf_free_keep_EM();
- // Send EOF
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
+ uint16_t page_size = 32 * 8;
+ uint8_t current_page = 0;
- //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
+ // maintain cipher states for both credit and debit key for each page
+ State cipher_state_KC[8];
+ State cipher_state_KD[8];
+ State *cipher_state = &cipher_state_KD[0];
- // Convert from last byte pos to length
- ToSendMax++;
-}
+ uint8_t *emulator = BigBuf_get_EM_addr();
+ uint8_t *csn = emulator;
-// Only SOF
-static void CodeIClassTagSOF()
-{
- //So far a dummy implementation, not used
- //int lastProxToAirDuration =0;
+ // CSN followed by two CRC bytes
+ uint8_t anticoll_data[10];
+ uint8_t csn_data[10];
+ memcpy(csn_data, csn, sizeof(csn_data));
+ Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
- ToSendReset();
- // Send SOF
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
-
-// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
+ // Construct anticollision-CSN
+ rotateCSN(csn_data, anticoll_data);
-
- // Convert from last byte pos to length
- ToSendMax++;
-}
+ // Compute CRC on both CSNs
+ AppendCrc(anticoll_data, 8);
+ AppendCrc(csn_data, 8);
-int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
-/**
- * @brief SimulateIClass simulates an iClass card.
- * @param arg0 type of simulation
- * - 0 uses the first 8 bytes in usb data as CSN
- * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
- * in the usb data. This mode collects MAC from the reader, in order to do an offline
- * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
- * - Other : Uses the default CSN (031fec8af7ff12e0)
- * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
- * @param arg2
- * @param datain
- */
-void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
-{
- uint32_t simType = arg0;
- uint32_t numberOfCSNS = arg1;
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ uint8_t diversified_key_d[8] = { 0x00 };
+ uint8_t diversified_key_c[8] = { 0x00 };
+ uint8_t *diversified_key = diversified_key_d;
- // Enable and clear the trace
- iso14a_set_tracing(TRUE);
- iso14a_clear_trace();
+ // configuration block
+ uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
- uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
- if(simType == 0) {
- // Use the CSN from commandline
- memcpy(csn_crc, datain, 8);
- doIClassSimulation(csn_crc,0,NULL);
- }else if(simType == 1)
- {
- doIClassSimulation(csn_crc,0,NULL);
+ // e-Purse
+ uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
+
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ // initialize from page 0
+ memcpy(conf_block, emulator + 8 * 1, 8);
+ memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse
+ memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd
+ memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
}
- else if(simType == 2)
- {
- uint8_t mac_responses[64] = { 0 };
- Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
- // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
- // in order to collect MAC's from the reader. This can later be used in an offlne-attack
- // in order to obtain the keys, as in the "dismantling iclass"-paper.
- int i = 0;
- for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
- {
- // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
-
- memcpy(csn_crc, datain+(i*8), 8);
- if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
- {
- return; // Button pressed
- }
- }
- cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
+ AppendCrc(conf_block, 8);
+ // save card challenge for sim2,4 attack
+ if (reader_mac_buf != NULL) {
+ memcpy(reader_mac_buf, card_challenge_data, 8);
}
- else{
- // We may want a mode here where we hardcode the csns to use (from proxclone).
- // That will speed things up a little, but not required just yet.
- Dbprintf("The mode is not implemented, reserved for future use");
- }
- Dbprintf("Done...");
-
-}
-/**
- * @brief Does the actual simulation
- * @param csn - csn to use
- * @param breakAfterMacReceived if true, returns after reader MAC has been received.
- */
-int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
-{
-
- // CSN followed by two CRC bytes
- uint8_t response1[] = { 0x0F} ;
- uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
- memcpy(response3,csn,sizeof(response3));
- Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
- // e-Purse
- uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- // Construct anticollision-CSN
- rotateCSN(response3,response2);
+ if (conf_block[5] & 0x80) {
+ page_size = 256 * 8;
+ }
- // Compute CRC on both CSNs
- ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
- ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
+ // From PicoPass DS:
+ // When the page is in personalization mode this bit is equal to 1.
+ // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
+ // the page is then "in application mode".
+ bool personalization_mode = conf_block[7] & 0x80;
+
+ // chip memory may be divided in 8 pages
+ uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
+
+ // Precalculate the cipher states, feeding it the CC
+ cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ for (int i = 1; i < max_page; i++) {
+ uint8_t *epurse = emulator + i*page_size + 8*2;
+ uint8_t *Kd = emulator + i*page_size + 8*3;
+ uint8_t *Kc = emulator + i*page_size + 8*4;
+ cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd);
+ cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
+ }
+ }
int exitLoop = 0;
// Reader 0a
// Tag CSN
uint8_t *modulated_response;
- int modulated_response_size;
- uint8_t* trace_data = NULL;
+ int modulated_response_size = 0;
+ uint8_t *trace_data = NULL;
int trace_data_size = 0;
- //uint8_t sof = 0x0f;
- // Respond SOF -- takes 8 bytes
- uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
- int resp1Len;
+ // Respond SOF -- takes 1 bytes
+ uint8_t *resp_sof = BigBuf_malloc(1);
+ int resp_sof_Len;
// Anticollision CSN (rotated CSN)
- // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
- uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
- int resp2Len;
-
- // CSN
- // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
- uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
- int resp3Len;
-
- // e-Purse
- // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
- uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
- int resp4Len;
-
- // + 1720..
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
- memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
+ // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
+ uint8_t *resp_anticoll = BigBuf_malloc(22);
+ int resp_anticoll_len;
+
+ // CSN (block 0)
+ // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
+ uint8_t *resp_csn = BigBuf_malloc(22);
+ int resp_csn_len;
+
+ // configuration (block 1) picopass 2ks
+ uint8_t *resp_conf = BigBuf_malloc(22);
+ int resp_conf_len;
+
+ // e-Purse (block 2)
+ // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
+ uint8_t *resp_cc = BigBuf_malloc(18);
+ int resp_cc_len;
+
+ // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
+ uint8_t *resp_ff = BigBuf_malloc(22);
+ int resp_ff_len;
+ uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
+ AppendCrc(ff_data, 8);
+
+ // Application Issuer Area (block 5)
+ uint8_t *resp_aia = BigBuf_malloc(22);
+ int resp_aia_len;
+ uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
+ AppendCrc(aia_data, 8);
+
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
int len;
// Prepare card messages
- ToSendMax = 0;
- // First card answer: SOF
+ // First card answer: SOF only
CodeIClassTagSOF();
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+ memcpy(resp_sof, ToSend, ToSendMax);
+ resp_sof_Len = ToSendMax;
// Anticollision CSN
- CodeIClassTagAnswer(response2, sizeof(response2));
- memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
+ CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data));
+ memcpy(resp_anticoll, ToSend, ToSendMax);
+ resp_anticoll_len = ToSendMax;
+
+ // CSN (block 0)
+ CodeIso15693AsTag(csn_data, sizeof(csn_data));
+ memcpy(resp_csn, ToSend, ToSendMax);
+ resp_csn_len = ToSendMax;
+
+ // Configuration (block 1)
+ CodeIso15693AsTag(conf_block, sizeof(conf_block));
+ memcpy(resp_conf, ToSend, ToSendMax);
+ resp_conf_len = ToSendMax;
+
+ // e-Purse (block 2)
+ CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
+ memcpy(resp_cc, ToSend, ToSendMax);
+ resp_cc_len = ToSendMax;
+
+ // Kd, Kc (blocks 3 and 4)
+ CodeIso15693AsTag(ff_data, sizeof(ff_data));
+ memcpy(resp_ff, ToSend, ToSendMax);
+ resp_ff_len = ToSendMax;
+
+ // Application Issuer Area (block 5)
+ CodeIso15693AsTag(aia_data, sizeof(aia_data));
+ memcpy(resp_aia, ToSend, ToSendMax);
+ resp_aia_len = ToSendMax;
+
+ //This is used for responding to READ-block commands or other data which is dynamically generated
+ uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
+ uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2);
- // CSN
- CodeIClassTagAnswer(response3, sizeof(response3));
- memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
+ bool buttonPressed = false;
+ enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
- // e-Purse
- CodeIClassTagAnswer(response4, sizeof(response4));
- memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
+ while (!exitLoop) {
+ WDT_HIT();
+ uint32_t reader_eof_time = 0;
+ len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
+ if (len < 0) {
+ buttonPressed = true;
+ break;
+ }
- // Start from off (no field generated)
- //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- //SpinDelay(200);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- SpinDelay(100);
- StartCountSspClk();
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ // Now look at the reader command and provide appropriate responses
+ // default is no response:
+ modulated_response = NULL;
+ modulated_response_size = 0;
+ trace_data = NULL;
+ trace_data_size = 0;
+
+ if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) {
+ // Reader in anticollision phase
+ if (chip_state != HALTED) {
+ modulated_response = resp_sof;
+ modulated_response_size = resp_sof_Len;
+ chip_state = ACTIVATED;
+ }
- // To control where we are in the protocol
- int cmdsRecvd = 0;
- uint32_t time_0 = GetCountSspClk();
- uint32_t t2r_time =0;
- uint32_t r2t_time =0;
+ } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify
+ // Reader asks for anticollision CSN
+ if (chip_state == SELECTED || chip_state == ACTIVATED) {
+ modulated_response = resp_anticoll;
+ modulated_response_size = resp_anticoll_len;
+ trace_data = anticoll_data;
+ trace_data_size = sizeof(anticoll_data);
+ }
- LED_A_ON();
- bool buttonPressed = false;
+ } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) {
+ // Reader selects anticollision CSN.
+ // Tag sends the corresponding real CSN
+ if (chip_state == ACTIVATED || chip_state == SELECTED) {
+ if (!memcmp(receivedCmd+1, anticoll_data, 8)) {
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len;
+ trace_data = csn_data;
+ trace_data_size = sizeof(csn_data);
+ chip_state = SELECTED;
+ } else {
+ chip_state = IDLE;
+ }
+ } else if (chip_state == HALTED) {
+ // RESELECT with CSN
+ if (!memcmp(receivedCmd+1, csn_data, 8)) {
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len;
+ trace_data = csn_data;
+ trace_data_size = sizeof(csn_data);
+ chip_state = SELECTED;
+ }
+ }
- while(!exitLoop) {
+ } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block
+ uint16_t blockNo = receivedCmd[1];
+ if (chip_state == SELECTED) {
+ if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
+ // provide defaults for blocks 0 ... 5
+ switch (blockNo) {
+ case 0: // csn (block 00)
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len;
+ trace_data = csn_data;
+ trace_data_size = sizeof(csn_data);
+ break;
+ case 1: // configuration (block 01)
+ modulated_response = resp_conf;
+ modulated_response_size = resp_conf_len;
+ trace_data = conf_block;
+ trace_data_size = sizeof(conf_block);
+ break;
+ case 2: // e-purse (block 02)
+ modulated_response = resp_cc;
+ modulated_response_size = resp_cc_len;
+ trace_data = card_challenge_data;
+ trace_data_size = sizeof(card_challenge_data);
+ // set epurse of sim2,4 attack
+ if (reader_mac_buf != NULL) {
+ memcpy(reader_mac_buf, card_challenge_data, 8);
+ }
+ break;
+ case 3:
+ case 4: // Kd, Kc, always respond with 0xff bytes
+ modulated_response = resp_ff;
+ modulated_response_size = resp_ff_len;
+ trace_data = ff_data;
+ trace_data_size = sizeof(ff_data);
+ break;
+ case 5: // Application Issuer Area (block 05)
+ modulated_response = resp_aia;
+ modulated_response_size = resp_aia_len;
+ trace_data = aia_data;
+ trace_data_size = sizeof(aia_data);
+ break;
+ // default: don't respond
+ }
+ } else if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes
+ modulated_response = resp_ff;
+ modulated_response_size = resp_ff_len;
+ trace_data = ff_data;
+ trace_data_size = sizeof(ff_data);
+ } else { // use data from emulator memory
+ memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8);
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
+ }
+ }
- LED_B_OFF();
- //Signal tracer
- // Can be used to get a trigger for an oscilloscope..
- LED_C_OFF();
+ } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD
+ || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) {
+ // Read e-purse (88 02 || 18 02)
+ if (chip_state == SELECTED) {
+ if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){
+ cipher_state = &cipher_state_KD[current_page];
+ diversified_key = diversified_key_d;
+ } else {
+ cipher_state = &cipher_state_KC[current_page];
+ diversified_key = diversified_key_c;
+ }
+ modulated_response = resp_cc;
+ modulated_response_size = resp_cc_len;
+ trace_data = card_challenge_data;
+ trace_data_size = sizeof(card_challenge_data);
+ }
- if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
- buttonPressed = true;
- break;
- }
- r2t_time = GetCountSspClk();
- //Signal tracer
- LED_C_ON();
-
- // Okay, look at the command now.
- if(receivedCmd[0] == 0x0a ) {
- // Reader in anticollission phase
- modulated_response = resp1; modulated_response_size = resp1Len; //order = 1;
- trace_data = response1;
- trace_data_size = sizeof(response1);
- } else if(receivedCmd[0] == 0x0c) {
- // Reader asks for anticollission CSN
- modulated_response = resp2; modulated_response_size = resp2Len; //order = 2;
- trace_data = response2;
- trace_data_size = sizeof(response2);
- //DbpString("Reader requests anticollission CSN:");
- } else if(receivedCmd[0] == 0x81) {
- // Reader selects anticollission CSN.
- // Tag sends the corresponding real CSN
- modulated_response = resp3; modulated_response_size = resp3Len; //order = 3;
- trace_data = response3;
- trace_data_size = sizeof(response3);
- //DbpString("Reader selects anticollission CSN:");
- } else if(receivedCmd[0] == 0x88) {
- // Read e-purse (88 02)
- modulated_response = resp4; modulated_response_size = resp4Len; //order = 4;
- trace_data = response4;
- trace_data_size = sizeof(response4);
- LED_B_ON();
- } else if(receivedCmd[0] == 0x05) {
+ } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
+ || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
- // Do not respond
- // We do not know what to answer, so lets keep quiet
- modulated_response = resp1; modulated_response_size = 0; //order = 5;
- trace_data = NULL;
- trace_data_size = 0;
- if (breakAfterMacReceived){
- // dbprintf:ing ...
- Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
- ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
- Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
- receivedCmd[0], receivedCmd[1], receivedCmd[2],
- receivedCmd[3], receivedCmd[4], receivedCmd[5],
- receivedCmd[6], receivedCmd[7], receivedCmd[8]);
- if (reader_mac_buf != NULL)
- {
- memcpy(reader_mac_buf,receivedCmd+1,8);
+ if (chip_state == SELECTED) {
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ //NR, from reader, is in receivedCmd+1
+ opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
+ trace_data = data_generic_trace;
+ trace_data_size = 4;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ //exitLoop = true;
+ } else { // Not fullsim, we don't respond
+ // We do not know what to answer, so lets keep quiet
+ if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
+ if (reader_mac_buf != NULL) {
+ // save NR and MAC for sim 2,4
+ memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
+ }
+ exitLoop = true;
+ }
+ }
+ }
+
+ } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
+ if (chip_state == SELECTED) {
+ // Reader ends the session
+ modulated_response = resp_sof;
+ modulated_response_size = resp_sof_Len;
+ chip_state = HALTED;
+ }
+
+ } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06
+ //Read 4 blocks
+ if (chip_state == SELECTED) {
+ uint8_t blockNo = receivedCmd[1];
+ memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4);
+ AppendCrc(data_generic_trace, 8 * 4);
+ trace_data = data_generic_trace;
+ trace_data_size = 8 * 4 + 2;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
+
+ } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
+ // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
+ // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
+ if (chip_state == SELECTED) {
+ uint8_t blockNo = receivedCmd[1];
+ if (blockNo == 2) { // update e-purse
+ memcpy(card_challenge_data, receivedCmd+2, 8);
+ CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
+ memcpy(resp_cc, ToSend, ToSendMax);
+ resp_cc_len = ToSendMax;
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8);
+ }
+ } else if (blockNo == 3) { // update Kd
+ for (int i = 0; i < 8; i++) {
+ if (personalization_mode) {
+ diversified_key_d[i] = receivedCmd[2 + i];
+ } else {
+ diversified_key_d[i] ^= receivedCmd[2 + i];
+ }
+ }
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
+ }
+ } else if (blockNo == 4) { // update Kc
+ for (int i = 0; i < 8; i++) {
+ if (personalization_mode) {
+ diversified_key_c[i] = receivedCmd[2 + i];
+ } else {
+ diversified_key_c[i] ^= receivedCmd[2 + i];
+ }
+ }
+ cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8);
+ }
+ } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
+ memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
}
- exitLoop = true;
+ memcpy(data_generic_trace, receivedCmd + 2, 8);
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
}
- } else if(receivedCmd[0] == 0x00 && len == 1) {
- // Reader ends the session
- modulated_response = resp1; modulated_response_size = 0; //order = 0;
- trace_data = NULL;
- trace_data_size = 0;
+
+ } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
+ // Pagesel
+ // Chips with a single page will not answer to this command
+ // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
+ if (chip_state == SELECTED) {
+ if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
+ current_page = receivedCmd[1];
+ memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
+ memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
+ memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
+ cipher_state = &cipher_state_KD[current_page];
+ personalization_mode = data_generic_trace[7] & 0x80;
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
+ }
+
+ } else if (receivedCmd[0] == 0x26 && len == 5) {
+ // standard ISO15693 INVENTORY command. Ignore.
+
} else {
- //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
- // Never seen this command before
- Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
- len,
- receivedCmd[0], receivedCmd[1], receivedCmd[2],
- receivedCmd[3], receivedCmd[4], receivedCmd[5],
- receivedCmd[6], receivedCmd[7], receivedCmd[8]);
+ // don't know how to handle this command
+ char debug_message[250]; // should be enough
+ sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len);
+ for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) {
+ sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]);
+ }
+ Dbprintf("%s", debug_message);
// Do not respond
- modulated_response = resp1; modulated_response_size = 0; //order = 0;
- trace_data = NULL;
- trace_data_size = 0;
}
- if(cmdsRecvd > 100) {
- //DbpString("100 commands later...");
- //break;
- }
- else {
- cmdsRecvd++;
- }
/**
- After changes to parity calculation
- Time between reader EOT and pm3 SOF
- delay 21 -> 480uS
- delay 10 -> 220us
- delay 16 -> 388us
- A legit tag has about 380us.
+ A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
- if(modulated_response_size > 0) {
- SendIClassAnswer(modulated_response, modulated_response_size, timeout);
- t2r_time = GetCountSspClk();
+ if (modulated_response_size > 0) {
+ uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
+ TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
+ LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false);
}
- if (tracing) {
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedCmd, len, parity);
- LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
-
- if (trace_data != NULL) {
- GetParity(trace_data, trace_data_size, parity);
- LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
- }
- if(!tracing) {
- DbpString("Trace full");
- //break;
- }
-
- }
- memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
}
- //Dbprintf("%x", cmdsRecvd);
- LED_A_OFF();
- LED_B_OFF();
- if(buttonPressed)
+ if (buttonPressed)
{
DbpString("Button pressed");
}
return buttonPressed;
}
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
-{
- int i = 0, d=0;//, u = 0, d = 0;
- uint8_t b = 0;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
-
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc();
- while(!BUTTON_PRESS()) {
- if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
- b = AT91C_BASE_SSC->SSC_RHR; (void) b;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
- b = 0x00;
- if(d < delay) {
- d++;
- }
- else {
- if( i < respLen){
- b = resp[i];
- //Hack
- //b = 0xAC;
- }
- i++;
- }
- AT91C_BASE_SSC->SSC_THR = b;
- }
-
- if (i > respLen +4) break;
- }
+/**
+ * @brief SimulateIClass simulates an iClass card.
+ * @param arg0 type of simulation
+ * - 0 uses the first 8 bytes in usb data as CSN
+ * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
+ * in the usb data. This mode collects MAC from the reader, in order to do an offline
+ * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
+ * - Other : Uses the default CSN (031fec8af7ff12e0)
+ * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
+ * @param arg2
+ * @param datain
+ */
+void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
- return 0;
-}
+ LED_A_ON();
-/// THE READER CODE
+ uint32_t simType = arg0;
+ uint32_t numberOfCSNS = arg1;
-//-----------------------------------------------------------------------------
-// Transmit the command (to the tag) that was placed in ToSend[].
-//-----------------------------------------------------------------------------
-static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
-{
- int c;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc();
-
- if (wait)
- {
- if(*wait < 10) *wait = 10;
-
- for(c = 0; c < *wait;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
-
- }
-
-
- uint8_t sendbyte;
- bool firstpart = TRUE;
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-
- // DOUBLE THE SAMPLES!
- if(firstpart) {
- sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
- }
- else {
- sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
- c++;
- }
- if(sendbyte == 0xff) {
- sendbyte = 0xfe;
- }
- AT91C_BASE_SSC->SSC_THR = sendbyte;
- firstpart = !firstpart;
-
- if(c >= len) {
- break;
- }
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples) *samples = (c + *wait) << 3;
-}
+ // setup hardware for simulation:
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ LED_D_OFF();
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
+ StartCountSspClk();
+ // Enable and clear the trace
+ set_tracing(true);
+ clear_trace();
+ //Use the emulator memory for SIM
+ uint8_t *emulator = BigBuf_get_EM_addr();
-//-----------------------------------------------------------------------------
-// Prepare iClass reader command to send to FPGA
-//-----------------------------------------------------------------------------
-void CodeIClassCommand(const uint8_t * cmd, int len)
-{
- int i, j, k;
- uint8_t b;
-
- ToSendReset();
-
- // Start of Communication: 1 out of 4
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x0f;
- ToSend[++ToSendMax] = 0x00;
-
- // Modulate the bytes
- for (i = 0; i < len; i++) {
- b = cmd[i];
- for(j = 0; j < 4; j++) {
- for(k = 0; k < 4; k++) {
- if(k == (b & 3)) {
- ToSend[++ToSendMax] = 0x0f;
- }
- else {
- ToSend[++ToSendMax] = 0x00;
+ if (simType == ICLASS_SIM_MODE_CSN) {
+ // Use the CSN from commandline
+ memcpy(emulator, datain, 8);
+ doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
+ } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) {
+ //Default CSN
+ uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
+ // Use the CSN from commandline
+ memcpy(emulator, csn_crc, 8);
+ doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
+ } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) {
+ uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
+ Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
+ // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
+ // in order to collect MAC's from the reader. This can later be used in an offline-attack
+ // in order to obtain the keys, as in the "dismantling iclass"-paper.
+ int i;
+ for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) {
+ // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
+ memcpy(emulator, datain+(i*8), 8);
+ if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) {
+ // Button pressed
+ break;
}
- }
- b >>= 2;
- }
- }
-
- // End of Communication
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
-
- // Convert from last character reference to length
- ToSendMax++;
-}
-
-void ReaderTransmitIClass(uint8_t* frame, int len)
-{
- int wait = 0;
- int samples = 0;
-
- // This is tied to other size changes
- CodeIClassCommand(frame,len);
-
- // Select the card
- TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
- if(trigger)
- LED_A_ON();
-
- // Store reader command in buffer
- if (tracing) {
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(frame, len, par);
- LogTrace(frame, len, rsamples, rsamples, par, TRUE);
+ Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
+ datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3],
+ datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]);
+ Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11],
+ mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]);
+ SpinDelay(100); // give the reader some time to prepare for next CSN
+ }
+ cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16);
+ } else if (simType == ICLASS_SIM_MODE_FULL) {
+ //This is 'full sim' mode, where we use the emulator storage for data.
+ doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL);
+ } else {
+ // We may want a mode here where we hardcode the csns to use (from proxclone).
+ // That will speed things up a little, but not required just yet.
+ Dbprintf("The mode is not implemented, reserved for future use");
}
-}
-
-//-----------------------------------------------------------------------------
-// Wait a certain time for tag response
-// If a response is captured return TRUE
-// If it takes too long return FALSE
-//-----------------------------------------------------------------------------
-static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
-{
- // buffer needs to be 512 bytes
- int c;
- // Set FPGA mode to "reader listen mode", no modulation (listen
- // only, since we are receiving, not transmitting).
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+ Dbprintf("Done...");
- // Now get the answer from the card
- Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
+ LED_A_OFF();
+}
- uint8_t b;
- if (elapsed) *elapsed = 0;
- bool skip = FALSE;
+/// THE READER CODE
- c = 0;
- for(;;) {
- WDT_HIT();
+static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
- if(BUTTON_PRESS()) return FALSE;
+ CodeIso15693AsReader(frame, len);
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- if (elapsed) (*elapsed)++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if(c < timeout) { c++; } else { return FALSE; }
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- skip = !skip;
- if(skip) continue;
-
- if(ManchesterDecoding(b & 0x0f)) {
- *samples = c << 3;
- return TRUE;
- }
- }
- }
-}
+ TransmitTo15693Tag(ToSend, ToSendMax, start_time);
-int ReaderReceiveIClass(uint8_t* receivedAnswer)
-{
- int samples = 0;
- if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
- rsamples += samples;
- if (tracing) {
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedAnswer, Demod.len, parity);
- LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
- }
- if(samples == 0) return FALSE;
- return Demod.len;
+ uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
}
-void setupIclassReader()
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Reset trace buffer
- iso14a_set_tracing(TRUE);
- iso14a_clear_trace();
-
- // Setup SSC
- FpgaSetupSsc();
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
-
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
- LED_A_ON();
-
-}
-size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
-{
- while(retries-- > 0)
- {
- ReaderTransmitIClass(command, cmdsize);
- if(expected_size == ReaderReceiveIClass(resp)){
- return 0;
+static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
+ uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t *eof_time) {
+ while (retries-- > 0) {
+ ReaderTransmitIClass(command, cmdsize, &start_time);
+ if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, ICLASS_READER_TIMEOUT_OTHERS, eof_time)) {
+ return true;
}
}
- return 1;//Error
+ return false;//Error
}
/**
- * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
- * @param card_data where the CSN and CC are stored for return
- * @return 0 = fail
- * 1 = Got CSN
- * 2 = Got CSN and CC
+ * @brief Selects an iclass tag
+ * @param card_data where the CSN is stored for return
+ * @return false = fail
+ * true = success
*/
-uint8_t handshakeIclassTag(uint8_t *card_data)
-{
- static uint8_t act_all[] = { 0x0a };
- static uint8_t identify[] = { 0x0c };
- static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- static uint8_t readcheck_cc[]= { 0x88, 0x02 };
- uint8_t *resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
+static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t read_status = 0;
+ uint8_t resp[ICLASS_BUFFER_SIZE];
+
+ uint32_t start_time = GetCountSspClk();
// Send act_all
- ReaderTransmitIClass(act_all, 1);
+ ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
- if(!ReaderReceiveIClass(resp)) return read_status;//Fail
+ if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false;//Fail
+
//Send Identify
- ReaderTransmitIClass(identify, 1);
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(identify, 1, &start_time);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
- uint8_t len = ReaderReceiveIClass(resp);
- if(len != 10) return read_status;//Fail
+ uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
+ if (len != 10) return false;//Fail
//Copy the Anti-collision CSN to our select-packet
- memcpy(&select[1],resp,8);
+ memcpy(&select[1], resp, 8);
//Select the card
- ReaderTransmitIClass(select, sizeof(select));
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
- len = ReaderReceiveIClass(resp);
- if(len != 10) return read_status;//Fail
+ len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
+ if (len != 10) return false;//Fail
- //Success - level 1, we got CSN
+ //Success - we got CSN
//Save CSN in response data
- memcpy(card_data,resp,8);
+ memcpy(card_data, resp, 8);
- //Flag that we got to at least stage 1, read CSN
- read_status = 1;
+ return true;
+}
- // Card selected, now read e-purse (cc)
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if(ReaderReceiveIClass(resp) == 8) {
- //Save CC (e-purse) in response data
- memcpy(card_data+8,resp,8);
- //Got both
- read_status = 2;
- }
+// Select an iClass tag and read all blocks which are always readable without authentication
+void ReaderIClass(uint8_t arg0) {
- return read_status;
-}
+ LED_A_ON();
-// Reader iClass Anticollission
-void ReaderIClass(uint8_t arg0) {
+ uint8_t card_data[6 * 8] = {0};
+ memset(card_data, 0xFF, sizeof(card_data));
+ uint8_t resp[ICLASS_BUFFER_SIZE];
+ //Read conf block CRC(0x01) => 0xfa 0x22
+ uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
+ //Read e-purse block CRC(0x02) => 0x61 0x10
+ uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10};
+ //Read App Issuer Area block CRC(0x05) => 0xde 0x64
+ uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
- uint8_t card_data[24]={0};
- uint8_t last_csn[8]={0};
-
- int read_status= 0;
- bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
- bool get_cc = arg0 & FLAG_ICLASS_READER_GET_CC;
+ uint8_t result_status = 0;
- setupIclassReader();
+ // test flags for what blocks to be sure to read
+ uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
+ uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
+ uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
- size_t datasize = 0;
- while(!BUTTON_PRESS())
- {
+ set_tracing(true);
+ clear_trace();
+ Iso15693InitReader();
- if(traceLen > TRACE_SIZE) {
- DbpString("Trace full");
- break;
+ StartCountSspClk();
+ uint32_t start_time = 0;
+ uint32_t eof_time = 0;
+
+ if (selectIclassTag(resp, &eof_time)) {
+ result_status = FLAG_ICLASS_READER_CSN;
+ memcpy(card_data, resp, 8);
+ }
+
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+
+ //Read block 1, config
+ if (flagReadConfig) {
+ if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_CONF;
+ memcpy(card_data+8, resp, 8);
+ } else {
+ Dbprintf("Failed to read config block");
}
- WDT_HIT();
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ }
- read_status = handshakeIclassTag(card_data);
+ //Read block 2, e-purse
+ if (flagReadCC) {
+ if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_CC;
+ memcpy(card_data + (8*2), resp, 8);
+ } else {
+ Dbprintf("Failed to read e-purse");
+ }
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ }
- if(read_status == 0) continue;
- if(read_status == 1) datasize = 8;
- if(read_status == 2) datasize = 16;
+ //Read block 5, AA
+ if (flagReadAA) {
+ if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_AA;
+ memcpy(card_data + (8*5), resp, 8);
+ } else {
+ Dbprintf("Failed to read AA block");
+ }
+ }
- LED_B_ON();
- //Send back to client, but don't bother if we already sent this
- if(memcmp(last_csn, card_data, 8) != 0)
- {
+ cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
- if(!get_cc || (get_cc && read_status == 2))
- {
- cmd_send(CMD_ACK,read_status,0,0,card_data,datasize);
- if(abort_after_read) {
- LED_A_OFF();
- return;
- }
- //Save that we already sent this....
- memcpy(last_csn, card_data, 8);
- }
- //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying...
- }
- LED_B_OFF();
- }
- cmd_send(CMD_ACK,0,0,0,card_data, 0);
- LED_A_OFF();
+ LED_A_OFF();
}
+
void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
+ LED_A_ON();
+
+ bool use_credit_key = false;
uint8_t card_data[USB_CMD_DATA_SIZE]={0};
uint16_t block_crc_LUT[255] = {0};
- {//Generate a lookup table for block crc
- for(int block = 0; block < 255; block++){
- char bl = block;
- block_crc_LUT[block] = iclass_crc16(&bl ,1);
- }
+ //Generate a lookup table for block crc
+ for (int block = 0; block < 255; block++){
+ char bl = block;
+ block_crc_LUT[block] = iclass_crc16(&bl ,1);
}
//Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
+ uint8_t readcheck_cc[] = { ICLASS_CMD_READCHECK_KD, 0x02 };
+ if (use_credit_key)
+ readcheck_cc[0] = ICLASS_CMD_READCHECK_KC;
uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
-
- uint16_t crc = 0;
- uint8_t cardsize=0;
- uint8_t mem=0;
-
- static struct memory_t{
- int k16;
- int book;
- int k2;
- int lockauth;
- int keyaccess;
+
+ uint16_t crc = 0;
+ uint8_t cardsize = 0;
+ uint8_t mem = 0;
+
+ static struct memory_t {
+ int k16;
+ int book;
+ int k2;
+ int lockauth;
+ int keyaccess;
} memory;
-
- uint8_t* resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-
- setupIclassReader();
+ uint8_t resp[ICLASS_BUFFER_SIZE];
+
+ set_tracing(true);
+ clear_trace();
+ Iso15693InitReader();
+
+ StartCountSspClk();
+ uint32_t start_time = 0;
+ uint32_t eof_time = 0;
+
+ while (!BUTTON_PRESS()) {
- while(!BUTTON_PRESS()) {
-
WDT_HIT();
- if(traceLen > TRACE_SIZE) {
+ if (!get_tracing()) {
DbpString("Trace full");
break;
}
-
- uint8_t read_status = handshakeIclassTag(card_data);
- if(read_status < 2) continue;
- //for now replay captured auth (as cc not updated)
- memcpy(check+5,MAC,4);
+ if (!selectIclassTag(card_data, &eof_time)) continue;
+
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ if (!sendCmdGetResponseWithRetries(readcheck_cc, sizeof(readcheck_cc), resp, sizeof(resp), 8, 3, start_time, &eof_time)) continue;
- if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
- {
+ // replay captured auth (cc must not have been updated)
+ memcpy(check+5, MAC, 4);
+
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, &eof_time)) {
Dbprintf("Error: Authentication Fail!");
continue;
}
//first get configuration block (block 1)
crc = block_crc_LUT[1];
- read[1]=1;
+ read[1] = 1;
read[2] = crc >> 8;
read[3] = crc & 0xff;
- if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
- {
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf("Dump config (block 1) failed");
continue;
}
- mem=resp[5];
- memory.k16= (mem & 0x80);
- memory.book= (mem & 0x20);
- memory.k2= (mem & 0x8);
- memory.lockauth= (mem & 0x2);
- memory.keyaccess= (mem & 0x1);
+ mem = resp[5];
+ memory.k16 = (mem & 0x80);
+ memory.book = (mem & 0x20);
+ memory.k2 = (mem & 0x8);
+ memory.lockauth = (mem & 0x2);
+ memory.keyaccess = (mem & 0x1);
cardsize = memory.k16 ? 255 : 32;
WDT_HIT();
//Set card_data to all zeroes, we'll fill it with data
- memset(card_data,0x0,USB_CMD_DATA_SIZE);
- uint8_t failedRead =0;
- uint8_t stored_data_length =0;
+ memset(card_data, 0x0, USB_CMD_DATA_SIZE);
+ uint8_t failedRead = 0;
+ uint32_t stored_data_length = 0;
//then loop around remaining blocks
- for(int block=0; block < cardsize; block++){
-
- read[1]= block;
+ for (int block = 0; block < cardsize; block++) {
+ read[1] = block;
crc = block_crc_LUT[block];
read[2] = crc >> 8;
read[3] = crc & 0xff;
- if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
- {
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
- block, resp[0], resp[1], resp[2],
+ block, resp[0], resp[1], resp[2],
resp[3], resp[4], resp[5],
resp[6], resp[7]);
//Fill up the buffer
- memcpy(card_data+stored_data_length,resp,8);
+ memcpy(card_data+stored_data_length, resp, 8);
stored_data_length += 8;
-
- if(stored_data_length +8 > USB_CMD_DATA_SIZE)
- {//Time to send this off and start afresh
+ if (stored_data_length +8 > USB_CMD_DATA_SIZE) {
+ //Time to send this off and start afresh
cmd_send(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
failedRead = 0;
}
- }else{
+ } else {
failedRead = 1;
- stored_data_length +=8;//Otherwise, data becomes misaligned
+ stored_data_length += 8;//Otherwise, data becomes misaligned
Dbprintf("Failed to dump block %d", block);
}
}
+
//Send off any remaining data
- if(stored_data_length > 0)
- {
+ if (stored_data_length > 0) {
cmd_send(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
0,//Not used ATM
- card_data, stored_data_length);
+ card_data,
+ stored_data_length);
}
//If we got here, let's break
break;
0,//data length
0,//Failed blocks?
0,//Not used ATM
- card_data, 0);
+ card_data,
+ 0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
LED_A_OFF();
}
-//2. Create Read method (cut-down from above) based off responses from 1.
-// Since we have the MAC could continue to use replay function.
-//3. Create Write method
-/*
-void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
- uint8_t act_all[] = { 0x0a };
- uint8_t identify[] = { 0x0c };
- uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t readcheck_cc[]= { 0x88, 0x02 };
- uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
- uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
-
- uint16_t crc = 0;
-
- uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
- // Reset trace buffer
- memset(trace, 0x44, RECV_CMD_OFFSET);
- traceLen = 0;
+void iClass_Check(uint8_t *MAC) {
+ uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
+ uint8_t resp[4];
+ memcpy(check+5, MAC, 4);
+ uint32_t eof_time;
+ bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, &eof_time);
+ cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
+}
- // Setup SSC
- FpgaSetupSsc();
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
+
+void iClass_Readcheck(uint8_t block, bool use_credit_key) {
+ uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block};
+ if (use_credit_key) {
+ readcheck[0] = ICLASS_CMD_READCHECK_KC;
+ }
+ uint8_t resp[8];
+ uint32_t eof_time;
+ bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 6, 0, &eof_time);
+ cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
+}
+
+
+static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
+ uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
+ char bl = blockNo;
+ uint16_t rdCrc = iclass_crc16(&bl, 1);
+ readcmd[2] = rdCrc >> 8;
+ readcmd[3] = rdCrc & 0xff;
+ uint8_t resp[10];
+ bool isOK = false;
+ uint32_t eof_time;
+
+ isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, &eof_time);
+ memcpy(readdata, resp, sizeof(resp));
+
+ return isOK;
+}
+
+
+void iClass_ReadBlk(uint8_t blockno) {
+
+ LED_A_ON();
+
+ uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
+ bool isOK = false;
+ isOK = iClass_ReadBlock(blockno, readblockdata);
+ cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
+
+ LED_A_OFF();
+}
+
+void iClass_Dump(uint8_t blockno, uint8_t numblks) {
+
+ LED_A_ON();
+
+ uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
+ bool isOK = false;
+ uint8_t blkCnt = 0;
+
+ BigBuf_free();
+ uint8_t *dataout = BigBuf_malloc(255*8);
+ if (dataout == NULL) {
+ Dbprintf("out of memory");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ cmd_send(CMD_ACK, 0, 1, 0, 0, 0);
+ LED_A_OFF();
+ return;
+ }
+ memset(dataout, 0xFF, 255*8);
+
+ for ( ; blkCnt < numblks; blkCnt++) {
+ isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
+ if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
+ isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
+ if (!isOK) {
+ Dbprintf("Block %02X failed to read", blkCnt+blockno);
+ break;
+ }
+ }
+ memcpy(dataout + (blkCnt*8), readblockdata, 8);
+ }
+ //return pointer to dump memory in arg3
+ cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
+ LED_D_OFF();
+ BigBuf_free();
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ LED_A_OFF();
+}
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
+
+static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
LED_A_ON();
- for(int i=0;i<1;i++) {
-
- if(traceLen > TRACE_SIZE) {
- DbpString("Trace full");
- break;
+ uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ //uint8_t readblockdata[10];
+ //write[1] = blockNo;
+ memcpy(write+2, data, 12); // data + mac
+ char *wrCmd = (char *)(write+1);
+ uint16_t wrCrc = iclass_crc16(wrCmd, 13);
+ write[14] = wrCrc >> 8;
+ write[15] = wrCrc & 0xff;
+ uint8_t resp[10];
+ bool isOK = false;
+ uint32_t eof_time = 0;
+
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, &eof_time);
+ uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ if (isOK) { //if reader responded correctly
+ //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
+ if (memcmp(write+2, resp, 8)) { //if response is not equal to write values
+ if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
+ //error try again
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, start_time, &eof_time);
+ }
}
-
- if (BUTTON_PRESS()) break;
-
- // Send act_all
- ReaderTransmitIClass(act_all, 1);
- // Card present?
- if(ReaderReceiveIClass(resp)) {
- ReaderTransmitIClass(identify, 1);
- if(ReaderReceiveIClass(resp) == 10) {
- // Select card
- memcpy(&select[1],resp,8);
- ReaderTransmitIClass(select, sizeof(select));
-
- if(ReaderReceiveIClass(resp) == 10) {
- Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
- resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
- }
- // Card selected
- Dbprintf("Readcheck on Sector 2");
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if(ReaderReceiveIClass(resp) == 8) {
- Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
- resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
- }else return;
- Dbprintf("Authenticate");
- //for now replay captured auth (as cc not updated)
- memcpy(check+5,MAC,4);
- Dbprintf(" AA: %02x %02x %02x %02x",
- check[5], check[6], check[7],check[8]);
- ReaderTransmitIClass(check, sizeof(check));
- if(ReaderReceiveIClass(resp) == 4) {
- Dbprintf(" AR: %02x %02x %02x %02x",
- resp[0], resp[1], resp[2],resp[3]);
- }else {
- Dbprintf("Error: Authentication Fail!");
- return;
- }
- Dbprintf("Write Block");
-
- //read configuration for max block number
- read_success=false;
- read[1]=1;
- uint8_t *blockno=&read[1];
- crc = iclass_crc16((char *)blockno,1);
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
- while(!read_success){
- ReaderTransmitIClass(read, sizeof(read));
- if(ReaderReceiveIClass(resp) == 10) {
- read_success=true;
- mem=resp[5];
- memory.k16= (mem & 0x80);
- memory.book= (mem & 0x20);
- memory.k2= (mem & 0x8);
- memory.lockauth= (mem & 0x2);
- memory.keyaccess= (mem & 0x1);
-
- }
- }
- if (memory.k16){
- cardsize=255;
- }else cardsize=32;
- //check card_size
-
- memcpy(write+1,blockNo,1);
- memcpy(write+2,data,8);
- memcpy(write+10,mac,4);
- while(!send_success){
- ReaderTransmitIClass(write, sizeof(write));
- if(ReaderReceiveIClass(resp) == 10) {
- write_success=true;
- }
- }//
+ }
+
+ LED_A_OFF();
+
+ return isOK;
+}
+
+
+void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
+
+ LED_A_ON();
+
+ bool isOK = iClass_WriteBlock_ext(blockNo, data);
+ if (isOK){
+ Dbprintf("Write block [%02x] successful", blockNo);
+ } else {
+ Dbprintf("Write block [%02x] failed", blockNo);
+ }
+ cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ LED_A_OFF();
+}
+
+void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
+ int i;
+ int written = 0;
+ int total_block = (endblock - startblock) + 1;
+ for (i = 0; i < total_block; i++) {
+ // block number
+ if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
+ Dbprintf("Write block [%02x] successful", i + startblock);
+ written++;
+ } else {
+ if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
+ Dbprintf("Write block [%02x] successful", i + startblock);
+ written++;
+ } else {
+ Dbprintf("Write block [%02x] failed", i + startblock);
+ }
}
- WDT_HIT();
}
-
+ if (written == total_block)
+ Dbprintf("Clone complete");
+ else
+ Dbprintf("Clone incomplete");
+
+ cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
LED_A_OFF();
-}*/
+}