-//-----------------------------------------------------------------------------
-// The main application code. This is the first thing called after start.c
-// executes.
-// Jonathan Westhues, Mar 2006
-// Edits by Gerhard de Koning Gans, Sep 2007 (##)
-//-----------------------------------------------------------------------------
-
-
-#include <proxmark3.h>
-#include <stdlib.h>
-#include "apps.h"
-#ifdef WITH_LCD
-#include "fonts.h"
-#include "LCD.h"
-#endif
-
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
-int usbattached = 0;
-
-//=============================================================================
-// A buffer where we can queue things up to be sent through the FPGA, for
-// any purpose (fake tag, as reader, whatever). We go MSB first, since that
-// is the order in which they go out on the wire.
-//=============================================================================
-
-BYTE ToSend[256];
-int ToSendMax;
-static int ToSendBit;
-
-
-void BufferClear(void)
-{
- memset(BigBuf,0,sizeof(BigBuf));
- DbpString("Buffer cleared");
-}
-
-void ToSendReset(void)
-{
- ToSendMax = -1;
- ToSendBit = 8;
-}
-
-void ToSendStuffBit(int b)
-{
- if(ToSendBit >= 8) {
- ToSendMax++;
- ToSend[ToSendMax] = 0;
- ToSendBit = 0;
- }
-
- if(b) {
- ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
- }
-
- ToSendBit++;
-
- if(ToSendBit >= sizeof(ToSend)) {
- ToSendBit = 0;
- DbpString("ToSendStuffBit overflowed!");
- }
-}
-
-//=============================================================================
-// Debug print functions, to go out over USB, to the usual PC-side client.
-//=============================================================================
-
-void DbpString(char *str)
-{
- /* this holds up stuff unless we're connected to usb */
-// if (!usbattached)
-// return;
-
- UsbCommand c;
- c.cmd = CMD_DEBUG_PRINT_STRING;
- c.ext1 = strlen(str);
- memcpy(c.d.asBytes, str, c.ext1);
-
- UsbSendPacket((BYTE *)&c, sizeof(c));
- // TODO fix USB so stupid things like this aren't req'd
- SpinDelay(50);
-}
-
-void DbpIntegers(int x1, int x2, int x3)
-{
- /* this holds up stuff unless we're connected to usb */
-// if (!usbattached)
-// return;
-
- UsbCommand c;
- c.cmd = CMD_DEBUG_PRINT_INTEGERS;
- c.ext1 = x1;
- c.ext2 = x2;
- c.ext3 = x3;
-
- UsbSendPacket((BYTE *)&c, sizeof(c));
- // XXX
- SpinDelay(50);
-}
-
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // Now call the acquisition routine
- DoAcquisition125k(at134khz);
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
-
- memset(dest,0,n);
- i = 0;
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- i++;
- LED_D_OFF();
- if(i >= n) {
- break;
- }
- }
- }
- DbpIntegers(dest[0], dest[1], at134khz);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
- BOOL at134khz;
-
- // see if 'h' was specified
- if(command[strlen((char *) command) - 1] == 'h')
- at134khz= TRUE;
- else
- at134khz= FALSE;
-
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // now modulate the reader field
- while(*command != '\0' && *command != ' ')
- {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // now do the read
- DoAcquisition125k(at134khz);
-}
-
-//-----------------------------------------------------------------------------
-// Read a TI-type tag. We assume that the tag has already been illuminated,
-// and that the exciting signal has been turned off. That means that we just
-// acquire the `one-bit DAC' bits from the comparator.
-//-----------------------------------------------------------------------------
-void AcquireTiType(void)
-{
- int i;
- int n = sizeof(BigBuf);
-
- // clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
-
- // Set up the synchronous serial port
- PIO_DISABLE = (1<<GPIO_SSC_DIN);
- PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);
-
- SSC_CONTROL = SSC_CONTROL_RESET;
- SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
-
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
- // 48/2 = 24 MHz clock must be divided by 12
- SSC_CLOCK_DIVISOR = 12;
-
- SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);
- SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;
- SSC_TRANSMIT_CLOCK_MODE = 0;
- SSC_TRANSMIT_FRAME_MODE = 0;
-
- i = 0;
- for(;;) {
- if(SSC_STATUS & SSC_STATUS_RX_READY) {
- BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer
- i++; if(i >= n) return;
- }
- WDT_HIT();
- }
-}
-
-void AcquireRawBitsTI(void)
-{
- LED_D_ON();
- // TI tags charge at 134.2Khz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Charge TI tag for 50ms.
- SpinDelay(50);
- LED_D_OFF();
-
- LED_A_ON();
- // Place FPGA in passthrough mode so as to stop driving the LF coil,
- // in this mode the CROSS_LO line connects to SSP_DIN
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_A_OFF();
-}
-
-//-----------------------------------------------------------------------------
-// Read an ADC channel and block till it completes, then return the result
-// in ADC units (0 to 1023). Also a routine to average 32 samples and
-// return that.
-//-----------------------------------------------------------------------------
-static int ReadAdc(int ch)
-{
- DWORD d;
-
- ADC_CONTROL = ADC_CONTROL_RESET;
- ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
- ADC_MODE_SAMPLE_HOLD_TIME(8);
- ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);
-
- ADC_CONTROL = ADC_CONTROL_START;
- while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))
- ;
- d = ADC_CHANNEL_DATA(ch);
-
- return d;
-}
-
-static int AvgAdc(int ch)
-{
- int i;
- int a = 0;
-
- for(i = 0; i < 32; i++) {
- a += ReadAdc(ch);
- }
-
- return (a + 15) >> 5;
-}
-
-void MeasureAntennaTuning(void)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
- int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
-
- UsbCommand c;
-
- DbpString("Measuring antenna characteristics, please wait.");
- memset(BigBuf,0,sizeof(BigBuf));
-
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * read the voltage in the antenna, the result left
- * in the buffer is a graph which should clearly show
- * the resonating frequency of your LF antenna
- * ( hopefully around 95 if it is tuned to 125kHz!)
- */
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- for (i=255; i>19; i--) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
- SpinDelay(20);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
- if (i==95) vLf125 = adcval; // voltage at 125Khz
- if (i==89) vLf134 = adcval; // voltage at 134Khz
-
- dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
- if(dest[i] > peak) {
- peakv = adcval;
- peak = dest[i];
- peakf = i;
- ptr = i;
- }
- }
-
- // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
- SpinDelay(20);
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
-
- c.cmd = CMD_MEASURED_ANTENNA_TUNING;
- c.ext1 = (vLf125 << 0) | (vLf134 << 16);
- c.ext2 = vHf;
- c.ext3 = peakf | (peakv << 16);
- UsbSendPacket((BYTE *)&c, sizeof(c));
-}
-
-void SimulateTagLowFrequency(int period, int ledcontrol)
-{
- int i;
- BYTE *tab = (BYTE *)BigBuf;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
-
- PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
-
- PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
- PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
-
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
- i = 0;
- for(;;) {
- while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- if (ledcontrol)
- LED_D_ON();
-
- if(tab[i])
- OPEN_COIL();
- else
- SHORT_COIL();
-
- if (ledcontrol)
- LED_D_OFF();
-
- while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- i++;
- if(i == period) i = 0;
- }
-}
-
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- BYTE *dest = (BYTE *)BigBuf;
- int idx;
-
- // for when we want an fc8 pattern every 4 logical bits
- if(c==0) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c==8) {
- for (idx=0; idx<6; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
-
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c==10) {
- for (idx=0; idx<5; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
-}
-
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
-{
- int n=0, i=0;
- /*
- HID tag bitstream format
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns
- A fc8 is inserted before every 4 bits
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
- */
-
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
- fc(0,&n);
- // special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
- fc(10, &n); fc(10, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
-
- WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- WDT_HIT();
- // manchester encode bits 31 to 0
- for (i=31; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- if (ledcontrol)
- LED_A_ON();
- SimulateTagLowFrequency(n, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
-}
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- DWORD hi=0, lo=0;
-
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- for(;;) {
- WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
- }
-
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- if (ledcontrol)
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
- }
- }
-
- // FSK demodulator
-
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
- }
- WDT_HIT();
-
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
-
- lastval=idx;
- i++;
- }
- }
- m=i;
- WDT_HIT();
-
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
- }
- n=0;
- lastval=dest[idx];
- }
- }
- m=i;
- WDT_HIT();
-
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
- // search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi=0;
- lo=0;
- found=0;
- }
- }
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi=0;
- lo=0;
- }
- idx++;
- }
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi=0;
- lo=0;
- found=0;
- }
- }
- }
- WDT_HIT();
- }
-}
-
-void SimulateTagHfListen(void)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- BYTE v = 0;
- int i;
- int p = 0;
-
- // We're using this mode just so that I can test it out; the simulated
- // tag mode would work just as well and be simpler.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
-
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- FpgaSetupSsc();
-
- i = 0;
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0xff;
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
-
- v <<= 1;
- if(r & 1) {
- v |= 1;
- }
- p++;
-
- if(p >= 8) {
- dest[i] = v;
- v = 0;
- p = 0;
- i++;
-
- if(i >= n) {
- break;
- }
- }
- }
- }
- DbpString("simulate tag (now type bitsamples)");
-}
-
-void UsbPacketReceived(BYTE *packet, int len)
-{
- UsbCommand *c = (UsbCommand *)packet;
-
- switch(c->cmd) {
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
- AcquireRawAdcSamples125k(c->ext1);
- break;
-
- case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
- ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
- break;
-
- case CMD_ACQUIRE_RAW_BITS_TI_TYPE:
- AcquireRawBitsTI();
- break;
-
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
- AcquireRawAdcSamplesIso15693();
- break;
-
- case CMD_BUFF_CLEAR:
- BufferClear();
- break;
-
- case CMD_READER_ISO_15693:
- ReaderIso15693(c->ext1);
- break;
-
- case CMD_SIMTAG_ISO_15693:
- SimTagIso15693(c->ext1);
- break;
-
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
- AcquireRawAdcSamplesIso14443(c->ext1);
- break;
-
- case CMD_READ_SRI512_TAG:
- ReadSRI512Iso14443(c->ext1);
- break;
-
- case CMD_READER_ISO_14443a:
- ReaderIso14443a(c->ext1);
- break;
-
- case CMD_SNOOP_ISO_14443:
- SnoopIso14443();
- break;
-
- case CMD_SNOOP_ISO_14443a:
- SnoopIso14443a();
- break;
-
- case CMD_SIMULATE_TAG_HF_LISTEN:
- SimulateTagHfListen();
- break;
-
- case CMD_SIMULATE_TAG_ISO_14443:
- SimulateIso14443Tag();
- break;
-
- case CMD_SIMULATE_TAG_ISO_14443a:
- SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID
- break;
-
- case CMD_MEASURE_ANTENNA_TUNING:
- MeasureAntennaTuning();
- break;
-
- case CMD_LISTEN_READER_FIELD:
- ListenReaderField(c->ext1);
- break;
-
- case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
- break;
-
- case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID
- break;
-
- case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
- LED_D_OFF(); // LED D indicates field ON or OFF
- break;
-
- case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
- case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
- UsbCommand n;
- if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
- n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
- } else {
- n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
- }
- n.ext1 = c->ext1;
- memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));
- UsbSendPacket((BYTE *)&n, sizeof(n));
- break;
- }
- case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
- BYTE *b = (BYTE *)BigBuf;
- memcpy(b+c->ext1, c->d.asBytes, 48);
- break;
- }
- case CMD_SIMULATE_TAG_125K:
- LED_A_ON();
- SimulateTagLowFrequency(c->ext1, 1);
- LED_A_OFF();
- break;
-#ifdef WITH_LCD
- case CMD_LCD_RESET:
- LCDReset();
- break;
-#endif
- case CMD_READ_MEM:
- ReadMem(c->ext1);
- break;
- case CMD_SET_LF_DIVISOR:
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
- break;
-#ifdef WITH_LCD
- case CMD_LCD:
- LCDSend(c->ext1);
- break;
-#endif
- case CMD_SETUP_WRITE:
- case CMD_FINISH_WRITE:
- case CMD_HARDWARE_RESET:
- USB_D_PLUS_PULLUP_OFF();
- SpinDelay(1000);
- SpinDelay(1000);
- RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
- for(;;) {
- // We're going to reset, and the bootrom will take control.
- }
- break;
-
-
- default:
- DbpString("unknown command");
- break;
- }
-}
-
-void ReadMem(int addr)
-{
- const DWORD *data = ((DWORD *)addr);
- int i;
-
- DbpString("Reading memory at address");
- DbpIntegers(0, 0, addr);
- for (i = 0; i < 8; i+= 2)
- DbpIntegers(0, data[i], data[i+1]);
-}
-
-void AppMain(void)
-{
- memset(BigBuf,0,sizeof(BigBuf));
- SpinDelay(100);
-
- LED_D_OFF();
- LED_C_OFF();
- LED_B_OFF();
- LED_A_OFF();
-
- UsbStart();
-
- // The FPGA gets its clock from us from PCK0 output, so set that up.
- PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);
- PIO_DISABLE = (1 << GPIO_PCK0);
- PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;
- // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
- PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |
- PMC_CLK_PRESCALE_DIV_4;
- PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);
-
- // Reset SPI
- SPI_CONTROL = SPI_CONTROL_RESET;
- // Reset SSC
- SSC_CONTROL = SSC_CONTROL_RESET;
-
- // Load the FPGA image, which we have stored in our flash.
- FpgaDownloadAndGo();
-
-#ifdef WITH_LCD
-
- LCDInit();
-
- // test text on different colored backgrounds
- LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
- LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
- LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
- LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
- LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
- LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
- LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
- LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
-
- // color bands
- LCDFill(0, 1+8* 8, 132, 8, BLACK);
- LCDFill(0, 1+8* 9, 132, 8, WHITE);
- LCDFill(0, 1+8*10, 132, 8, RED);
- LCDFill(0, 1+8*11, 132, 8, GREEN);
- LCDFill(0, 1+8*12, 132, 8, BLUE);
- LCDFill(0, 1+8*13, 132, 8, YELLOW);
- LCDFill(0, 1+8*14, 132, 8, CYAN);
- LCDFill(0, 1+8*15, 132, 8, MAGENTA);
-
-#endif
-
- for(;;) {
- usbattached = UsbPoll(FALSE);
- WDT_HIT();
-
- if (BUTTON_HELD(1000) > 0)
- SamyRun();
- }
-}
-
-
-// samy's sniff and repeat routine
-void SamyRun()
-{
- DbpString("Stand-alone mode! No PC necessary.");
-
- // 3 possible options? no just 2 for now
-#define OPTS 2
-
- int high[OPTS], low[OPTS];
-
- // Oooh pretty -- notify user we're in elite samy mode now
- LED(LED_RED, 200);
- LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
- LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
- LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
- LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
-
- int selected = 0;
- int playing = 0;
-
- // Turn on selected LED
- LED(selected + 1, 0);
-
- for (;;)
- {
- usbattached = UsbPoll(FALSE);
- WDT_HIT();
-
- // Was our button held down or pressed?
- int button_pressed = BUTTON_HELD(1000);
- SpinDelay(300);
-
- // Button was held for a second, begin recording
- if (button_pressed > 0)
- {
- LEDsoff();
- LED(selected + 1, 0);
- LED(LED_RED2, 0);
-
- // record
- DbpString("Starting recording");
-
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
-
- /* need this delay to prevent catching some weird data */
- SpinDelay(500);
-
- CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
- DbpString("Recorded");
- DbpIntegers(selected, high[selected], low[selected]);
-
- LEDsoff();
- LED(selected + 1, 0);
- // Finished recording
-
- // If we were previously playing, set playing off
- // so next button push begins playing what we recorded
- playing = 0;
- }
-
- // Change where to record (or begin playing)
- else if (button_pressed)
- {
- // Next option if we were previously playing
- if (playing)
- selected = (selected + 1) % OPTS;
- playing = !playing;
-
- LEDsoff();
- LED(selected + 1, 0);
-
- // Begin transmitting
- if (playing)
- {
- LED(LED_GREEN, 0);
- DbpString("Playing");
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
- DbpIntegers(selected, high[selected], low[selected]);
- CmdHIDsimTAG(high[selected], low[selected], 0);
- DbpString("Done playing");
- if (BUTTON_HELD(1000) > 0)
- {
- DbpString("Exiting");
- LEDsoff();
- return;
- }
-
- /* We pressed a button so ignore it here with a delay */
- SpinDelay(300);
-
- // when done, we're done playing, move to next option
- selected = (selected + 1) % OPTS;
- playing = !playing;
- LEDsoff();
- LED(selected + 1, 0);
- }
- else
- while(BUTTON_PRESS())
- WDT_HIT();
- }
- }
-}
-
-
-// listen for external reader
-void ListenReaderField(int limit)
-{
- int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;
- int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0;
-
-#define LF_ONLY 1
-#define HF_ONLY 2
-
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
- LED_D_OFF();
-
- lf_av= ReadAdc(ADC_CHAN_LF);
-
- if(limit != HF_ONLY)
- {
- DbpString("LF 125/134 Baseline:");
- DbpIntegers(lf_av,0,0);
- lf_baseline= lf_av;
- }
-
- hf_av= ReadAdc(ADC_CHAN_HF);
-
-
- if (limit != LF_ONLY)
- {
- DbpString("HF 13.56 Baseline:");
- DbpIntegers(hf_av,0,0);
- hf_baseline= hf_av;
- }
-
- for(;;)
- {
- if(BUTTON_PRESS())
- {
- DbpString("Stopped");
- LED_B_OFF();
- LED_D_OFF();
- return;
- }
- WDT_HIT();
-
-
- if (limit != HF_ONLY)
- {
- if (abs(lf_av - lf_baseline) > 10)
- LED_D_ON();
- else
- LED_D_OFF();
- ++lf_count;
- lf_av_new= ReadAdc(ADC_CHAN_LF);
- // see if there's a significant change
- if(abs(lf_av - lf_av_new) > 10)
- {
- DbpString("LF 125/134 Field Change:");
- DbpIntegers(lf_av,lf_av_new,lf_count);
- lf_av= lf_av_new;
- lf_count= 0;
- }
- }
-
- if (limit != LF_ONLY)
- {
- if (abs(hf_av - hf_baseline) > 10)
- LED_B_ON();
- else
- LED_B_OFF();
- ++hf_count;
- hf_av_new= ReadAdc(ADC_CHAN_HF);
- // see if there's a significant change
- if(abs(hf_av - hf_av_new) > 10)
- {
- DbpString("HF 13.56 Field Change:");
- DbpIntegers(hf_av,hf_av_new,hf_count);
- hf_av= hf_av_new;
- hf_count= 0;
- }
- }
- }
-}
+//-----------------------------------------------------------------------------\r
+// The main application code. This is the first thing called after start.c\r
+// executes.\r
+// Jonathan Westhues, Mar 2006\r
+// Edits by Gerhard de Koning Gans, Sep 2007 (##)\r
+//-----------------------------------------------------------------------------\r
+\r
+#include <proxmark3.h>\r
+#include <stdlib.h>\r
+#include "apps.h"\r
+#include "legicrf.h"\r
+#ifdef WITH_LCD\r
+#include "fonts.h"\r
+#include "LCD.h"\r
+#endif\r
+\r
+//=============================================================================\r
+// A buffer where we can queue things up to be sent through the FPGA, for\r
+// any purpose (fake tag, as reader, whatever). We go MSB first, since that\r
+// is the order in which they go out on the wire.\r
+//=============================================================================\r
+\r
+BYTE ToSend[256];\r
+int ToSendMax;\r
+static int ToSendBit;\r
+struct common_area common_area __attribute__((section(".commonarea")));\r
+\r
+void BufferClear(void)\r
+{\r
+ memset(BigBuf,0,sizeof(BigBuf));\r
+ DbpString("Buffer cleared");\r
+}\r
+\r
+void ToSendReset(void)\r
+{\r
+ ToSendMax = -1;\r
+ ToSendBit = 8;\r
+}\r
+\r
+void ToSendStuffBit(int b)\r
+{\r
+ if(ToSendBit >= 8) {\r
+ ToSendMax++;\r
+ ToSend[ToSendMax] = 0;\r
+ ToSendBit = 0;\r
+ }\r
+\r
+ if(b) {\r
+ ToSend[ToSendMax] |= (1 << (7 - ToSendBit));\r
+ }\r
+\r
+ ToSendBit++;\r
+\r
+ if(ToSendBit >= sizeof(ToSend)) {\r
+ ToSendBit = 0;\r
+ DbpString("ToSendStuffBit overflowed!");\r
+ }\r
+}\r
+\r
+//=============================================================================\r
+// Debug print functions, to go out over USB, to the usual PC-side client.\r
+//=============================================================================\r
+\r
+void DbpString(char *str)\r
+{\r
+ /* this holds up stuff unless we're connected to usb */\r
+ if (!UsbConnected())\r
+ return;\r
+\r
+ UsbCommand c;\r
+ c.cmd = CMD_DEBUG_PRINT_STRING;\r
+ c.arg[0] = strlen(str);\r
+ memcpy(c.d.asBytes, str, c.arg[0]);\r
+\r
+ UsbSendPacket((BYTE *)&c, sizeof(c));\r
+ // TODO fix USB so stupid things like this aren't req'd\r
+ SpinDelay(50);\r
+}\r
+\r
+void DbpIntegers(int x1, int x2, int x3)\r
+{\r
+ /* this holds up stuff unless we're connected to usb */\r
+ if (!UsbConnected())\r
+ return;\r
+\r
+ UsbCommand c;\r
+ c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r
+ c.arg[0] = x1;\r
+ c.arg[1] = x2;\r
+ c.arg[2] = x3;\r
+\r
+ UsbSendPacket((BYTE *)&c, sizeof(c));\r
+ // XXX\r
+ SpinDelay(50);\r
+}\r
+\r
+//-----------------------------------------------------------------------------\r
+// Read an ADC channel and block till it completes, then return the result\r
+// in ADC units (0 to 1023). Also a routine to average 32 samples and\r
+// return that.\r
+//-----------------------------------------------------------------------------\r
+static int ReadAdc(int ch)\r
+{\r
+ DWORD d;\r
+\r
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;\r
+ AT91C_BASE_ADC->ADC_MR =\r
+ ADC_MODE_PRESCALE(32) |\r
+ ADC_MODE_STARTUP_TIME(16) |\r
+ ADC_MODE_SAMPLE_HOLD_TIME(8);\r
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);\r
+\r
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;\r
+ while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))\r
+ ;\r
+ d = AT91C_BASE_ADC->ADC_CDR[ch];\r
+\r
+ return d;\r
+}\r
+\r
+static int AvgAdc(int ch)\r
+{\r
+ int i;\r
+ int a = 0;\r
+\r
+ for(i = 0; i < 32; i++) {\r
+ a += ReadAdc(ch);\r
+ }\r
+\r
+ return (a + 15) >> 5;\r
+}\r
+\r
+void MeasureAntennaTuning(void)\r
+{\r
+ BYTE *dest = (BYTE *)BigBuf;\r
+ int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;\r
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV\r
+\r
+ UsbCommand c;\r
+\r
+ DbpString("Measuring antenna characteristics, please wait.");\r
+ memset(BigBuf,0,sizeof(BigBuf));\r
+\r
+/*\r
+ * Sweeps the useful LF range of the proxmark from\r
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and\r
+ * read the voltage in the antenna, the result left\r
+ * in the buffer is a graph which should clearly show\r
+ * the resonating frequency of your LF antenna\r
+ * ( hopefully around 95 if it is tuned to 125kHz!)\r
+ */\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+ for (i=255; i>19; i--) {\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r
+ SpinDelay(20);\r
+ // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
+ // can measure voltages up to 137500 mV\r
+ adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);\r
+ if (i==95) vLf125 = adcval; // voltage at 125Khz\r
+ if (i==89) vLf134 = adcval; // voltage at 134Khz\r
+\r
+ dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes\r
+ if(dest[i] > peak) {\r
+ peakv = adcval;\r
+ peak = dest[i];\r
+ peakf = i;\r
+ ptr = i;\r
+ }\r
+ }\r
+\r
+ // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
+ SpinDelay(20);\r
+ // Vref = 3300mV, and an 10:1 voltage divider on the input\r
+ // can measure voltages up to 33000 mV\r
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;\r
+\r
+ c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r
+ c.arg[0] = (vLf125 << 0) | (vLf134 << 16);\r
+ c.arg[1] = vHf;\r
+ c.arg[2] = peakf | (peakv << 16);\r
+ UsbSendPacket((BYTE *)&c, sizeof(c));\r
+}\r
+\r
+void SimulateTagHfListen(void)\r
+{\r
+ BYTE *dest = (BYTE *)BigBuf;\r
+ int n = sizeof(BigBuf);\r
+ BYTE v = 0;\r
+ int i;\r
+ int p = 0;\r
+\r
+ // We're using this mode just so that I can test it out; the simulated\r
+ // tag mode would work just as well and be simpler.\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
+\r
+ // We need to listen to the high-frequency, peak-detected path.\r
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
+\r
+ FpgaSetupSsc();\r
+\r
+ i = 0;\r
+ for(;;) {\r
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
+ AT91C_BASE_SSC->SSC_THR = 0xff;\r
+ }\r
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
+ BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
+\r
+ v <<= 1;\r
+ if(r & 1) {\r
+ v |= 1;\r
+ }\r
+ p++;\r
+\r
+ if(p >= 8) {\r
+ dest[i] = v;\r
+ v = 0;\r
+ p = 0;\r
+ i++;\r
+\r
+ if(i >= n) {\r
+ break;\r
+ }\r
+ }\r
+ }\r
+ }\r
+ DbpString("simulate tag (now type bitsamples)");\r
+}\r
+\r
+void ReadMem(int addr)\r
+{\r
+ const DWORD *data = ((DWORD *)addr);\r
+ int i;\r
+\r
+ DbpString("Reading memory at address");\r
+ DbpIntegers(0, 0, addr);\r
+ for (i = 0; i < 8; i+= 2)\r
+ DbpIntegers(0, data[i], data[i+1]);\r
+}\r
+\r
+/* osimage version information is linked in */\r
+extern struct version_information version_information;\r
+/* bootrom version information is pointed to from _bootphase1_version_pointer */\r
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;\r
+void SendVersion(void)\r
+{\r
+ char temp[48]; /* Limited data payload in USB packets */\r
+ DbpString("Prox/RFID mark3 RFID instrument");\r
+ \r
+ /* Try to find the bootrom version information. Expect to find a pointer at \r
+ * symbol _bootphase1_version_pointer, perform slight sanity checks on the\r
+ * pointer, then use it.\r
+ */\r
+ char *bootrom_version = *(char**)&_bootphase1_version_pointer;\r
+ if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {\r
+ DbpString("bootrom version information appears invalid");\r
+ } else {\r
+ FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);\r
+ DbpString(temp);\r
+ }\r
+ \r
+ FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);\r
+ DbpString(temp);\r
+ \r
+ FpgaGatherVersion(temp, sizeof(temp));\r
+ DbpString(temp);\r
+}\r
+\r
+#ifdef WITH_LF\r
+// samy's sniff and repeat routine\r
+void SamyRun()\r
+{\r
+ DbpString("Stand-alone mode! No PC necessary.");\r
+\r
+ // 3 possible options? no just 2 for now\r
+#define OPTS 2\r
+\r
+ int high[OPTS], low[OPTS];\r
+\r
+ // Oooh pretty -- notify user we're in elite samy mode now\r
+ LED(LED_RED, 200);\r
+ LED(LED_ORANGE, 200);\r
+ LED(LED_GREEN, 200);\r
+ LED(LED_ORANGE, 200);\r
+ LED(LED_RED, 200);\r
+ LED(LED_ORANGE, 200);\r
+ LED(LED_GREEN, 200);\r
+ LED(LED_ORANGE, 200);\r
+ LED(LED_RED, 200);\r
+\r
+ int selected = 0;\r
+ int playing = 0;\r
+\r
+ // Turn on selected LED\r
+ LED(selected + 1, 0);\r
+\r
+ for (;;)\r
+ {\r
+ UsbPoll(FALSE);\r
+ WDT_HIT();\r
+\r
+ // Was our button held down or pressed?\r
+ int button_pressed = BUTTON_HELD(1000);\r
+ SpinDelay(300);\r
+\r
+ // Button was held for a second, begin recording\r
+ if (button_pressed > 0)\r
+ {\r
+ LEDsoff();\r
+ LED(selected + 1, 0);\r
+ LED(LED_RED2, 0);\r
+\r
+ // record\r
+ DbpString("Starting recording");\r
+\r
+ // wait for button to be released\r
+ while(BUTTON_PRESS())\r
+ WDT_HIT();\r
+\r
+ /* need this delay to prevent catching some weird data */\r
+ SpinDelay(500);\r
+\r
+ CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);\r
+ DbpString("Recorded");\r
+ DbpIntegers(selected, high[selected], low[selected]);\r
+\r
+ LEDsoff();\r
+ LED(selected + 1, 0);\r
+ // Finished recording\r
+\r
+ // If we were previously playing, set playing off\r
+ // so next button push begins playing what we recorded\r
+ playing = 0;\r
+ }\r
+\r
+ // Change where to record (or begin playing)\r
+ else if (button_pressed)\r
+ {\r
+ // Next option if we were previously playing\r
+ if (playing)\r
+ selected = (selected + 1) % OPTS;\r
+ playing = !playing;\r
+\r
+ LEDsoff();\r
+ LED(selected + 1, 0);\r
+\r
+ // Begin transmitting\r
+ if (playing)\r
+ {\r
+ LED(LED_GREEN, 0);\r
+ DbpString("Playing");\r
+ // wait for button to be released\r
+ while(BUTTON_PRESS())\r
+ WDT_HIT();\r
+ DbpIntegers(selected, high[selected], low[selected]);\r
+ CmdHIDsimTAG(high[selected], low[selected], 0);\r
+ DbpString("Done playing");\r
+ if (BUTTON_HELD(1000) > 0)\r
+ {\r
+ DbpString("Exiting");\r
+ LEDsoff();\r
+ return;\r
+ }\r
+\r
+ /* We pressed a button so ignore it here with a delay */\r
+ SpinDelay(300);\r
+\r
+ // when done, we're done playing, move to next option\r
+ selected = (selected + 1) % OPTS;\r
+ playing = !playing;\r
+ LEDsoff();\r
+ LED(selected + 1, 0);\r
+ }\r
+ else\r
+ while(BUTTON_PRESS())\r
+ WDT_HIT();\r
+ }\r
+ }\r
+}\r
+#endif\r
+\r
+/*\r
+OBJECTIVE\r
+Listen and detect an external reader. Determine the best location\r
+for the antenna.\r
+\r
+INSTRUCTIONS:\r
+Inside the ListenReaderField() function, there is two mode.\r
+By default, when you call the function, you will enter mode 1.\r
+If you press the PM3 button one time, you will enter mode 2.\r
+If you press the PM3 button a second time, you will exit the function.\r
+\r
+DESCRIPTION OF MODE 1:\r
+This mode just listens for an external reader field and lights up green\r
+for HF and/or red for LF. This is the original mode of the detectreader\r
+function.\r
+\r
+DESCRIPTION OF MODE 2:\r
+This mode will visually represent, using the LEDs, the actual strength of the\r
+current compared to the maximum current detected. Basically, once you know\r
+what kind of external reader is present, it will help you spot the best location to place\r
+your antenna. You will probably not get some good results if there is a LF and a HF reader\r
+at the same place! :-)\r
+\r
+LIGHT SCHEME USED:\r
+*/\r
+static const char LIGHT_SCHEME[] = {\r
+ 0x0, /* ---- | No field detected */\r
+ 0x1, /* X--- | 14% of maximum current detected */\r
+ 0x2, /* -X-- | 29% of maximum current detected */\r
+ 0x4, /* --X- | 43% of maximum current detected */\r
+ 0x8, /* ---X | 57% of maximum current detected */\r
+ 0xC, /* --XX | 71% of maximum current detected */\r
+ 0xE, /* -XXX | 86% of maximum current detected */\r
+ 0xF, /* XXXX | 100% of maximum current detected */\r
+};\r
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);\r
+\r
+void ListenReaderField(int limit)\r
+{\r
+ int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;\r
+ int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;\r
+ int mode=1, display_val, display_max, i;\r
+\r
+#define LF_ONLY 1\r
+#define HF_ONLY 2\r
+\r
+ LEDsoff();\r
+\r
+ lf_av=lf_max=ReadAdc(ADC_CHAN_LF);\r
+\r
+ if(limit != HF_ONLY) {\r
+ DbpString("LF 125/134 Baseline:");\r
+ DbpIntegers(lf_av,0,0);\r
+ lf_baseline= lf_av;\r
+ }\r
+\r
+ hf_av=hf_max=ReadAdc(ADC_CHAN_HF);\r
+\r
+ if (limit != LF_ONLY) {\r
+ DbpString("HF 13.56 Baseline:");\r
+ DbpIntegers(hf_av,0,0);\r
+ hf_baseline= hf_av;\r
+ }\r
+\r
+ for(;;) {\r
+ if (BUTTON_PRESS()) {\r
+ SpinDelay(500);\r
+ switch (mode) {\r
+ case 1:\r
+ mode=2;\r
+ DbpString("Signal Strength Mode");\r
+ break;\r
+ case 2:\r
+ default:\r
+ DbpString("Stopped");\r
+ LEDsoff();\r
+ return;\r
+ break;\r
+ }\r
+ }\r
+ WDT_HIT();\r
+\r
+ if (limit != HF_ONLY) {\r
+ if(mode==1) {\r
+ if (abs(lf_av - lf_baseline) > 10) LED_D_ON();\r
+ else LED_D_OFF();\r
+ }\r
+ \r
+ ++lf_count;\r
+ lf_av_new= ReadAdc(ADC_CHAN_LF);\r
+ // see if there's a significant change\r
+ if(abs(lf_av - lf_av_new) > 10) {\r
+ DbpString("LF 125/134 Field Change:");\r
+ DbpIntegers(lf_av,lf_av_new,lf_count);\r
+ lf_av= lf_av_new;\r
+ if (lf_av > lf_max)\r
+ lf_max = lf_av;\r
+ lf_count= 0;\r
+ }\r
+ }\r
+\r
+ if (limit != LF_ONLY) {\r
+ if (mode == 1){\r
+ if (abs(hf_av - hf_baseline) > 10) LED_B_ON();\r
+ else LED_B_OFF();\r
+ }\r
+ \r
+ ++hf_count;\r
+ hf_av_new= ReadAdc(ADC_CHAN_HF);\r
+ // see if there's a significant change\r
+ if(abs(hf_av - hf_av_new) > 10) {\r
+ DbpString("HF 13.56 Field Change:");\r
+ DbpIntegers(hf_av,hf_av_new,hf_count);\r
+ hf_av= hf_av_new;\r
+ if (hf_av > hf_max)\r
+ hf_max = hf_av;\r
+ hf_count= 0;\r
+ }\r
+ }\r
+ \r
+ if(mode == 2) {\r
+ if (limit == LF_ONLY) {\r
+ display_val = lf_av;\r
+ display_max = lf_max;\r
+ } else if (limit == HF_ONLY) {\r
+ display_val = hf_av;\r
+ display_max = hf_max;\r
+ } else { /* Pick one at random */\r
+ if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {\r
+ display_val = hf_av;\r
+ display_max = hf_max;\r
+ } else {\r
+ display_val = lf_av;\r
+ display_max = lf_max;\r
+ }\r
+ }\r
+ for (i=0; i<LIGHT_LEN; i++) {\r
+ if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {\r
+ if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();\r
+ if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();\r
+ if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();\r
+ if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();\r
+ break;\r
+ }\r
+ }\r
+ }\r
+ }\r
+}\r
+\r
+void UsbPacketReceived(BYTE *packet, int len)\r
+{\r
+ UsbCommand *c = (UsbCommand *)packet;\r
+\r
+ switch(c->cmd) {\r
+#ifdef WITH_LF\r
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
+ AcquireRawAdcSamples125k(c->arg[0]);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+ case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
+ ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_ISO15693\r
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r
+ AcquireRawAdcSamplesIso15693();\r
+ break;\r
+#endif\r
+\r
+ case CMD_BUFF_CLEAR:\r
+ BufferClear();\r
+ break;\r
+\r
+#ifdef WITH_ISO15693\r
+ case CMD_READER_ISO_15693:\r
+ ReaderIso15693(c->arg[0]);\r
+ break;\r
+#endif\r
+\r
+ case CMD_READER_LEGIC_RF:\r
+ LegicRfReader();\r
+ break;\r
+\r
+#ifdef WITH_ISO15693\r
+ case CMD_SIMTAG_ISO_15693:\r
+ SimTagIso15693(c->arg[0]);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443b\r
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r
+ AcquireRawAdcSamplesIso14443(c->arg[0]);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443b\r
+ case CMD_READ_SRI512_TAG:\r
+ ReadSRI512Iso14443(c->arg[0]);\r
+ break;\r
+ case CMD_READ_SRIX4K_TAG:\r
+ ReadSRIX4KIso14443(c->arg[0]);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443a\r
+ case CMD_READER_ISO_14443a:\r
+ ReaderIso14443a(c->arg[0]);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443b\r
+ case CMD_SNOOP_ISO_14443:\r
+ SnoopIso14443();\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443a\r
+ case CMD_SNOOP_ISO_14443a:\r
+ SnoopIso14443a();\r
+ break;\r
+#endif\r
+\r
+ case CMD_SIMULATE_TAG_HF_LISTEN:\r
+ SimulateTagHfListen();\r
+ break;\r
+\r
+#ifdef WITH_ISO14443b\r
+ case CMD_SIMULATE_TAG_ISO_14443:\r
+ SimulateIso14443Tag();\r
+ break;\r
+#endif\r
+ \r
+#ifdef WITH_ISO14443a\r
+ case CMD_SIMULATE_TAG_ISO_14443a:\r
+ SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID\r
+ break;\r
+#endif\r
+\r
+ case CMD_MEASURE_ANTENNA_TUNING:\r
+ MeasureAntennaTuning();\r
+ break;\r
+\r
+ case CMD_LISTEN_READER_FIELD:\r
+ ListenReaderField(c->arg[0]);\r
+ break;\r
+\r
+#ifdef WITH_LF\r
+ case CMD_HID_DEMOD_FSK:\r
+ CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+ case CMD_HID_SIM_TAG:\r
+ CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID\r
+ break;\r
+#endif\r
+\r
+ case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control\r
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+ SpinDelay(200);\r
+ LED_D_OFF(); // LED D indicates field ON or OFF\r
+ break;\r
+\r
+#ifdef WITH_LF\r
+ case CMD_READ_TI_TYPE:\r
+ ReadTItag();\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+ case CMD_WRITE_TI_TYPE:\r
+ WriteTItag(c->arg[0],c->arg[1],c->arg[2]);\r
+ break;\r
+#endif\r
+\r
+ case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {\r
+ UsbCommand n;\r
+ if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r
+ n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r
+ } else {\r
+ n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r
+ }\r
+ n.arg[0] = c->arg[0];\r
+ memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD));\r
+ UsbSendPacket((BYTE *)&n, sizeof(n));\r
+ break;\r
+ }\r
+\r
+ case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r
+ BYTE *b = (BYTE *)BigBuf;\r
+ memcpy(b+c->arg[0], c->d.asBytes, 48);\r
+ break;\r
+ }\r
+\r
+#ifdef WITH_LF\r
+ case CMD_SIMULATE_TAG_125K:\r
+ LED_A_ON();\r
+ SimulateTagLowFrequency(c->arg[0], 1);\r
+ LED_A_OFF();\r
+ break;\r
+#endif\r
+\r
+ case CMD_READ_MEM:\r
+ ReadMem(c->arg[0]);\r
+ break;\r
+\r
+ case CMD_SET_LF_DIVISOR:\r
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);\r
+ break;\r
+\r
+ case CMD_SET_ADC_MUX:\r
+ switch(c->arg[0]) {\r
+ case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;\r
+ case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;\r
+ case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;\r
+ case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;\r
+ }\r
+ break;\r
+\r
+ case CMD_VERSION:\r
+ SendVersion();\r
+ break;\r
+\r
+#ifdef WITH_LF\r
+ case CMD_LF_SIMULATE_BIDIR:\r
+ SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);\r
+ break;\r
+#endif\r
+\r
+#ifdef WITH_LCD\r
+ case CMD_LCD_RESET:\r
+ LCDReset();\r
+ break;\r
+ case CMD_LCD:\r
+ LCDSend(c->arg[0]);\r
+ break;\r
+#endif\r
+ case CMD_SETUP_WRITE:\r
+ case CMD_FINISH_WRITE:\r
+ case CMD_HARDWARE_RESET:\r
+ USB_D_PLUS_PULLUP_OFF();\r
+ SpinDelay(1000);\r
+ SpinDelay(1000);\r
+ AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;\r
+ for(;;) {\r
+ // We're going to reset, and the bootrom will take control.\r
+ }\r
+ break;\r
+\r
+ case CMD_START_FLASH:\r
+ if(common_area.flags.bootrom_present) {\r
+ common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;\r
+ }\r
+ USB_D_PLUS_PULLUP_OFF();\r
+ AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;\r
+ for(;;);\r
+ break;\r
+ \r
+ case CMD_DEVICE_INFO: {\r
+ UsbCommand c;\r
+ c.cmd = CMD_DEVICE_INFO;\r
+ c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;\r
+ if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;\r
+ UsbSendPacket((BYTE*)&c, sizeof(c));\r
+ }\r
+ break;\r
+ default:\r
+ DbpString("unknown command");\r
+ break;\r
+ }\r
+}\r
+\r
+void __attribute__((noreturn)) AppMain(void)\r
+{\r
+ SpinDelay(100);\r
+ \r
+ if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {\r
+ /* Initialize common area */\r
+ memset(&common_area, 0, sizeof(common_area));\r
+ common_area.magic = COMMON_AREA_MAGIC;\r
+ common_area.version = 1;\r
+ }\r
+ common_area.flags.osimage_present = 1;\r
+\r
+ LED_D_OFF();\r
+ LED_C_OFF();\r
+ LED_B_OFF();\r
+ LED_A_OFF();\r
+\r
+ UsbStart();\r
+\r
+ // The FPGA gets its clock from us from PCK0 output, so set that up.\r
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;\r
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;\r
+ AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;\r
+ // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r
+ AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |\r
+ AT91C_PMC_PRES_CLK_4;\r
+ AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;\r
+\r
+ // Reset SPI\r
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;\r
+ // Reset SSC\r
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;\r
+\r
+ // Load the FPGA image, which we have stored in our flash.\r
+ FpgaDownloadAndGo();\r
+\r
+#ifdef WITH_LCD\r
+\r
+ LCDInit();\r
+\r
+ // test text on different colored backgrounds\r
+ LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );\r
+ LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );\r
+ LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );\r
+ LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );\r
+ LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );\r
+ LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);\r
+ LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );\r
+ LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);\r
+\r
+ // color bands\r
+ LCDFill(0, 1+8* 8, 132, 8, BLACK);\r
+ LCDFill(0, 1+8* 9, 132, 8, WHITE);\r
+ LCDFill(0, 1+8*10, 132, 8, RED);\r
+ LCDFill(0, 1+8*11, 132, 8, GREEN);\r
+ LCDFill(0, 1+8*12, 132, 8, BLUE);\r
+ LCDFill(0, 1+8*13, 132, 8, YELLOW);\r
+ LCDFill(0, 1+8*14, 132, 8, CYAN);\r
+ LCDFill(0, 1+8*15, 132, 8, MAGENTA);\r
+\r
+#endif\r
+\r
+ for(;;) {\r
+ UsbPoll(FALSE);\r
+ WDT_HIT();\r
+\r
+#ifdef WITH_LF\r
+ if (BUTTON_HELD(1000) > 0)\r
+ SamyRun();\r
+#endif\r
+ }\r
+}\r