//-----------------------------------------------------------------------------
// Copyright (C) 2015 piwi
-//
+// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
+// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <pthread.h>
-#include <locale.h>
-#include <math.h>
-#include "proxmark3.h"
-#include "cmdmain.h"
-#include "ui.h"
-#include "util.h"
-#include "nonce2key/crapto1.h"
-#include "parity.h"
-
-// uint32_t test_state_odd = 0;
-// uint32_t test_state_even = 0;
+#include "cmdhfmfhard.h"
+#include "cmdhw.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
-#define GOOD_BYTES_REQUIRED 30
+#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
+#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
+#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
+#define MAX_BUCKETS 128
+#define END_OF_LIST_MARKER 0xFFFFFFFF
static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0290 };
-
typedef struct noncelistentry {
uint32_t nonce_enc;
float Sum8_prob;
bool updated;
noncelistentry_t *first;
- float score1, score2;
+ float score1;
+ uint_fast8_t score2;
} noncelist_t;
-
+static size_t nonces_to_bruteforce = 0;
+static noncelistentry_t *brute_force_nonces[256];
static uint32_t cuid = 0;
static noncelist_t nonces[256];
static uint8_t best_first_bytes[256];
static partial_indexed_statelist_t partial_statelist[17];
static partial_indexed_statelist_t statelist_bitflip;
-
static statelist_t *candidates = NULL;
+bool field_off = false;
+
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[MAX_BUCKETS];
+static uint64_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
+
+static bool generate_candidates(uint16_t, uint16_t);
+static bool brute_force(void);
static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
{
} else { // add new entry at end of existing list.
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
- } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
+ if (p2 == NULL) return 0; // memory allocation failed
+ }
+ else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
if (p2 == NULL) { // need to insert at start of list
p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
} else {
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
- } else { // we have seen this 2nd byte before. Nothing to add or insert.
- return (0);
+ if (p2 == NULL) return 0; // memory allocation failed
+ } else {
+ return 0; // we have seen this 2nd byte before. Nothing to add or insert.
}
// add or insert new data
p2->nonce_enc = nonce_enc;
p2->par_enc = par_enc;
+ if(nonces_to_bruteforce < 256){
+ brute_force_nonces[nonces_to_bruteforce] = p2;
+ nonces_to_bruteforce++;
+ }
+
nonces[first_byte].num++;
nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
- return (1); // new nonce added
+ return 1; // new nonce added
}
-
static void init_nonce_memory(void)
{
for (uint16_t i = 0; i < 256; i++) {
num_good_first_bytes = 0;
}
-
static void free_nonce_list(noncelistentry_t *p)
{
if (p == NULL) {
}
}
-
static void free_nonces_memory(void)
{
for (uint16_t i = 0; i < 256; i++) {
}
}
-
static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
{
uint16_t sum = 0;
return sum;
}
-
// static uint16_t SumProperty(struct Crypto1State *s)
// {
// uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
// return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
// }
-
static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
{
// for efficient computation we are using the recursive definition
}
}
}
-
-
+
static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
{
const uint16_t N = 256;
if (k > K || p_K[K] == 0.0) return 0.0;
double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+ if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
+
double p_S_is_K = p_K[K];
- double p_T_is_k = 0;
+ double p_T_is_k = 0.0;
for (uint16_t i = 0; i <= 256; i++) {
if (p_K[i] != 0.0) {
p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
}
}
+ if (p_T_is_k == 0.0) return 0.0;
return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
}
-
-
-
static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
{
static const uint_fast8_t common_bits_LUT[256] = {
return common_bits_LUT[bytes_diff];
}
-
static void Tests()
{
// printf("Tests: Partial Statelist sizes\n");
// crypto1_destroy(pcs);
-
// printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
- printf("\nTests: Actual BitFlipProperties odd/even:\n");
- for (uint16_t i = 0; i < 256; i++) {
- printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
- if (i % 8 == 7) {
- printf("\n");
- }
- }
+ // printf("\nTests: Actual BitFlipProperties odd/even:\n");
+ // for (uint16_t i = 0; i < 256; i++) {
+ // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
+ // if (i % 8 == 7) {
+ // printf("\n");
+ // }
+ // }
- printf("\nTests: Sorted First Bytes:\n");
- for (uint16_t i = 0; i < 256; i++) {
- uint8_t best_byte = best_first_bytes[i];
- printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
- //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
- i, best_byte,
- nonces[best_byte].num,
- nonces[best_byte].Sum,
- nonces[best_byte].Sum8_guess,
- nonces[best_byte].Sum8_prob * 100,
- nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
- //nonces[best_byte].score1,
- //nonces[best_byte].score2
- );
- }
+ // printf("\nTests: Sorted First Bytes:\n");
+ // for (uint16_t i = 0; i < 256; i++) {
+ // uint8_t best_byte = best_first_bytes[i];
+ // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
+ // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
+ // i, best_byte,
+ // nonces[best_byte].num,
+ // nonces[best_byte].Sum,
+ // nonces[best_byte].Sum8_guess,
+ // nonces[best_byte].Sum8_prob * 100,
+ // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
+ // //nonces[best_byte].score1,
+ // //nonces[best_byte].score2
+ // );
+ // }
// printf("\nTests: parity performance\n");
// time_t time1p = clock();
}
-
-static void sort_best_first_bytes(void)
+static uint16_t sort_best_first_bytes(void)
{
// sort based on probability for correct guess
for (uint16_t i = 0; i < 256; i++ ) {
best_first_bytes[k] = best_first_bytes[k-1];
}
}
- best_first_bytes[j] = i;
- }
+ best_first_bytes[j] = i;
+ }
// determine how many are above the CONFIDENCE_THRESHOLD
uint16_t num_good_nonces = 0;
}
}
+ if (num_good_nonces == 0) return 0;
+
uint16_t best_first_byte = 0;
// select the best possible first byte based on number of common bits with all {b'}
for (uint16_t i = 0; i < num_good_nonces; i++ ) {
uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
float bitflip_prob = 1.0;
- if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
bitflip_prob = 0.09375;
- }
+
nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
- if (p_K[sum8] * bitflip_prob <= min_p_K) {
+
+ if (p_K[sum8] * bitflip_prob <= min_p_K)
min_p_K = p_K[sum8] * bitflip_prob;
- }
+
}
// use number of commmon bits as a tie breaker
- uint16_t max_common_bits = 0;
+ uint_fast8_t max_common_bits = 0;
for (uint16_t i = 0; i < num_good_nonces; i++) {
+
float bitflip_prob = 1.0;
- if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
bitflip_prob = 0.09375;
- }
+
if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
- uint16_t sum_common_bits = 0;
+ uint_fast8_t sum_common_bits = 0;
for (uint16_t j = 0; j < num_good_nonces; j++) {
sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
}
}
// swap best possible first byte to the pole position
- uint16_t temp = best_first_bytes[0];
- best_first_bytes[0] = best_first_bytes[best_first_byte];
- best_first_bytes[best_first_byte] = temp;
+ if (best_first_byte != 0) {
+ uint16_t temp = best_first_bytes[0];
+ best_first_bytes[0] = best_first_bytes[best_first_byte];
+ best_first_bytes[best_first_byte] = temp;
+ }
+ return num_good_nonces;
}
-
static uint16_t estimate_second_byte_sum(void)
-{
-
+{
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
float Sum8_prob = 0.0;
uint16_t Sum8 = 0;
nonces[first_byte].updated = false;
}
}
-
- sort_best_first_bytes();
-
- uint16_t num_good_nonces = 0;
- for (uint16_t i = 0; i < 256; i++) {
- if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
- ++num_good_nonces;
- }
- }
-
- return num_good_nonces;
+ return sort_best_first_bytes();
}
-
static int read_nonce_file(void)
{
FILE *fnonces = NULL;
- uint8_t trgBlockNo;
- uint8_t trgKeyType;
+ uint8_t trgBlockNo = 0;
+ uint8_t trgKeyType = 0;
uint8_t read_buf[9];
- uint32_t nt_enc1, nt_enc2;
- uint8_t par_enc;
+ uint32_t nt_enc1 = 0, nt_enc2 = 0;
+ uint8_t par_enc = 0;
int total_num_nonces = 0;
if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
}
PrintAndLog("Reading nonces from file nonces.bin...");
+ memset (read_buf, 0, sizeof (read_buf));
size_t bytes_read = fread(read_buf, 1, 6, fnonces);
if ( bytes_read == 0) {
PrintAndLog("File reading error.");
cuid = bytes_to_num(read_buf, 4);
trgBlockNo = bytes_to_num(read_buf+4, 1);
trgKeyType = bytes_to_num(read_buf+5, 1);
-
- while (fread(read_buf, 1, 9, fnonces) == 9) {
+ size_t ret = 0;
+ do {
+ memset (read_buf, 0, sizeof (read_buf));
+ if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
nt_enc1 = bytes_to_num(read_buf, 4);
nt_enc2 = bytes_to_num(read_buf+4, 4);
par_enc = bytes_to_num(read_buf+8, 1);
add_nonce(nt_enc2, par_enc & 0x0f);
total_num_nonces += 2;
}
+ } while (ret == 9);
+
fclose(fnonces);
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
-
return 0;
}
-
static void Check_for_FilterFlipProperties(void)
{
printf("Checking for Filter Flip Properties...\n");
-
uint16_t num_bitflips = 0;
for (uint16_t i = 0; i < 256; i++) {
}
for (uint16_t i = 0; i < 256; i++) {
+ if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
+
uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
}
}
- if (write_stats) {
+ if (write_stats)
fprintf(fstats, "%d;", num_bitflips);
- }
}
-
static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
{
- struct Crypto1State sim_cs;
- sim_cs.odd = sim_cs.even = 0;
-
+ struct Crypto1State sim_cs = {0, 0};
// init cryptostate with key:
for(int8_t i = 47; i > 0; i -= 2) {
sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
}
-
static void simulate_acquire_nonces()
{
clock_t time1 = clock();
cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
- printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
- fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
+ printf("Simulating nonce acquisition for target key %012" PRIx64 ", cuid %08x ...\n", known_target_key, cuid);
+ fprintf(fstats, "%012" PRIx64 ";%08x;", known_target_key, cuid);
do {
uint32_t nt_enc = 0;
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
- total_num_nonces,
+ printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
}
-
static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
{
clock_t time1 = clock();
bool initialize = true;
- bool field_off = false;
bool finished = false;
bool filter_flip_checked = false;
uint32_t flags = 0;
uint32_t total_num_nonces = 0;
uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0;
+ uint32_t idx = 1;
+ uint32_t timeout = 0;
FILE *fnonces = NULL;
+ field_off = false;
UsbCommand resp;
-
+ UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
+ memcpy(c.d.asBytes, key, 6);
+ c.arg[0] = blockNo + (keyType * 0x100);
+ c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
+
printf("Acquiring nonces...\n");
-
- clearCommandBuffer();
-
do {
+
flags = 0;
flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
- UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
- memcpy(c.d.asBytes, key, 6);
+ c.arg[2] = flags;
+ clearCommandBuffer();
SendCommand(&c);
- if (field_off) finished = true;
-
- if (initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
- if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+ if (field_off) break;
+
+ while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
+ timeout++;
+ printf(".");
+ if (timeout > 3) {
+ PrintAndLog("\nNo response from Proxmark. Aborting...");
+ if (fnonces) fclose(fnonces);
+ return 1;
+ }
+ }
+ if (resp.arg[0]) {
+ if (fnonces) fclose(fnonces);
+ return resp.arg[0]; // error during nested_hard
+ }
+
+ if (initialize) {
+ // global var CUID
cuid = resp.arg[1];
- // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
if (nonce_file_write && fnonces == NULL) {
if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
PrintAndLog("Could not create file nonces.bin");
return 3;
}
PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+ memset (write_buf, 0, sizeof (write_buf));
num_to_bytes(cuid, 4, write_buf);
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
fwrite(&trgKeyType, 1, 1, fnonces);
+ fflush(fnonces);
}
+ initialize = false;
}
-
- if (!initialize) {
- uint32_t nt_enc1, nt_enc2;
- uint8_t par_enc;
- uint16_t num_acquired_nonces = resp.arg[2];
- uint8_t *bufp = resp.d.asBytes;
- for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
- nt_enc1 = bytes_to_num(bufp, 4);
- nt_enc2 = bytes_to_num(bufp+4, 4);
- par_enc = bytes_to_num(bufp+8, 1);
-
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
- total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
- total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
-
-
- if (nonce_file_write) {
- fwrite(bufp, 1, 9, fnonces);
- }
-
- bufp += 9;
+
+ uint32_t nt_enc1, nt_enc2;
+ uint8_t par_enc;
+ uint16_t num_acquired_nonces = resp.arg[2];
+ uint8_t *bufp = resp.d.asBytes;
+ for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
+ nt_enc1 = bytes_to_num(bufp, 4);
+ nt_enc2 = bytes_to_num(bufp+4, 4);
+ par_enc = bytes_to_num(bufp+8, 1);
+
+ total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
+ total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+
+ if (nonce_file_write && fnonces) {
+ fwrite(bufp, 1, 9, fnonces);
+ fflush(fnonces);
}
-
- total_num_nonces += num_acquired_nonces;
+ bufp += 9;
}
-
- if (first_byte_num == 256 ) {
- // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+ total_num_nonces += num_acquired_nonces;
+
+ if (first_byte_num == 256) {
+
if (!filter_flip_checked) {
Check_for_FilterFlipProperties();
filter_flip_checked = true;
}
+
num_good_first_bytes = estimate_second_byte_sum();
+
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
- total_num_nonces,
+ printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
total_added_nonces,
+ NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
- num_good_first_bytes);
+ num_good_first_bytes
+ );
}
- if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
- field_off = true; // switch off field with next SendCommand and then finish
- }
- }
-
- if (!initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
- fclose(fnonces);
- return 1;
- }
- if (resp.arg[0]) {
- fclose(fnonces);
- return resp.arg[0]; // error during nested_hard
+
+ if (total_added_nonces >= (NONCES_THRESHOLD * idx)) {
+ if (num_good_first_bytes > 0) {
+ if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) {
+ field_off = brute_force(); // switch off field with next SendCommand and then finish
+ }
+ }
+ idx++;
}
}
-
- initialize = false;
-
} while (!finished);
-
- if (nonce_file_write) {
+ if (nonce_file_write && fnonces)
fclose(fnonces);
- }
time1 = clock() - time1;
if ( time1 > 0 ) {
- PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
- total_num_nonces,
- ((float)time1)/CLOCKS_PER_SEC,
- total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
+ PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
+ total_num_nonces,
+ ((float)time1)/CLOCKS_PER_SEC,
+ total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
);
}
return 0;
}
-
static int init_partial_statelists(void)
{
const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
- const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+ const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
printf("Allocating memory for partial statelists...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
for (uint16_t i = 0; i <= 16; i += 2) {
uint32_t *p = partial_statelist[i].states[odd_even];
p += partial_statelist[i].len[odd_even];
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
}
return 0;
}
-
static void init_BitFlip_statelist(void)
{
}
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
- *p = 0xffffffff;
- statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+ *p = END_OF_LIST_MARKER;
+ //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
}
-
static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
{
if (p == NULL) return NULL;
while (*p < (state & mask)) p++;
- if (*p == 0xffffffff) return NULL; // reached end of list, no match
+ if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
if ((*p & mask) == (state & mask)) return p; // found a match.
return NULL; // no match
}
-
static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
{
uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
return !all_diff;
}
-
static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
{
uint_fast8_t j_bit_mask = 0x01 << bit;
return all_diff;
}
-
static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
{
if (odd_even) {
return true; // valid state
}
-
static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
{
for (uint16_t i = 1; i < num_good_first_bytes; i++) {
uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
if (p != NULL) {
- while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+ while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
return true;
}
-
static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
{
for (uint16_t i = 0; i < 256; i++) {
bool found_match = false;
uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
if (p != NULL) {
- while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+ while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
return true;
}
-
static struct sl_cache_entry {
uint32_t *sl;
uint32_t len;
} sl_cache[17][17][2];
-
static void init_statelist_cache(void)
{
for (uint16_t i = 0; i < 17; i+=2) {
}
}
-
static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
{
uint32_t worstcase_size = 1<<20;
return 4;
}
uint32_t *add_p = candidates->states[odd_even];
- for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) {
+ for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
uint32_t search_mask = 0x000ffff0;
uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
- if (p2 != NULL) {
- while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) {
+ if (p1 != NULL && p2 != NULL) {
+ while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
|| !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
}
// set end of list marker and len
- *add_p = 0xffffffff;
+ *add_p = END_OF_LIST_MARKER;
candidates->len[odd_even] = add_p - candidates->states[odd_even];
candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
return 0;
}
-
static statelist_t *add_more_candidates(statelist_t *current_candidates)
{
statelist_t *new_candidates = NULL;
} else {
new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
}
+ if (!new_candidates) return NULL;
+
new_candidates->next = NULL;
new_candidates->len[ODD_STATE] = 0;
new_candidates->len[EVEN_STATE] = 0;
return new_candidates;
}
-
-static void TestIfKeyExists(uint64_t key)
+static bool TestIfKeyExists(uint64_t key)
{
struct Crypto1State *pcs;
pcs = crypto1_create(key);
uint32_t state_odd = pcs->odd & 0x00ffffff;
uint32_t state_even = pcs->even & 0x00ffffff;
- //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
-
+ //printf("Tests: searching for key %" PRIx64 " after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
+ printf("Validating key search space\n");
uint64_t count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) {
bool found_odd = false;
bool found_even = false;
uint32_t *p_odd = p->states[ODD_STATE];
uint32_t *p_even = p->states[EVEN_STATE];
- while (*p_odd != 0xffffffff) {
+ while (*p_odd != END_OF_LIST_MARKER) {
if ((*p_odd & 0x00ffffff) == state_odd) {
found_odd = true;
break;
}
p_odd++;
}
- while (*p_even != 0xffffffff) {
- if ((*p_even & 0x00ffffff) == state_even) {
+ while (*p_even != END_OF_LIST_MARKER) {
+ if ((*p_even & 0x00ffffff) == state_even)
found_even = true;
- }
+
p_even++;
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
- PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
- count, log(count)/log(2),
- maximum_states, log(maximum_states)/log(2),
- (count>>23)/60);
- if (write_stats) {
- fprintf(fstats, "1\n");
+ if (known_target_key != -1) {
+ PrintAndLog("Key Found after testing %" PRIu64 " (2^%1.1f) out of %lld (2^%1.1f) keys.",
+ count,
+ log(count)/log(2),
+ maximum_states,
+ log(maximum_states)/log(2)
+ );
+ if (write_stats)
+ fprintf(fstats, "1\n");
}
crypto1_destroy(pcs);
- return;
+ return true;
}
}
- printf("Key NOT found!\n");
- if (write_stats) {
- fprintf(fstats, "0\n");
+ if (known_target_key != -1) {
+ printf("Key NOT found!\n");
+ if (write_stats)
+ fprintf(fstats, "0\n");
}
crypto1_destroy(pcs);
+ return false;
}
-
-static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
+static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
{
printf("Generating crypto1 state candidates... \n");
}
}
}
- printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
init_statelist_cache();
for (uint16_t p = 0; p <= 16; p += 2) {
for (uint16_t q = 0; q <= 16; q += 2) {
if (p*(16-q) + (16-p)*q == sum_a0) {
- printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
- p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+ // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
+ // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
for (uint16_t r = 0; r <= 16; r += 2) {
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
current_candidates = add_more_candidates(current_candidates);
+ if (current_candidates != NULL) {
// check for the smallest partial statelist. Try this first - it might give 0 candidates
// and eliminate the need to calculate the other part
if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
< MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
- add_matching_states(current_candidates, p, r, ODD_STATE);
+ add_matching_states(current_candidates, p, r, ODD_STATE);
if(current_candidates->len[ODD_STATE]) {
- add_matching_states(current_candidates, q, s, EVEN_STATE);
+ add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[EVEN_STATE] = 0;
uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
} else {
add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[ODD_STATE] = 0;
uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
}
- printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
- printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
+ //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
+ //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
}
}
}
}
}
}
+ }
-
maximum_states = 0;
- for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+ unsigned int n = 0;
+ for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
- printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ float kcalc = log(maximum_states)/log(2);
+ printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
- if (maximum_states != 0) {
- fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
- } else {
- fprintf(fstats, "%1.1f;", 0.0);
- }
+ fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
}
-}
+ if (kcalc < CRACKING_THRESHOLD) return true;
+ return false;
+}
-static void free_candidates_memory(statelist_t *sl)
+static void free_candidates_memory(statelist_t *sl)
{
if (sl == NULL) {
return;
}
}
-
static void free_statelist_cache(void)
{
for (uint16_t i = 0; i < 17; i+=2) {
}
}
+static const uint64_t crack_states_bitsliced(statelist_t *p){
+ // the idea to roll back the half-states before combining them was suggested/explained to me by bla
+ // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
+ uint64_t key = -1;
+ uint8_t bSize = sizeof(bitslice_t);
+
+#ifdef EXACT_COUNT
+ size_t bucket_states_tested = 0;
+ size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
+#else
+ const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
+#endif
+
+ bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
+ size_t bitsliced_blocks = 0;
+ uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
+
+ // bitslice all the even states
+ for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
+
+#ifdef __WIN32
+ #ifdef __MINGW32__
+ bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
+ #else
+ bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
+ #endif
+#else
+ #ifdef __APPLE__
+ bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
+ #else
+ bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
+ #endif
+#endif
+
+ if ( !lstate_p ) {
+ __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
+ return key;
+ }
+
+ memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
+
+ // bitslice even half-states
+ const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
+#ifdef EXACT_COUNT
+ bucket_size[bitsliced_blocks] = max_slices;
+#endif
+ for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
+ uint32_t e = *(p_even+slice_idx);
+ for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
+ // set even bits
+ if(e&1){
+ lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
+ }
+ }
+ }
+ // compute the rollback bits
+ for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
+ // inlined crypto1_bs_lfsr_rollback
+ const bitslice_value_t feedout = lstate_p[0].value;
+ ++lstate_p;
+ const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
+ const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
+ lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
+ lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
+ lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
+ lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
+ lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
+ lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
+ }
+ bitsliced_even_states[bitsliced_blocks++] = lstate_p;
+ }
+
+ // bitslice every odd state to every block of even half-states with half-finished rollback
+ for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
+ // early abort
+ if(keys_found){
+ goto out;
+ }
+
+ // set the odd bits and compute rollback
+ uint64_t o = (uint64_t) *p_odd;
+ lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
+ // pre-compute part of the odd feedback bits (minus rollback)
+ bool odd_feedback_bit = parity(o&0x9ce5c);
+
+ crypto1_bs_rewind_a0();
+ // set odd bits
+ for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
+ state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
+ }
+ const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
+
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
+ const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
+ size_t state_idx;
+ // set even bits
+ for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
+ }
+ // set rollback bits
+ uint64_t lo = o;
+ for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
+ // set the odd bits and take in the odd rollback bits from the even states
+ if(lo & 1){
+ state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
+ } else {
+ state_p[state_idx] = bitsliced_even_state[state_idx];
+ }
+
+ // set the even bits and take in the even rollback bits from the odd states
+ if((lo >> 32) & 1){
+ state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
+ } else {
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
+ }
+ }
+
+#ifdef EXACT_COUNT
+ bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
+#endif
+ // pre-compute first keystream and feedback bit vectors
+ const bitslice_value_t ksb = crypto1_bs_f20(state_p);
+ const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
+ state_p[47-24].value ^ state_p[47-42].value);
+
+ // vector to contain test results (1 = passed, 0 = failed)
+ bitslice_t results = bs_ones;
+
+ for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
+ size_t parity_bit_idx = 0;
+ bitslice_value_t fb_bits = fbb;
+ bitslice_value_t ks_bits = ksb;
+ state_p = &states[KEYSTREAM_SIZE-1];
+ bitslice_value_t parity_bit_vector = bs_zeroes.value;
+
+ // highest bit is transmitted/received first
+ for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
+ // decrypt nonce bits
+ const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
+ const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
+
+ // compute real parity bits on the fly
+ parity_bit_vector ^= decrypted_nonce_bit_vector;
+
+ // update state
+ state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
+
+ // compute next keystream bit
+ ks_bits = crypto1_bs_f20(state_p);
+
+ // for each byte:
+ if((ks_idx&7) == 0){
+ // get encrypted parity bits
+ const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
+
+ // decrypt parity bits
+ const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
+
+ // compare actual parity bits with decrypted parity bits and take count in results vector
+ results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
+
+ // make sure we still have a match in our set
+ // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
+
+ // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
+ // the short-circuiting also helps
+ if(results.bytes64[0] == 0
+#if MAX_BITSLICES > 64
+ && results.bytes64[1] == 0
+#endif
+#if MAX_BITSLICES > 128
+ && results.bytes64[2] == 0
+ && results.bytes64[3] == 0
+#endif
+ ){
+ goto stop_tests;
+ }
+ // this is about as fast but less portable (requires -std=gnu99)
+ // asm goto ("ptest %1, %0\n\t"
+ // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
+ parity_bit_vector = bs_zeroes.value;
+ }
+ // compute next feedback bit vector
+ fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
+ state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
+ state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
+ state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
+ state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
+ }
+ }
+ // all nonce tests were successful: we've found the key in this block!
+ state_t keys[MAX_BITSLICES];
+ crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
+ for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
+ if(get_vector_bit(results_idx, results)){
+ key = keys[results_idx].value;
+ goto out;
+ }
+ }
+stop_tests:
+ // prepare to set new states
+ crypto1_bs_rewind_a0();
+ continue;
+ }
+ }
+
+out:
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
+
+#ifdef __WIN32
+ #ifdef __MINGW32__
+ __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+ #else
+ _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+ #endif
+#else
+ free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+#endif
+
+ }
+ __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
+ return key;
+}
-static void brute_force(void)
-{
+static void* crack_states_thread(void* x){
+ const size_t thread_id = (size_t)x;
+ size_t current_bucket = thread_id;
+ statelist_t *bucket = NULL;
+
+ while(current_bucket < bucket_count){
+ if (keys_found) break;
+
+ if ((bucket = buckets[current_bucket])) {
+ const uint64_t key = crack_states_bitsliced(bucket);
+
+ if (keys_found) break;
+ else if(key != -1) {
+ if (TestIfKeyExists(key)) {
+ __sync_fetch_and_add(&keys_found, 1);
+ __sync_fetch_and_add(&foundkey, key);
+ printf("*");
+ fflush(stdout);
+ break;
+ }
+ printf("!");
+ fflush(stdout);
+ } else {
+ printf(".");
+ fflush(stdout);
+ }
+ }
+ current_bucket += thread_count;
+ }
+ return NULL;
+}
+
+static bool brute_force(void) {
+ bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
- TestIfKeyExists(known_target_key);
+ ret = TestIfKeyExists(known_target_key);
} else {
- PrintAndLog("Brute Force phase is not implemented.");
- }
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ PrintAndLog("Brute force phase starting.");
+
+ clock_t time1 = clock();
+ keys_found = 0;
+ foundkey = 0;
+
+ crypto1_bs_init();
+ memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
+ memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
+ memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
+
+ PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
+ // convert to 32 bit little-endian
+ crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
+
+ PrintAndLog("Bitslicing nonces...");
+ for(size_t tests = 0; tests < NONCE_TESTS; tests++){
+ uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
+ uint8_t test_parity = brute_force_nonces[tests]->par_enc;
+ // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
+ crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
+ // convert to 32 bit little-endian
+ crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
+ }
+ total_states_tested = 0;
+
+ // count number of states to go
+ bucket_count = 0;
+ buckets[MAX_BUCKETS-1] = NULL;
+ for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
+ buckets[bucket_count] = p;
+ bucket_count++;
+ }
+ if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
-}
+#ifndef __WIN32
+ thread_count = sysconf(_SC_NPROCESSORS_CONF);
+ if ( thread_count < 1)
+ thread_count = 1;
+#endif /* _WIN32 */
+
+ pthread_t threads[thread_count];
+
+ // enumerate states using all hardware threads, each thread handles one bucket
+ PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
+
+ for(size_t i = 0; i < thread_count; i++){
+ pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
+ }
+ for(size_t i = 0; i < thread_count; i++){
+ pthread_join(threads[i], 0);
+ }
+ time1 = clock() - time1;
+ PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
+
+ if (keys_found) {
+ PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
+ ret = true;
+ }
+ // reset this counter for the next call
+ nonces_to_bruteforce = 0;
+ }
+ return ret;
+}
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key)
{
// initialize Random number generator
time_t t;
srand((unsigned) time(&t));
+ *found_key = 0;
+
if (trgkey != NULL) {
known_target_key = bytes_to_num(trgkey, 6);
} else {
candidates = NULL;
}
fclose(fstats);
+ fstats = NULL;
} else {
init_nonce_memory();
- if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
if (read_nonce_file() != 0) {
return 3;
}
Check_for_FilterFlipProperties();
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
- } else { // acquire nonces.
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ if (cracking || known_target_key != -1) {
+ brute_force();
+ }
+
+ } else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
+ free_nonces_memory();
+ //free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
return is_OK;
}
}
- Tests();
-
- PrintAndLog("");
- PrintAndLog("Sum(a0) = %d", first_byte_Sum);
- // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
- // best_first_bytes[0],
- // best_first_bytes[1],
- // best_first_bytes[2],
- // best_first_bytes[3],
- // best_first_bytes[4],
- // best_first_bytes[5],
- // best_first_bytes[6],
- // best_first_bytes[7],
- // best_first_bytes[8],
- // best_first_bytes[9] );
- PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
- clock_t time1 = clock();
- generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if ( time1 > 0 )
- PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
- brute_force();
+ //Tests();
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
candidates = NULL;
- }
+ }
+ *found_key = foundkey;
return 0;
-}
-
-
+}
\ No newline at end of file