]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/cmdhfmfhard.c
FIX: lf hitag : Mea culpa, simulation should not have reader_field on. thanks to...
[proxmark3-svn] / client / cmdhfmfhard.c
index 4c2e4e1a51ef6dc8df7c40c8e3ecbf2790023803..2e5046754e6cda8097ce2a96936a6191408ae0f9 100644 (file)
@@ -1,6 +1,7 @@
 //-----------------------------------------------------------------------------
 // Copyright (C) 2015 piwi
 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
+// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
 // at your option, any later version. See the LICENSE.txt file for the text of
 // the license.
 //   Computer and Communications Security, 2015
 //-----------------------------------------------------------------------------
 #include "cmdhfmfhard.h"
+#include "cmdhw.h"
 
 #define CONFIDENCE_THRESHOLD   0.95            // Collect nonces until we are certain enough that the following brute force is successfull
 #define GOOD_BYTES_REQUIRED    13              // default 28, could be smaller == faster
-#define MIN_NONCES_REQUIRED    4000            // 4000-5000 could be good
-#define NONCES_TRIGGER         2500            // every 2500 nonces check if we can crack the key
-#define CRACKING_THRESHOLD     39.00f          // as 2^39
+#define NONCES_THRESHOLD       5000            // every N nonces check if we can crack the key
+#define CRACKING_THRESHOLD     36.0f //38.50f          // as 2^38.5
+#define MAX_BUCKETS            128
 
 #define END_OF_LIST_MARKER             0xFFFFFFFF
 
@@ -72,7 +74,8 @@ typedef struct noncelist {
        float Sum8_prob;
        bool updated;
        noncelistentry_t *first;
-       float score1, score2;
+       float score1;
+       uint_fast8_t score2;
 } noncelist_t;
 
 static size_t nonces_to_bruteforce = 0;
@@ -114,11 +117,23 @@ static partial_indexed_statelist_t partial_statelist[17];
 static partial_indexed_statelist_t statelist_bitflip;
 static statelist_t *candidates = NULL;
 
-bool thread_check_started = false;
-bool thread_check_done = false;
 bool field_off = false;
 
-pthread_t thread_check;
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[MAX_BUCKETS];
+static uint64_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
 
 static bool generate_candidates(uint16_t, uint16_t);
 static bool brute_force(void);
@@ -150,14 +165,17 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
                } else {                                        // add new entry at end of existing list.
                        p2 = p2->next = malloc(sizeof(noncelistentry_t));
                }
-       } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) {                          // found distinct 2nd byte. Need to insert.
+               if (p2 == NULL) return 0;                                                       // memory allocation failed
+       }
+       else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) {                    // found distinct 2nd byte. Need to insert.
                if (p2 == NULL) {                       // need to insert at start of list
                        p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
                } else {
                        p2 = p2->next = malloc(sizeof(noncelistentry_t));
                }
-       } else {                                                                                        // we have seen this 2nd byte before. Nothing to add or insert. 
-               return (0);
+               if (p2 == NULL) return 0;                                                       // memory allocation failed
+       } else {
+               return 0;                                                                       // we have seen this 2nd byte before. Nothing to add or insert.
        }
 
        // add or insert new data
@@ -174,7 +192,7 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
        nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
        nonces[first_byte].updated = true;   // indicates that we need to recalculate the Sum(a8) probability for this first byte
 
-       return (1);                             // new nonce added
+       return 1;                               // new nonce added
 }
 
 static void init_nonce_memory(void)
@@ -260,7 +278,7 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
                for (int16_t i = N; i >= N-n+1; i--) {
                        log_result -= log(i);
                }
-               return (log_result > 0) ? exp(log_result) : 0.0;
+               return exp(log_result);
        } else {
                if (n-k == N-K) {       // special case. The published recursion below would fail with a divide by zero exception
                        double log_result = 0.0;
@@ -270,7 +288,7 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
                        for (int16_t i = K+1; i <= N; i++) {
                                log_result -= log(i);
                        }
-                       return (log_result > 0) ? exp(log_result) : 0.0;
+                       return exp(log_result);
                } else {                        // recursion
                        return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
                }
@@ -284,22 +302,19 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
        if (k > K || p_K[K] == 0.0) return 0.0;
 
        double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
-       
        if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
-       
+
        double p_S_is_K = p_K[K];
-       double p_T_is_k = 0;
+       double p_T_is_k = 0.0;
        for (uint16_t i = 0; i <= 256; i++) {
                if (p_K[i] != 0.0) {
-                       double tmp = p_hypergeometric(N, i, n, k);
-                       if (tmp != 0.0)
-                               p_T_is_k += p_K[i] * tmp;
+                       p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
                }
        }
+       if (p_T_is_k == 0.0) return 0.0;
        return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
 }
 
-       
 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) 
 {
        static const uint_fast8_t common_bits_LUT[256] = {
@@ -485,7 +500,7 @@ static void Tests()
 
 }
 
-static void sort_best_first_bytes(void)
+static uint16_t sort_best_first_bytes(void)
 {
        // sort based on probability for correct guess  
        for (uint16_t i = 0; i < 256; i++ ) {
@@ -500,7 +515,7 @@ static void sort_best_first_bytes(void)
                                best_first_bytes[k] = best_first_bytes[k-1];
                        }
                }
-                       best_first_bytes[j] = i;
+               best_first_bytes[j] = i;
        }
 
        // determine how many are above the CONFIDENCE_THRESHOLD
@@ -511,6 +526,8 @@ static void sort_best_first_bytes(void)
                }
        }
        
+       if (num_good_nonces == 0) return 0;
+
        uint16_t best_first_byte = 0;
 
        // select the best possible first byte based on number of common bits with all {b'}
@@ -533,25 +550,28 @@ static void sort_best_first_bytes(void)
        for (uint16_t i = 0; i < num_good_nonces; i++ ) {
                uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
                float bitflip_prob = 1.0;
-               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+               
+               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
                        bitflip_prob = 0.09375;
-               }
+               
                nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
-               if (p_K[sum8] * bitflip_prob <= min_p_K) {
+               
+               if (p_K[sum8] * bitflip_prob <= min_p_K)
                        min_p_K = p_K[sum8] * bitflip_prob;
-               }
+               
        }
 
 
        // use number of commmon bits as a tie breaker
-       uint16_t max_common_bits = 0;
+       uint_fast8_t max_common_bits = 0;
        for (uint16_t i = 0; i < num_good_nonces; i++) {
+
                float bitflip_prob = 1.0;
-               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
                        bitflip_prob = 0.09375;
-               }
+               
                if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
-                       uint16_t sum_common_bits = 0;
+                       uint_fast8_t sum_common_bits = 0;
                        for (uint16_t j = 0; j < num_good_nonces; j++) {
                                sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
                        }
@@ -564,15 +584,17 @@ static void sort_best_first_bytes(void)
        }       
 
        // swap best possible first byte to the pole position
-       uint16_t temp = best_first_bytes[0];
-       best_first_bytes[0] = best_first_bytes[best_first_byte];
-       best_first_bytes[best_first_byte] = temp;
+       if (best_first_byte != 0) {
+               uint16_t temp = best_first_bytes[0];
+               best_first_bytes[0] = best_first_bytes[best_first_byte];
+               best_first_bytes[best_first_byte] = temp;
+       }
        
+       return num_good_nonces;
 }
 
 static uint16_t estimate_second_byte_sum(void) 
-{
-       
+{      
        for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
                float Sum8_prob = 0.0;
                uint16_t Sum8 = 0;
@@ -589,17 +611,7 @@ static uint16_t estimate_second_byte_sum(void)
                        nonces[first_byte].updated = false;
                }
        }
-       
-       sort_best_first_bytes();
-
-       uint16_t num_good_nonces = 0;
-       for (uint16_t i = 0; i < 256; i++) {
-               if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
-                       ++num_good_nonces;
-               }
-       }
-       
-       return num_good_nonces;
+       return sort_best_first_bytes();
 }      
 
 static int read_nonce_file(void)
@@ -618,6 +630,7 @@ static int read_nonce_file(void)
        }
 
        PrintAndLog("Reading nonces from file nonces.bin...");
+       memset (read_buf, 0, sizeof (read_buf));
        size_t bytes_read = fread(read_buf, 1, 6, fnonces);
        if ( bytes_read == 0) {
                PrintAndLog("File reading error.");
@@ -627,8 +640,10 @@ static int read_nonce_file(void)
        cuid = bytes_to_num(read_buf, 4);
        trgBlockNo = bytes_to_num(read_buf+4, 1);
        trgKeyType = bytes_to_num(read_buf+5, 1);
-
-       while (fread(read_buf, 1, 9, fnonces) == 9) {
+       size_t ret = 0;
+       do {
+               memset (read_buf, 0, sizeof (read_buf));
+               if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
                nt_enc1 = bytes_to_num(read_buf, 4);
                nt_enc2 = bytes_to_num(read_buf+4, 4);
                par_enc = bytes_to_num(read_buf+8, 1);
@@ -638,6 +653,8 @@ static int read_nonce_file(void)
                add_nonce(nt_enc2, par_enc & 0x0f);
                total_num_nonces += 2;
        }
+       } while (ret == 9);
+
        fclose(fnonces);
        PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
        return 0;
@@ -646,7 +663,6 @@ static int read_nonce_file(void)
 static void Check_for_FilterFlipProperties(void)
 {
        printf("Checking for Filter Flip Properties...\n");
-
        uint16_t num_bitflips = 0;
        
        for (uint16_t i = 0; i < 256; i++) {
@@ -655,6 +671,8 @@ static void Check_for_FilterFlipProperties(void)
        }
        
        for (uint16_t i = 0; i < 256; i++) {
+               if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
+
                uint8_t parity1 = (nonces[i].first->par_enc) >> 3;                              // parity of first byte
                uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3;     // XOR 0x80 = last bit flipped
                uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3;    // XOR 0x40 = second last bit flipped
@@ -668,9 +686,8 @@ static void Check_for_FilterFlipProperties(void)
                }
        }
        
-       if (write_stats) {
+       if (write_stats)
                fprintf(fstats, "%d;", num_bitflips);
-       }
 }
 
 static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
@@ -706,8 +723,8 @@ static void simulate_acquire_nonces()
        cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
        known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
        
-       printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
-       fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
+       printf("Simulating nonce acquisition for target key %012" PRIx64 ", cuid %08x ...\n", known_target_key, cuid);
+       fprintf(fstats, "%012" PRIx64 ";%08x;", known_target_key, cuid);
        
        do {
                uint32_t nt_enc = 0;
@@ -727,7 +744,7 @@ static void simulate_acquire_nonces()
                        num_good_first_bytes = estimate_second_byte_sum();
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
-                               printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+                               printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
                                        total_num_nonces,
                                        total_added_nonces,
                                        CONFIDENCE_THRESHOLD * 100.0,
@@ -760,122 +777,112 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
        uint32_t next_fivehundred = 500;
        uint32_t total_added_nonces = 0;
        uint32_t idx = 1;
+       uint32_t timeout  = 0;
        FILE *fnonces = NULL;
-       UsbCommand resp;
-
        field_off = false;
-
+       UsbCommand resp;
+       UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
+       memcpy(c.d.asBytes, key, 6);    
+       c.arg[0] = blockNo + (keyType * 0x100);
+       c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
+               
        printf("Acquiring nonces...\n");
-
        do {
+       
                flags = 0;
                flags |= initialize ? 0x0001 : 0;
                flags |= slow ? 0x0002 : 0;
                flags |= field_off ? 0x0004 : 0;
-               UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
-               memcpy(c.d.asBytes, key, 6);
+               c.arg[2] = flags;
+
                clearCommandBuffer();
                SendCommand(&c);
                
-               if (field_off) finished = true;
-               
-               if (initialize) {
-                       if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
-                       if (resp.arg[0]) return resp.arg[0];  // error during nested_hard
+               if (field_off) break;
 
+               while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
+                       timeout++;
+                       printf(".");
+                       if (timeout > 3) {
+                               PrintAndLog("\nNo response from Proxmark. Aborting...");
+                               if (fnonces) fclose(fnonces);
+                               return 1;
+                       }
+               }               
+
+               if (resp.arg[0]) {
+                       if (fnonces) fclose(fnonces);
+                       return resp.arg[0];  // error during nested_hard
+               }
+                       
+               if (initialize) {
+                       // global var CUID
                        cuid = resp.arg[1];
-                       // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); 
                        if (nonce_file_write && fnonces == NULL) {
                                if ((fnonces = fopen("nonces.bin","wb")) == NULL) { 
                                        PrintAndLog("Could not create file nonces.bin");
                                        return 3;
                                }
                                PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+                               memset (write_buf, 0, sizeof (write_buf));
                                num_to_bytes(cuid, 4, write_buf);
                                fwrite(write_buf, 1, 4, fnonces);
                                fwrite(&trgBlockNo, 1, 1, fnonces);
                                fwrite(&trgKeyType, 1, 1, fnonces);
                                fflush(fnonces);
                        }
+                       initialize = false;                     
                }
-
-               if (!initialize) {
-                       uint32_t nt_enc1, nt_enc2;
-                       uint8_t par_enc;
-                       uint16_t num_acquired_nonces = resp.arg[2];
-                       uint8_t *bufp = resp.d.asBytes;
-                       for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
-                               nt_enc1 = bytes_to_num(bufp, 4);
-                               nt_enc2 = bytes_to_num(bufp+4, 4);
-                               par_enc = bytes_to_num(bufp+8, 1);
-                               
-                               //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
-                               total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
-                               //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
-                               total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
-                               
-                               if (nonce_file_write && fnonces) {
-                                       fwrite(bufp, 1, 9, fnonces);
-                                       fflush(fnonces);
-                               }
-
-                               bufp += 9;
+               
+               uint32_t nt_enc1, nt_enc2;
+               uint8_t par_enc;
+               uint16_t num_acquired_nonces = resp.arg[2];
+               uint8_t *bufp = resp.d.asBytes;
+               for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
+                       nt_enc1 = bytes_to_num(bufp, 4);
+                       nt_enc2 = bytes_to_num(bufp+4, 4);
+                       par_enc = bytes_to_num(bufp+8, 1);
+                       
+                       total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
+                       total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+                       
+                       if (nonce_file_write && fnonces) {
+                               fwrite(bufp, 1, 9, fnonces);
+                               fflush(fnonces);
                        }
-
-                       total_num_nonces += num_acquired_nonces;
+                       bufp += 9;
                }
+               total_num_nonces += num_acquired_nonces;
+
+               if (first_byte_num == 256) {
 
-               if (first_byte_num == 256 && !field_off) {
-                       // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
                        if (!filter_flip_checked) {
                                Check_for_FilterFlipProperties();
                                filter_flip_checked = true;
                        }
 
                        num_good_first_bytes = estimate_second_byte_sum();
+
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
-                               printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+                               printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
                                        total_num_nonces,
                                        total_added_nonces,
-                                       (total_added_nonces < MIN_NONCES_REQUIRED) ? MIN_NONCES_REQUIRED : (NONCES_TRIGGER*idx),
+                                       NONCES_THRESHOLD * idx,
                                        CONFIDENCE_THRESHOLD * 100.0,
-                                       num_good_first_bytes);
+                                       num_good_first_bytes
+                                       );                              
                        }
-
-                       if (total_added_nonces >= MIN_NONCES_REQUIRED) {
-                               num_good_first_bytes = estimate_second_byte_sum();
-                               if (total_added_nonces > (NONCES_TRIGGER * idx)) {
                        
-                                       clock_t time1 = clock();
-                                       bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-                                       time1 = clock() - time1;
-                                       if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
-                                       if (cracking || known_target_key != -1) {
+                       if (total_added_nonces >= (NONCES_THRESHOLD * idx)) {
+                               if (num_good_first_bytes > 0) {
+                                       if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) {
                                                field_off = brute_force(); // switch off field with next SendCommand and then finish
-                                       }
-
-                                       idx++;
+                                       }
                                }
+                               idx++;
                        }
-
                }
-               
-               if (!initialize) {
-                       if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
-                               if (fnonces) fclose(fnonces);
-                               return 1;
-                       }
-
-                       if (resp.arg[0]) {
-                               if (fnonces) fclose(fnonces);
-                               return resp.arg[0];  // error during nested_hard
-                       }
-               }
-
-               initialize = false;
-
        } while (!finished);
 
        if (nonce_file_write && fnonces)
@@ -963,7 +970,7 @@ static void init_BitFlip_statelist(void)
        // set len and add End Of List marker
        statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
        *p = END_OF_LIST_MARKER;
-       statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+       //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
 }
                
 static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
@@ -1184,7 +1191,7 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui
        for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
                uint32_t search_mask = 0x000ffff0;
                uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
-               if (p2 != NULL) {
+               if (p1 != NULL && p2 != NULL) {
                        while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
                                if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
                                        || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
@@ -1222,6 +1229,8 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates)
        } else {
                new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
        }
+       if (!new_candidates) return NULL;
+
        new_candidates->next = NULL;
        new_candidates->len[ODD_STATE] = 0;
        new_candidates->len[EVEN_STATE] = 0;
@@ -1238,8 +1247,8 @@ static bool TestIfKeyExists(uint64_t key)
 
        uint32_t state_odd = pcs->odd & 0x00ffffff;
        uint32_t state_even = pcs->even & 0x00ffffff;
-       //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
-       
+       //printf("Tests: searching for key %" PRIx64 " after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
+       printf("Validating key search space\n");
        uint64_t count = 0;
        for (statelist_t *p = candidates; p != NULL; p = p->next) {
                bool found_odd = false;
@@ -1254,33 +1263,34 @@ static bool TestIfKeyExists(uint64_t key)
                        p_odd++;
                }
                while (*p_even != END_OF_LIST_MARKER) {
-                       if ((*p_even & 0x00ffffff) == state_even) {
+                       if ((*p_even & 0x00ffffff) == state_even)
                                found_even = true;
-                       }
+
                        p_even++;
                }
                count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
                if (found_odd && found_even) {
-                       PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ", 
-                               count,
-                               log(count)/log(2), 
-                               maximum_states,
-                               log(maximum_states)/log(2)
-                               );
-                       if (write_stats) {
-                               fprintf(fstats, "1\n");
+                       if (known_target_key != -1) {
+                               PrintAndLog("Key Found after testing %" PRIu64 " (2^%1.1f) out of %lld (2^%1.1f) keys.", 
+                                       count,
+                                       log(count)/log(2), 
+                                       maximum_states,
+                                       log(maximum_states)/log(2)
+                                       );
+                               if (write_stats)
+                                       fprintf(fstats, "1\n");                 
                        }
                        crypto1_destroy(pcs);
                        return true;
                }
        }
 
-       printf("Key NOT found!\n");
-       if (write_stats) {
-               fprintf(fstats, "0\n");
+       if (known_target_key != -1) {
+               printf("Key NOT found!\n");
+               if (write_stats)
+                       fprintf(fstats, "0\n");
        }
        crypto1_destroy(pcs);
-
        return false;
 }
 
@@ -1314,6 +1324,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
                                        for (uint16_t s = 0; s <= 16; s += 2) {
                                                if (r*(16-s) + (16-r)*s == sum_a8) {
                                                        current_candidates = add_more_candidates(current_candidates);
+                                                       if (current_candidates != NULL) {
                                                        // check for the smallest partial statelist. Try this first - it might give 0 candidates 
                                                        // and eliminate the need to calculate the other part
                                                        if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) 
@@ -1344,9 +1355,11 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
                        }
                }
        }                                       
+       }                                       
 
        maximum_states = 0;
-       for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+       unsigned int n = 0;
+       for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
                maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
        }
 
@@ -1355,18 +1368,14 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
        float kcalc = log(maximum_states)/log(2);
        printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
        if (write_stats) {
-               if (maximum_states != 0) {
-                       fprintf(fstats, "%1.1f;", kcalc);
-               } else {
-                       fprintf(fstats, "%1.1f;", 0.0);
-               }
+               fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
        }
        if (kcalc < CRACKING_THRESHOLD) return true;
 
        return false;
 }
 
-static void    free_candidates_memory(statelist_t *sl)
+static void free_candidates_memory(statelist_t *sl)
 {
        if (sl == NULL) {
                return;
@@ -1387,22 +1396,6 @@ static void free_statelist_cache(void)
        }               
 }
 
-uint64_t foundkey = 0;
-size_t keys_found = 0;
-size_t bucket_count = 0;
-statelist_t* buckets[128];
-size_t total_states_tested = 0;
-size_t thread_count = 4;
-
-// these bitsliced states will hold identical states in all slices
-bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
-
-// arrays of bitsliced states with identical values in all slices
-bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
-bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
-
-#define EXACT_COUNT
-
 static const uint64_t crack_states_bitsliced(statelist_t *p){
     // the idea to roll back the half-states before combining them was suggested/explained to me by bla
     // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
@@ -1491,11 +1484,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){
         crypto1_bs_rewind_a0();
         // set odd bits
         for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
-            if(o & 1){
-                state_p[state_idx] = bs_ones;
-            } else {
-                state_p[state_idx] = bs_zeroes;
-            }
+            state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
         }
         const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
 
@@ -1525,7 +1514,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){
             }
 
 #ifdef EXACT_COUNT
-            bucket_states_tested += bucket_size[block_idx];
+            bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
 #endif
             // pre-compute first keystream and feedback bit vectors
             const bitslice_value_t ksb = crypto1_bs_f20(state_p);
@@ -1636,16 +1625,25 @@ out:
 static void* crack_states_thread(void* x){
     const size_t thread_id = (size_t)x;
     size_t current_bucket = thread_id;
+       statelist_t *bucket = NULL;
+
     while(current_bucket < bucket_count){
-        statelist_t * bucket = buckets[current_bucket];
-               if(bucket){
+               if (keys_found) break;
+
+               if ((bucket = buckets[current_bucket])) {
             const uint64_t key = crack_states_bitsliced(bucket);
-            if(key != -1){
+
+                       if (keys_found) break;
+                       else if(key != -1) {
+                               if (TestIfKeyExists(key)) {
                 __sync_fetch_and_add(&keys_found, 1);
                                __sync_fetch_and_add(&foundkey, key);
+                                       printf("*");
+                                       fflush(stdout);
                 break;
-            } else if(keys_found){
-                break;
+                               }
+                               printf("!");
+                               fflush(stdout);
             } else {                           
                 printf(".");
                                fflush(stdout);
@@ -1656,8 +1654,7 @@ static void* crack_states_thread(void* x){
     return NULL;
 }
 
-static bool brute_force(void)
-{
+static bool brute_force(void) {
        bool ret = false;
        if (known_target_key != -1) {
                PrintAndLog("Looking for known target key in remaining key space...");
@@ -1672,6 +1669,9 @@ static bool brute_force(void)
                foundkey = 0;
 
                crypto1_bs_init();
+               memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
+               memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
+               memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
 
                PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
                PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
@@ -1691,10 +1691,12 @@ static bool brute_force(void)
 
                // count number of states to go
                bucket_count = 0;
-               for (statelist_t *p = candidates; p != NULL; p = p->next) {
+               buckets[MAX_BUCKETS-1] = NULL;
+               for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
                        buckets[bucket_count] = p;
                        bucket_count++;
                }
+               if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
 
 #ifndef __WIN32
                thread_count = sysconf(_SC_NPROCESSORS_CONF);
@@ -1715,29 +1717,26 @@ static bool brute_force(void)
                }
 
                time1 = clock() - time1;
-               if ( time1 < 0 ) time1 = -1;
+               PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);              
                
-               if (keys_found && TestIfKeyExists(foundkey)) {
-                       PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC);
+               if (keys_found) {
                        PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
                        ret = true;
-               } else {
-                       PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC);
-               }
-
+               } 
                // reset this counter for the next call
                nonces_to_bruteforce = 0;
        }
-
        return ret;
 }
 
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) 
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key
 {
        // initialize Random number generator
        time_t t;
        srand((unsigned) time(&t));
        
+       *found_key = 0;
+       
        if (trgkey != NULL) {
                known_target_key = bytes_to_num(trgkey, 6);
        } else {
@@ -1781,41 +1780,28 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
                        num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
                        PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
 
-                       clock_t time1 = clock();
                        bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-                       time1 = clock() - time1;
-                       if (time1 > 0)
-                               PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
-                       if (cracking)
+                       if (cracking || known_target_key != -1) {
                                brute_force();
+                       }
+
                } else { // acquire nonces.
                        uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
                        if (is_OK != 0) {
+                               free_nonces_memory();
+                               //free_statelist_cache();
+                               free_candidates_memory(candidates);
+                               candidates = NULL;
                                return is_OK;
                        }
                }
 
                //Tests();
-
-               //PrintAndLog("");
-               //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
-               // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
-                       // best_first_bytes[0],
-                       // best_first_bytes[1],
-                       // best_first_bytes[2],
-                       // best_first_bytes[3],
-                       // best_first_bytes[4],
-                       // best_first_bytes[5],
-                       // best_first_bytes[6],
-                       // best_first_bytes[7],
-                       // best_first_bytes[8],
-                       // best_first_bytes[9]  );
-
                free_nonces_memory();
                free_statelist_cache();
                free_candidates_memory(candidates);
                candidates = NULL;
        }
+       *found_key = foundkey;
        return 0;
-}
+}
\ No newline at end of file
Impressum, Datenschutz