-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 15693. This includes both the reader software and\r
-// the `fake tag' modes, but at the moment I've implemented only the reader\r
-// stuff, and that barely.\r
-// Jonathan Westhues, split Nov 2006\r
-\r
-// Modified by Greg Jones, Jan 2009 to perform modulation onboard in arm rather than on PC\r
-// Also added additional reader commands (SELECT, READ etc.)\r
-\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include <stdio.h>\r
-#include <stdlib.h>\r
-\r
-// FROM winsrc\prox.h //////////////////////////////////\r
-#define arraylen(x) (sizeof(x)/sizeof((x)[0]))\r
-\r
-//-----------------------------------------------------------------------------\r
-// Map a sequence of octets (~layer 2 command) into the set of bits to feed\r
-// to the FPGA, to transmit that command to the tag.\r
-//-----------------------------------------------------------------------------\r
-\r
- // The sampling rate is 106.353 ksps/s, for T = 18.8 us\r
-\r
- // SOF defined as\r
- // 1) Unmodulated time of 56.64us\r
- // 2) 24 pulses of 423.75khz\r
- // 3) logic '1' (unmodulated for 18.88us followed by 8 pulses of 423.75khz)\r
-\r
- static const int FrameSOF[] = {\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1,\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1\r
- };\r
- static const int Logic0[] = {\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1,\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1\r
- };\r
- static const int Logic1[] = {\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1,\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1\r
- };\r
-\r
- // EOF defined as\r
- // 1) logic '0' (8 pulses of 423.75khz followed by unmodulated for 18.88us)\r
- // 2) 24 pulses of 423.75khz\r
- // 3) Unmodulated time of 56.64us\r
-\r
- static const int FrameEOF[] = {\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1,\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1\r
- };\r
-\r
-static void CodeIso15693AsReader(BYTE *cmd, int n)\r
-{\r
- int i, j;\r
-\r
- ToSendReset();\r
-\r
- // Give it a bit of slack at the beginning\r
- for(i = 0; i < 24; i++) {\r
- ToSendStuffBit(1);\r
- }\r
-\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- for(i = 0; i < n; i++) {\r
- for(j = 0; j < 8; j += 2) {\r
- int these = (cmd[i] >> j) & 3;\r
- switch(these) {\r
- case 0:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- break;\r
- case 1:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- break;\r
- case 2:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- break;\r
- case 3:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- break;\r
- }\r
- }\r
- }\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
-\r
- // And slack at the end, too.\r
- for(i = 0; i < 24; i++) {\r
- ToSendStuffBit(1);\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// The CRC used by ISO 15693.\r
-//-----------------------------------------------------------------------------\r
-static WORD Crc(BYTE *v, int n)\r
-{\r
- DWORD reg;\r
- int i, j;\r
-\r
- reg = 0xffff;\r
- for(i = 0; i < n; i++) {\r
- reg = reg ^ ((DWORD)v[i]);\r
- for (j = 0; j < 8; j++) {\r
- if (reg & 0x0001) {\r
- reg = (reg >> 1) ^ 0x8408;\r
- } else {\r
- reg = (reg >> 1);\r
- }\r
- }\r
- }\r
-\r
- return ~reg;\r
-}\r
-\r
-char *strcat(char *dest, const char *src)\r
-{\r
- size_t dest_len = strlen(dest);\r
- size_t i;\r
- \r
- for (i = 0 ; src[i] != '\0' ; i++)\r
- dest[dest_len + i] = src[i];\r
- dest[dest_len + i] = '\0';\r
- \r
- return dest;\r
-}\r
-\r
-////////////////////////////////////////// code to do 'itoa'\r
-\r
-/* reverse: reverse string s in place */\r
-void reverse(char s[])\r
-{\r
- int c, i, j;\r
-\r
- for (i = 0, j = strlen(s)-1; i<j; i++, j--) {\r
- c = s[i];\r
- s[i] = s[j];\r
- s[j] = c;\r
- }\r
-}\r
-\r
-/* itoa: convert n to characters in s */\r
-void itoa(int n, char s[])\r
-{\r
- int i, sign;\r
-\r
- if ((sign = n) < 0) /* record sign */\r
- n = -n; /* make n positive */\r
- i = 0;\r
- do { /* generate digits in reverse order */\r
- s[i++] = n % 10 + '0'; /* get next digit */\r
- } while ((n /= 10) > 0); /* delete it */\r
- if (sign < 0)\r
- s[i++] = '-';\r
- s[i] = '\0';\r
- reverse(s);\r
-}\r
-\r
-//////////////////////////////////////// END 'itoa' CODE\r
-\r
-//-----------------------------------------------------------------------------\r
-// Encode (into the ToSend buffers) an identify request, which is the first\r
-// thing that you must send to a tag to get a response.\r
-//-----------------------------------------------------------------------------\r
-static void BuildIdentifyRequest(void)\r
-{\r
- BYTE cmd[5];\r
-\r
- WORD crc;\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- // AFI is at bit 5 (1<<4) when doing an INVENTORY\r
- cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);\r
- // inventory command code\r
- cmd[1] = 0x01;\r
- // no mask\r
- cmd[2] = 0x00;\r
- //Now the CRC\r
- crc = Crc(cmd, 3);\r
- cmd[3] = crc & 0xff;\r
- cmd[4] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildSysInfoRequest(BYTE *uid)\r
-{\r
- BYTE cmd[12];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // System Information command code\r
- cmd[1] = 0x2B;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- //Now the CRC\r
- crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes\r
- cmd[10] = crc & 0xff;\r
- cmd[11] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void BuildSelectRequest( BYTE uid[])\r
-{\r
-\r
-// uid[6]=0x31; // this is getting ignored - the uid array is not happening...\r
- BYTE cmd[12];\r
-\r
- WORD crc;\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- //cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // INVENTROY FLAGS\r
- cmd[0] = (1 << 4) | (1 << 5) | (1 << 1); // Select and addressed FLAGS\r
- // SELECT command code\r
- cmd[1] = 0x25;\r
- // 64-bit UID\r
-// cmd[2] = uid[0];//0x32;\r
-// cmd[3]= uid[1];//0x4b;\r
-// cmd[4] = uid[2];//0x03;\r
-// cmd[5] = uid[3];//0x01;\r
-// cmd[6] = uid[4];//0x00;\r
-// cmd[7] = uid[5];//0x10;\r
-// cmd[8] = uid[6];//0x05;\r
- cmd[2] = 0x32;//\r
- cmd[3] = 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05; // infineon?\r
-\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-\r
-// DbpIntegers(cmd[8],cmd[7],cmd[6]);\r
- // Now the CRC\r
- crc = Crc(cmd, 10); // the crc needs to be calculated over 10 bytes\r
- cmd[10] = crc & 0xff;\r
- cmd[11] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildReadBlockRequest(BYTE *uid, BYTE blockNumber )\r
-{\r
- BYTE cmd[13];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ BLOCK command code\r
- cmd[1] = 0x20;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // Block number to read\r
- cmd[10] = blockNumber;//0x00;\r
- //Now the CRC\r
- crc = Crc(cmd, 11); // the crc needs to be calculated over 2 bytes\r
- cmd[11] = crc & 0xff;\r
- cmd[12] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildReadMultiBlockRequest(BYTE *uid)\r
-{\r
- BYTE cmd[14];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ Multi BLOCK command code\r
- cmd[1] = 0x23;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // First Block number to read\r
- cmd[10] = 0x00;\r
- // Number of Blocks to read\r
- cmd[11] = 0x2f; // read quite a few\r
- //Now the CRC\r
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
- cmd[12] = crc & 0xff;\r
- cmd[13] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildArbitraryRequest(BYTE *uid,BYTE CmdCode)\r
-{\r
- BYTE cmd[14];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ BLOCK command code\r
- cmd[1] = CmdCode;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // Parameter\r
- cmd[10] = 0x00;\r
- cmd[11] = 0x0a;\r
-\r
-// cmd[12] = 0x00;\r
-// cmd[13] = 0x00; //Now the CRC\r
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
- cmd[12] = crc & 0xff;\r
- cmd[13] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildArbitraryCustomRequest(BYTE uid[], BYTE CmdCode)\r
-{\r
- BYTE cmd[14];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ BLOCK command code\r
- cmd[1] = CmdCode;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // Parameter\r
- cmd[10] = 0x05; // for custom codes this must be manufcturer code\r
- cmd[11] = 0x00;\r
-\r
-// cmd[12] = 0x00;\r
-// cmd[13] = 0x00; //Now the CRC\r
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
- cmd[12] = crc & 0xff;\r
- cmd[13] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-/////////////////////////////////////////////////////////////////////////\r
-// Now the VICC>VCD responses when we are simulating a tag\r
-////////////////////////////////////////////////////////////////////\r
-\r
- static void BuildInventoryResponse(void)\r
-{\r
- BYTE cmd[12];\r
-\r
- WORD crc;\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- // AFI is at bit 5 (1<<4) when doing an INVENTORY\r
- cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1);\r
- cmd[1] = 0;\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0;\r
- //Now the CRC\r
- crc = Crc(cmd, 10);\r
- cmd[10] = crc & 0xff;\r
- cmd[11] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitTo15693Tag(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
-\r
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
- if(*wait < 10) { *wait = 10; }\r
-\r
-// for(c = 0; c < *wait;) {\r
-// if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-// SSC_TRANSMIT_HOLDING = 0x00; // For exact timing!\r
-// c++;\r
-// }\r
-// if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-// volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-// (void)r;\r
-// }\r
-// WDT_HIT();\r
-// }\r
-\r
- c = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the reader) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitTo15693Reader(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
-\r
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR); // No requirement to energise my coils\r
- if(*wait < 10) { *wait = 10; }\r
-\r
- c = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- *samples = (c + *wait) << 3;\r
-}\r
-\r
-static int GetIso15693AnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed)\r
-{\r
- int c = 0;\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int getNext = 0;\r
-\r
- SBYTE prev = 0;\r
-\r
-// NOW READ RESPONSE\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads\r
- c = 0;\r
- getNext = FALSE;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x43;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- SBYTE b;\r
- b = (SBYTE)SSC_RECEIVE_HOLDING;\r
-\r
- // The samples are correlations against I and Q versions of the\r
- // tone that the tag AM-modulates, so every other sample is I,\r
- // every other is Q. We just want power, so abs(I) + abs(Q) is\r
- // close to what we want.\r
- if(getNext) {\r
- SBYTE r;\r
-\r
- if(b < 0) {\r
- r = -b;\r
- } else {\r
- r = b;\r
- }\r
- if(prev < 0) {\r
- r -= prev;\r
- } else {\r
- r += prev;\r
- }\r
-\r
- dest[c++] = (BYTE)r;\r
-\r
- if(c >= 2000) {\r
- break;\r
- }\r
- } else {\r
- prev = b;\r
- }\r
-\r
- getNext = !getNext;\r
- }\r
- }\r
-\r
-//////////////////////////////////////////\r
-/////////// DEMODULATE ///////////////////\r
-//////////////////////////////////////////\r
-\r
- int i, j;\r
- int max = 0, maxPos=0;\r
-\r
- int skip = 4;\r
-\r
-// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL\r
-\r
- // First, correlate for SOF\r
- for(i = 0; i < 100; i++) {\r
- int corr = 0;\r
- for(j = 0; j < arraylen(FrameSOF); j += skip) {\r
- corr += FrameSOF[j]*dest[i+(j/skip)];\r
- }\r
- if(corr > max) {\r
- max = corr;\r
- maxPos = i;\r
- }\r
- }\r
-// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));\r
-\r
- int k = 0; // this will be our return value\r
-\r
- // greg - If correlation is less than 1 then there's little point in continuing\r
- if ((max/(arraylen(FrameSOF)/skip)) >= 1)\r
- {\r
-\r
- i = maxPos + arraylen(FrameSOF)/skip;\r
-\r
- BYTE outBuf[20];\r
- memset(outBuf, 0, sizeof(outBuf));\r
- BYTE mask = 0x01;\r
- for(;;) {\r
- int corr0 = 0, corr1 = 0, corrEOF = 0;\r
- for(j = 0; j < arraylen(Logic0); j += skip) {\r
- corr0 += Logic0[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(Logic1); j += skip) {\r
- corr1 += Logic1[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(FrameEOF); j += skip) {\r
- corrEOF += FrameEOF[j]*dest[i+(j/skip)];\r
- }\r
- // Even things out by the length of the target waveform.\r
- corr0 *= 4;\r
- corr1 *= 4;\r
-\r
- if(corrEOF > corr1 && corrEOF > corr0) {\r
-// DbpString("EOF at %d", i);\r
- break;\r
- } else if(corr1 > corr0) {\r
- i += arraylen(Logic1)/skip;\r
- outBuf[k] |= mask;\r
- } else {\r
- i += arraylen(Logic0)/skip;\r
- }\r
- mask <<= 1;\r
- if(mask == 0) {\r
- k++;\r
- mask = 0x01;\r
- }\r
- if((i+(int)arraylen(FrameEOF)) >= 2000) {\r
- DbpString("ran off end!");\r
- break;\r
- }\r
- }\r
- if(mask != 0x01) {\r
- DbpString("error, uneven octet! (discard extra bits!)");\r
-/// DbpString(" mask=%02x", mask);\r
- }\r
-// BYTE str1 [8];\r
-// itoa(k,str1);\r
-// strcat(str1," octets read");\r
-\r
-// DbpString( str1); // DbpString("%d octets", k);\r
-\r
-// for(i = 0; i < k; i+=3) {\r
-// //DbpString("# %2d: %02x ", i, outBuf[i]);\r
-// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);\r
-// }\r
-\r
- for(i = 0; i < k; i++) {\r
- receivedResponse[i] = outBuf[i];\r
- }\r
- } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))\r
- return k; // return the number of bytes demodulated\r
-\r
-/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
-\r
-}\r
-\r
-// Now the GetISO15693 message from sniffing command\r
-static int GetIso15693AnswerFromSniff(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed)\r
-{\r
- int c = 0;\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int getNext = 0;\r
-\r
- SBYTE prev = 0;\r
-\r
-// NOW READ RESPONSE\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads\r
- c = 0;\r
- getNext = FALSE;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x43;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- SBYTE b;\r
- b = (SBYTE)SSC_RECEIVE_HOLDING;\r
-\r
- // The samples are correlations against I and Q versions of the\r
- // tone that the tag AM-modulates, so every other sample is I,\r
- // every other is Q. We just want power, so abs(I) + abs(Q) is\r
- // close to what we want.\r
- if(getNext) {\r
- SBYTE r;\r
-\r
- if(b < 0) {\r
- r = -b;\r
- } else {\r
- r = b;\r
- }\r
- if(prev < 0) {\r
- r -= prev;\r
- } else {\r
- r += prev;\r
- }\r
-\r
- dest[c++] = (BYTE)r;\r
-\r
- if(c >= 20000) {\r
- break;\r
- }\r
- } else {\r
- prev = b;\r
- }\r
-\r
- getNext = !getNext;\r
- }\r
- }\r
-\r
-//////////////////////////////////////////\r
-/////////// DEMODULATE ///////////////////\r
-//////////////////////////////////////////\r
-\r
- int i, j;\r
- int max = 0, maxPos=0;\r
-\r
- int skip = 4;\r
-\r
-// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL\r
-\r
- // First, correlate for SOF\r
- for(i = 0; i < 19000; i++) {\r
- int corr = 0;\r
- for(j = 0; j < arraylen(FrameSOF); j += skip) {\r
- corr += FrameSOF[j]*dest[i+(j/skip)];\r
- }\r
- if(corr > max) {\r
- max = corr;\r
- maxPos = i;\r
- }\r
- }\r
-// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));\r
-\r
- int k = 0; // this will be our return value\r
-\r
- // greg - If correlation is less than 1 then there's little point in continuing\r
- if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1\r
- {\r
-\r
- i = maxPos + arraylen(FrameSOF)/skip;\r
-\r
- BYTE outBuf[20];\r
- memset(outBuf, 0, sizeof(outBuf));\r
- BYTE mask = 0x01;\r
- for(;;) {\r
- int corr0 = 0, corr1 = 0, corrEOF = 0;\r
- for(j = 0; j < arraylen(Logic0); j += skip) {\r
- corr0 += Logic0[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(Logic1); j += skip) {\r
- corr1 += Logic1[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(FrameEOF); j += skip) {\r
- corrEOF += FrameEOF[j]*dest[i+(j/skip)];\r
- }\r
- // Even things out by the length of the target waveform.\r
- corr0 *= 4;\r
- corr1 *= 4;\r
-\r
- if(corrEOF > corr1 && corrEOF > corr0) {\r
-// DbpString("EOF at %d", i);\r
- break;\r
- } else if(corr1 > corr0) {\r
- i += arraylen(Logic1)/skip;\r
- outBuf[k] |= mask;\r
- } else {\r
- i += arraylen(Logic0)/skip;\r
- }\r
- mask <<= 1;\r
- if(mask == 0) {\r
- k++;\r
- mask = 0x01;\r
- }\r
- if((i+(int)arraylen(FrameEOF)) >= 2000) {\r
- DbpString("ran off end!");\r
- break;\r
- }\r
- }\r
- if(mask != 0x01) {\r
- DbpString("error, uneven octet! (discard extra bits!)");\r
-/// DbpString(" mask=%02x", mask);\r
- }\r
-// BYTE str1 [8];\r
-// itoa(k,str1);\r
-// strcat(str1," octets read");\r
-\r
-// DbpString( str1); // DbpString("%d octets", k);\r
-\r
-// for(i = 0; i < k; i+=3) {\r
-// //DbpString("# %2d: %02x ", i, outBuf[i]);\r
-// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);\r
-// }\r
-\r
- for(i = 0; i < k; i++) {\r
- receivedResponse[i] = outBuf[i];\r
- }\r
- } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))\r
- return k; // return the number of bytes demodulated\r
-\r
-/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Start to read an ISO 15693 tag. We send an identify request, then wait\r
-// for the response. The response is not demodulated, just left in the buffer\r
-// so that it can be downloaded to a PC and processed there.\r
-//-----------------------------------------------------------------------------\r
-void AcquireRawAdcSamplesIso15693(void)\r
-{\r
- int c = 0;\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int getNext = 0;\r
-\r
- SBYTE prev = 0;\r
-\r
- BuildIdentifyRequest();\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
- // Give the tags time to energize\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- SpinDelay(100);\r
-\r
- // Now send the command\r
- FpgaSetupSsc();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
-\r
- c = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = ToSend[c];\r
- c++;\r
- if(c == ToSendMax+3) {\r
- break;\r
- }\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-\r
- c = 0;\r
- getNext = FALSE;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x43;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- SBYTE b;\r
- b = (SBYTE)SSC_RECEIVE_HOLDING;\r
-\r
- // The samples are correlations against I and Q versions of the\r
- // tone that the tag AM-modulates, so every other sample is I,\r
- // every other is Q. We just want power, so abs(I) + abs(Q) is\r
- // close to what we want.\r
- if(getNext) {\r
- SBYTE r;\r
-\r
- if(b < 0) {\r
- r = -b;\r
- } else {\r
- r = b;\r
- }\r
- if(prev < 0) {\r
- r -= prev;\r
- } else {\r
- r += prev;\r
- }\r
-\r
- dest[c++] = (BYTE)r;\r
-\r
- if(c >= 2000) {\r
- break;\r
- }\r
- } else {\r
- prev = b;\r
- }\r
-\r
- getNext = !getNext;\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector\r
-// all demodulation performed in arm rather than host. - greg\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso15693(DWORD parameter)\r
-{\r
- LED_A_ON();\r
- LED_B_ON();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
-//DbpString(parameter);\r
-\r
- BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)\r
- BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); //\r
- BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760);\r
- BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860);\r
- //BYTE *TagUID= (((BYTE *)BigBuf) + 3960); // where we hold the uid for hi15reader\r
-// int responseLen0 = 0;\r
- int responseLen1 = 0;\r
- int responseLen2 = 0;\r
- int responseLen3 = 0;\r
-\r
- // Blank arrays\r
- int j;\r
- for(j = 0; j < 100; j++) {\r
- receivedAnswer3[j] = 0;\r
- receivedAnswer2[j] =0;\r
- receivedAnswer1[j] = 0;\r
- receivedAnswer0[j] = 0;\r
- }\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Give the tags time to energize\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- SpinDelay(200);\r
-\r
- LED_A_ON();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
- int samples = 0;\r
- int tsamples = 0;\r
- int wait = 0;\r
- int elapsed = 0;\r
-\r
- // FIRST WE RUN AN INVENTORY TO GET THE TAG UID\r
- // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME\r
- BYTE TagUID[7]; // where we hold the uid for hi15reader\r
-\r
-// BuildIdentifyRequest();\r
-// //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
-// TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
-// // Now wait for a response\r
-// responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ;\r
-// if (responseLen0 >=12) // we should do a better check than this\r
-// {\r
-// // really we should check it is a valid mesg\r
-// // but for now just grab what we think is the uid\r
-// TagUID[0] = receivedAnswer0[2];\r
-// TagUID[1] = receivedAnswer0[3];\r
-// TagUID[2] = receivedAnswer0[4];\r
-// TagUID[3] = receivedAnswer0[5];\r
-// TagUID[4] = receivedAnswer0[6];\r
-// TagUID[5] = receivedAnswer0[7];\r
-// TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code\r
-// DbpIntegers(TagUID[6],TagUID[5],TagUID[4]);\r
-//}\r
-\r
- // Now send the IDENTIFY command\r
- BuildIdentifyRequest();\r
- //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
- TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
- // Now wait for a response\r
- responseLen1 = GetIso15693AnswerFromTag(receivedAnswer1, 100, &samples, &elapsed) ;\r
-\r
- if (responseLen1 >=12) // we should do a better check than this\r
- {\r
-\r
- TagUID[0] = receivedAnswer1[2];\r
- TagUID[1] = receivedAnswer1[3];\r
- TagUID[2] = receivedAnswer1[4];\r
- TagUID[3] = receivedAnswer1[5];\r
- TagUID[4] = receivedAnswer1[6];\r
- TagUID[5] = receivedAnswer1[7];\r
- TagUID[6] = receivedAnswer1[8]; // IC Manufacturer code\r
-\r
- // Now send the SELECT command\r
- BuildSelectRequest(TagUID);\r
- TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
- // Now wait for a response\r
- responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed);\r
-\r
- // Now send the MULTI READ command\r
-// BuildArbitraryRequest(*TagUID,parameter);\r
- BuildArbitraryCustomRequest(TagUID,parameter);\r
-// BuildReadBlockRequest(*TagUID,parameter);\r
-// BuildSysInfoRequest(*TagUID);\r
- //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
- TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
- // Now wait for a response\r
- responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ;\r
-\r
- }\r
-\r
- char str1 [4];\r
- //char str2 [200];\r
- int i;\r
-\r
- itoa(responseLen1,str1);\r
- strcat(str1," octets read from IDENTIFY request");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen1; i+=3) {\r
- DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]);\r
- }\r
-\r
- itoa(responseLen2,str1);\r
- strcat(str1," octets read from SELECT request");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen2; i+=3) {\r
- DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]);\r
- }\r
-\r
- itoa(responseLen3,str1);\r
- strcat(str1," octets read from XXX request");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen3; i+=3) {\r
- DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]);\r
- }\r
-\r
-// str2[0]=0;\r
-// for(i = 0; i < responseLen3; i++) {\r
-// itoa(str1,receivedAnswer3[i]);\r
-// strcat(str2,str1);\r
-// }\r
-// DbpString(str2);\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands\r
-// all demodulation performed in arm rather than host. - greg\r
-//-----------------------------------------------------------------------------\r
-void SimTagIso15693(DWORD parameter)\r
-{\r
- LED_A_ON();\r
- LED_B_ON();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
-//DbpString(parameter);\r
-\r
- BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)\r
- BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); //\r
- BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760);\r
- BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860);\r
- //BYTE *TagUID= (((BYTE *)BigBuf) + 3960); // where we hold the uid for hi15reader\r
-// int responseLen0 = 0;\r
- int responseLen1 = 0;\r
-// int responseLen2 = 0;\r
-// int responseLen3 = 0;\r
-\r
- // Blank arrays\r
- int j;\r
- for(j = 0; j < 100; j++) {\r
- receivedAnswer3[j] = 0;\r
- receivedAnswer2[j] =0;\r
- receivedAnswer1[j] = 0;\r
- receivedAnswer0[j] = 0;\r
- }\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Give the tags time to energize\r
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // NO GOOD FOR SIM TAG!!!!\r
- SpinDelay(200);\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_ON();\r
- LED_D_OFF();\r
-\r
- int samples = 0;\r
- int tsamples = 0;\r
- int wait = 0;\r
- int elapsed = 0;\r
-\r
- // FIRST WE RUN AN INVENTORY TO GET THE TAG UID\r
- // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME\r
- // BYTE TagUID[7]; // where we hold the uid for hi15reader\r
-\r
- // Now send the IDENTIFY command\r
- // BuildIdentifyRequest();\r
- // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
-\r
- // Now wait for a command from the reader\r
- responseLen1=0;\r
- // while(responseLen1=0) {\r
- // if(BUTTON_PRESS()) break;\r
- responseLen1 = GetIso15693AnswerFromSniff(receivedAnswer1, 100, &samples, &elapsed) ;\r
- // }\r
-\r
- if (responseLen1 >=1) // we should do a better check than this\r
- {\r
- // Build a suitable reponse to the reader INVENTORY cocmmand\r
- BuildInventoryResponse();\r
- TransmitTo15693Reader(ToSend,ToSendMax,&tsamples, &wait);\r
-\r
- // Now wait for a command from the reader\r
-// responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed);\r
-\r
- // Now wait for a command from the reader\r
-// responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ;\r
-\r
- }\r
-\r
- char str1 [4];\r
- //char str2 [200];\r
- int i;\r
-\r
- itoa(responseLen1,str1);\r
- strcat(str1," octets read from reader command");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen1; i+=3) {\r
- DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]);\r
- }\r
-\r
-// itoa(responseLen2,str1);\r
-// strcat(str1," octets read from SELECT request");\r
-// DbpString(str1);\r
-// for(i = 0; i < responseLen2; i+=3) {\r
-// DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]);\r
-// }\r
-//\r
-// itoa(responseLen3,str1);\r
-// strcat(str1," octets read from XXX request");\r
-// DbpString(str1);\r
-// for(i = 0; i < responseLen3; i+=3) {\r
-// DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]);\r
-// }\r
-\r
-// str2[0]=0;\r
-// for(i = 0; i < responseLen3; i++) {\r
-// itoa(str1,receivedAnswer3[i]);\r
-// strcat(str2,str1);\r
-// }\r
-// DbpString(str2);\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
+//-----------------------------------------------------------------------------
+// Jonathan Westhues, split Nov 2006
+// Modified by Greg Jones, Jan 2009
+// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
+// Modified by piwi, Oct 2018
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 15693. This includes both the reader software and
+// the `fake tag' modes.
+//-----------------------------------------------------------------------------
+
+// The ISO 15693 describes two transmission modes from reader to tag, and four
+// transmission modes from tag to reader. As of Oct 2018 this code supports
+// both reader modes and the high speed variant with one subcarrier from card to reader.
+// As long as the card fully support ISO 15693 this is no problem, since the
+// reader chooses both data rates, but some non-standard tags do not.
+// For card simulation, the code supports both high and low speed modes with one subcarrier.
+//
+// VCD (reader) -> VICC (tag)
+// 1 out of 256:
+// data rate: 1,66 kbit/s (fc/8192)
+// used for long range
+// 1 out of 4:
+// data rate: 26,48 kbit/s (fc/512)
+// used for short range, high speed
+//
+// VICC (tag) -> VCD (reader)
+// Modulation:
+// ASK / one subcarrier (423,75 khz)
+// FSK / two subcarriers (423,75 khz && 484,28 khz)
+// Data Rates / Modes:
+// low ASK: 6,62 kbit/s
+// low FSK: 6.67 kbit/s
+// high ASK: 26,48 kbit/s
+// high FSK: 26,69 kbit/s
+//-----------------------------------------------------------------------------
+
+
+// Random Remarks:
+// *) UID is always used "transmission order" (LSB), which is reverse to display order
+
+// TODO / BUGS / ISSUES:
+// *) signal decoding is unable to detect collisions.
+// *) add anti-collision support for inventory-commands
+// *) read security status of a block
+// *) sniffing and simulation do not support two subcarrier modes.
+// *) remove or refactor code under "deprecated"
+// *) document all the functions
+
+#include "iso15693.h"
+
+#include "proxmark3.h"
+#include "util.h"
+#include "apps.h"
+#include "string.h"
+#include "iso15693tools.h"
+#include "protocols.h"
+#include "usb_cdc.h"
+#include "BigBuf.h"
+#include "fpgaloader.h"
+
+#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
+
+// Delays in SSP_CLK ticks.
+// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
+#define DELAY_READER_TO_ARM 8
+#define DELAY_ARM_TO_READER 0
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
+#define DELAY_ARM_TO_TAG 16
+#define DELAY_TAG_TO_ARM 32
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16
+#define DELAY_TAG_TO_ARM_SNOOP 32
+#define DELAY_READER_TO_ARM_SNOOP 32
+
+// times in samples @ 212kHz when acting as reader
+//#define ISO15693_READER_TIMEOUT 80 // 80/212kHz = 378us, nominal t1_max=313,9us
+#define ISO15693_READER_TIMEOUT 330 // 330/212kHz = 1558us, should be even enough for iClass tags responding to ACTALL
+#define ISO15693_READER_TIMEOUT_WRITE 4700 // 4700/212kHz = 22ms, nominal 20ms
+
+
+static int DEBUG = 0;
+
+
+///////////////////////////////////////////////////////////////////////
+// ISO 15693 Part 2 - Air Interface
+// This section basically contains transmission and receiving of bits
+///////////////////////////////////////////////////////////////////////
+
+// buffers
+#define ISO15693_DMA_BUFFER_SIZE 256 // must be a power of 2
+#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
+#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
+
+
+// specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
+bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
+ uint32_t duration = timestamp_end - timestamp_start;
+ duration /= 32;
+ timestamp_end = timestamp_start + duration;
+ return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
+}
+
+
+// ---------------------------
+// Signal Processing
+// ---------------------------
+
+// prepare data using "1 out of 4" code for later transmission
+// resulting data rate is 26.48 kbit/s (fc/512)
+// cmd ... data
+// n ... length of data
+void CodeIso15693AsReader(uint8_t *cmd, int n) {
+
+ ToSendReset();
+
+ // SOF for 1of4
+ ToSend[++ToSendMax] = 0x84; //10000100
+
+ // data
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < 8; j += 2) {
+ int these = (cmd[i] >> j) & 0x03;
+ switch(these) {
+ case 0:
+ ToSend[++ToSendMax] = 0x40; //01000000
+ break;
+ case 1:
+ ToSend[++ToSendMax] = 0x10; //00010000
+ break;
+ case 2:
+ ToSend[++ToSendMax] = 0x04; //00000100
+ break;
+ case 3:
+ ToSend[++ToSendMax] = 0x01; //00000001
+ break;
+ }
+ }
+ }
+
+ // EOF
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
+ ToSendMax++;
+}
+
+
+// Encode EOF only
+static void CodeIso15693AsReaderEOF() {
+ ToSendReset();
+ ToSend[++ToSendMax] = 0x20;
+ ToSendMax++;
+}
+
+
+// encode data using "1 out of 256" scheme
+// data rate is 1,66 kbit/s (fc/8192)
+// is designed for more robust communication over longer distances
+static void CodeIso15693AsReader256(uint8_t *cmd, int n)
+{
+ ToSendReset();
+
+ // SOF for 1of256
+ ToSend[++ToSendMax] = 0x81; //10000001
+
+ // data
+ for(int i = 0; i < n; i++) {
+ for (int j = 0; j <= 255; j++) {
+ if (cmd[i] == j) {
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ } else {
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ }
+ }
+ }
+
+ // EOF
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
+ ToSendMax++;
+}
+
+
+// static uint8_t encode4Bits(const uint8_t b) {
+ // uint8_t c = b & 0xF;
+ // // OTA, the least significant bits first
+ // // The columns are
+ // // 1 - Bit value to send
+ // // 2 - Reversed (big-endian)
+ // // 3 - Manchester Encoded
+ // // 4 - Hex values
+
+ // switch(c){
+ // // 1 2 3 4
+ // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
+ // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
+ // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
+ // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
+ // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
+ // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
+ // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
+ // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
+ // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
+ // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
+ // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
+ // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
+ // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
+ // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
+ // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
+ // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
+
+ // }
+// }
+
+static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
+
+void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
+ /*
+ * SOF comprises 3 parts;
+ * * An unmodulated time of 56.64 us
+ * * 24 pulses of 423.75 kHz (fc/32)
+ * * A logic 1, which starts with an unmodulated time of 18.88us
+ * followed by 8 pulses of 423.75kHz (fc/32)
+ *
+ * EOF comprises 3 parts:
+ * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
+ * time of 18.88us.
+ * - 24 pulses of fc/32
+ * - An unmodulated time of 56.64 us
+ *
+ * A logic 0 starts with 8 pulses of fc/32
+ * followed by an unmodulated time of 256/fc (~18,88us).
+ *
+ * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
+ * 8 pulses of fc/32 (also 18.88us)
+ *
+ * A bit here becomes 8 pulses of fc/32. Therefore:
+ * The SOF can be written as 00011101 = 0x1D
+ * The EOF can be written as 10111000 = 0xb8
+ * A logic 1 is 01
+ * A logic 0 is 10
+ *
+ * */
+
+ ToSendReset();
+
+ // SOF
+ ToSend[++ToSendMax] = 0x1D; // 00011101
+
+ // data
+ for (int i = 0; i < len; i++) {
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
+ }
+
+ // EOF
+ ToSend[++ToSendMax] = 0xB8; // 10111000
+
+ ToSendMax++;
+}
+
+
+// Transmit the command (to the tag) that was placed in cmd[].
+void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
+
+ if (*start_time < DELAY_ARM_TO_TAG) {
+ *start_time = DELAY_ARM_TO_TAG;
+ }
+
+ *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
+
+ if (GetCountSspClk() > *start_time) { // we may miss the intended time
+ *start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
+ }
+
+ while (GetCountSspClk() < *start_time)
+ /* wait */ ;
+
+ LED_B_ON();
+ for (int c = 0; c < len; c++) {
+ uint8_t data = cmd[c];
+ for (int i = 0; i < 8; i++) {
+ uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
+ while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
+ AT91C_BASE_SSC->SSC_THR = send_word;
+ while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
+ AT91C_BASE_SSC->SSC_THR = send_word;
+
+ data <<= 1;
+ }
+ WDT_HIT();
+ }
+ LED_B_OFF();
+
+ *start_time = *start_time + DELAY_ARM_TO_TAG;
+
+}
+
+
+//-----------------------------------------------------------------------------
+// Transmit the tag response (to the reader) that was placed in cmd[].
+//-----------------------------------------------------------------------------
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
+ // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
+
+ uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
+
+ while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
+ if (slot_time) {
+ modulation_start_time += slot_time; // use next available slot
+ } else {
+ modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
+ }
+ }
+
+ while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
+ /* wait */ ;
+
+ uint8_t shift_delay = modulation_start_time & 0x00000007;
+
+ *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
+
+ LED_C_ON();
+ uint8_t bits_to_shift = 0x00;
+ uint8_t bits_to_send = 0x00;
+ for (size_t c = 0; c < len; c++) {
+ for (int i = (c==0?4:7); i >= 0; i--) {
+ uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
+ for (int j = 0; j < (slow?4:1); ) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
+ AT91C_BASE_SSC->SSC_THR = bits_to_send;
+ bits_to_shift = cmd_bits;
+ j++;
+ }
+ }
+ }
+ WDT_HIT();
+ }
+ // send the remaining bits, padded with 0:
+ bits_to_send = bits_to_shift << (8 - shift_delay);
+ for ( ; ; ) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = bits_to_send;
+ break;
+ }
+ }
+ LED_C_OFF();
+}
+
+
+//=============================================================================
+// An ISO 15693 decoder for tag responses (one subcarrier only).
+// Uses cross correlation to identify each bit and EOF.
+// This function is called 8 times per bit (every 2 subcarrier cycles).
+// Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
+// i.e. function is called every 4,72us
+// LED handling:
+// LED C -> ON once we have received the SOF and are expecting the rest.
+// LED C -> OFF once we have received EOF or are unsynced
+//
+// Returns: true if we received a EOF
+// false if we are still waiting for some more
+//=============================================================================
+
+#define NOISE_THRESHOLD 160 // don't try to correlate noise
+#define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
+
+typedef struct DecodeTag {
+ enum {
+ STATE_TAG_SOF_LOW,
+ STATE_TAG_SOF_RISING_EDGE,
+ STATE_TAG_SOF_HIGH,
+ STATE_TAG_SOF_HIGH_END,
+ STATE_TAG_RECEIVING_DATA,
+ STATE_TAG_EOF,
+ STATE_TAG_EOF_TAIL
+ } state;
+ int bitCount;
+ int posCount;
+ enum {
+ LOGIC0,
+ LOGIC1,
+ SOF_PART1,
+ SOF_PART2
+ } lastBit;
+ uint16_t shiftReg;
+ uint16_t max_len;
+ uint8_t *output;
+ int len;
+ int sum1, sum2;
+ int threshold_sof;
+ int threshold_half;
+ uint16_t previous_amplitude;
+} DecodeTag_t;
+
+
+static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag) {
+ switch (DecodeTag->state) {
+ case STATE_TAG_SOF_LOW:
+ // waiting for a rising edge
+ if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
+ if (DecodeTag->posCount > 10) {
+ DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude; // to be divided by 2
+ DecodeTag->threshold_half = 0;
+ DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
+ } else {
+ DecodeTag->posCount = 0;
+ }
+ } else {
+ DecodeTag->posCount++;
+ DecodeTag->previous_amplitude = amplitude;
+ }
+ break;
+
+ case STATE_TAG_SOF_RISING_EDGE:
+ if (amplitude > DecodeTag->threshold_sof + DecodeTag->previous_amplitude) { // edge still rising
+ if (amplitude > DecodeTag->threshold_sof + DecodeTag->threshold_sof) { // steeper edge, take this as time reference
+ DecodeTag->posCount = 1;
+ } else {
+ DecodeTag->posCount = 2;
+ }
+ DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
+ } else {
+ DecodeTag->posCount = 2;
+ DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
+ }
+ // DecodeTag->posCount = 2;
+ DecodeTag->state = STATE_TAG_SOF_HIGH;
+ break;
+
+ case STATE_TAG_SOF_HIGH:
+ // waiting for 10 times high. Take average over the last 8
+ if (amplitude > DecodeTag->threshold_sof) {
+ DecodeTag->posCount++;
+ if (DecodeTag->posCount > 2) {
+ DecodeTag->threshold_half += amplitude; // keep track of average high value
+ }
+ if (DecodeTag->posCount == 10) {
+ DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
+ DecodeTag->state = STATE_TAG_SOF_HIGH_END;
+ }
+ } else { // high phase was too short
+ DecodeTag->posCount = 1;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ }
+ break;
+
+ case STATE_TAG_SOF_HIGH_END:
+ // check for falling edge
+ if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
+ DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
+ DecodeTag->shiftReg = 0;
+ DecodeTag->bitCount = 0;
+ DecodeTag->len = 0;
+ DecodeTag->sum1 = amplitude;
+ DecodeTag->sum2 = 0;
+ DecodeTag->posCount = 2;
+ DecodeTag->state = STATE_TAG_RECEIVING_DATA;
+ // FpgaDisableTracing(); // DEBUGGING
+ // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+ // amplitude,
+ // DecodeTag->threshold_sof,
+ // DecodeTag->threshold_half/4,
+ // DecodeTag->previous_amplitude); // DEBUGGING
+ LED_C_ON();
+ } else {
+ DecodeTag->posCount++;
+ if (DecodeTag->posCount > 13) { // high phase too long
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
+ }
+ break;
+
+ case STATE_TAG_RECEIVING_DATA:
+ // FpgaDisableTracing(); // DEBUGGING
+ // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+ // amplitude,
+ // DecodeTag->threshold_sof,
+ // DecodeTag->threshold_half/4,
+ // DecodeTag->previous_amplitude); // DEBUGGING
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
+ } else {
+ DecodeTag->sum2 += amplitude;
+ }
+ if (DecodeTag->posCount == 8) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
+ if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
+ DecodeTag->state = STATE_TAG_EOF;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
+ } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
+ // logic 1
+ if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
+ DecodeTag->lastBit = SOF_PART2; // SOF completed
+ } else {
+ DecodeTag->lastBit = LOGIC1;
+ DecodeTag->shiftReg >>= 1;
+ DecodeTag->shiftReg |= 0x80;
+ DecodeTag->bitCount++;
+ if (DecodeTag->bitCount == 8) {
+ DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
+ DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
+ if (DecodeTag->len > DecodeTag->max_len) {
+ // buffer overflow, give up
+ LED_C_OFF();
+ return true;
+ }
+ DecodeTag->bitCount = 0;
+ DecodeTag->shiftReg = 0;
+ }
+ }
+ } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
+ // logic 0
+ if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ } else {
+ DecodeTag->lastBit = LOGIC0;
+ DecodeTag->shiftReg >>= 1;
+ DecodeTag->bitCount++;
+ if (DecodeTag->bitCount == 8) {
+ DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
+ DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
+ if (DecodeTag->len > DecodeTag->max_len) {
+ // buffer overflow, give up
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
+ DecodeTag->bitCount = 0;
+ DecodeTag->shiftReg = 0;
+ }
+ }
+ } else { // no modulation
+ if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
+ LED_C_OFF();
+ return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
+ }
+ DecodeTag->posCount = 0;
+ }
+ DecodeTag->posCount++;
+ break;
+
+ case STATE_TAG_EOF:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
+ } else {
+ DecodeTag->sum2 += amplitude;
+ }
+ if (DecodeTag->posCount == 8) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_EOF_TAIL;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
+ }
+ DecodeTag->posCount++;
+ break;
+
+ case STATE_TAG_EOF_TAIL:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
+ } else {
+ DecodeTag->sum2 += amplitude;
+ }
+ if (DecodeTag->posCount == 8) {
+ if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
+ LED_C_OFF();
+ return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
+ }
+ DecodeTag->posCount++;
+ break;
+ }
+
+ return false;
+}
+
+
+static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) {
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ DecodeTag->output = data;
+ DecodeTag->max_len = max_len;
+}
+
+
+static void DecodeTagReset(DecodeTag_t *DecodeTag) {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
+}
+
+
+/*
+ * Receive and decode the tag response, also log to tracebuffer
+ */
+int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
+
+ int samples = 0;
+ int ret = 0;
+
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+ // the Decoder data structure
+ DecodeTag_t DecodeTag = { 0 };
+ DecodeTagInit(&DecodeTag, response, max_len);
+
+ // wait for last transfer to complete
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+ // And put the FPGA in the appropriate mode
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
+
+ // Setup and start DMA.
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint32_t dma_start_time = 0;
+ uint16_t *upTo = dmaBuf;
+
+ for(;;) {
+ uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+
+ if (behindBy == 0) continue;
+
+ samples++;
+ if (samples == 1) {
+ // DMA has transferred the very first data
+ dma_start_time = GetCountSspClk() & 0xfffffff0;
+ }
+
+ uint16_t tagdata = *upTo++;
+
+ if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ ret = -1;
+ break;
+ }
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
+ }
+
+ if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
+ *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
+ if (DecodeTag.lastBit == SOF_PART2) {
+ *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+ }
+ if (DecodeTag.len > DecodeTag.max_len) {
+ ret = -2; // buffer overflow
+ }
+ break;
+ }
+
+ if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
+ ret = -1; // timeout
+ break;
+ }
+
+ }
+
+ FpgaDisableSscDma();
+
+ if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+
+ if (ret < 0) {
+ return ret;
+ }
+
+ uint32_t sof_time = *eof_time
+ - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+ - 32 * 16 // time for SOF transfer
+ - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+
+ if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
+
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
+
+ return DecodeTag.len;
+}
+
+
+//=============================================================================
+// An ISO15693 decoder for reader commands.
+//
+// This function is called 4 times per bit (every 2 subcarrier cycles).
+// Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
+// LED handling:
+// LED B -> ON once we have received the SOF and are expecting the rest.
+// LED B -> OFF once we have received EOF or are in error state or unsynced
+//
+// Returns: true if we received a EOF
+// false if we are still waiting for some more
+//=============================================================================
+
+typedef struct DecodeReader {
+ enum {
+ STATE_READER_UNSYNCD,
+ STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
+ STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
+ STATE_READER_RECEIVE_DATA_1_OUT_OF_256,
+ STATE_READER_RECEIVE_JAMMING
+ } state;
+ enum {
+ CODING_1_OUT_OF_4,
+ CODING_1_OUT_OF_256
+ } Coding;
+ uint8_t shiftReg;
+ uint8_t bitCount;
+ int byteCount;
+ int byteCountMax;
+ int posCount;
+ int sum1, sum2;
+ uint8_t *output;
+ uint8_t jam_search_len;
+ uint8_t *jam_search_string;
+} DecodeReader_t;
+
+
+static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len, uint8_t jam_search_len, uint8_t *jam_search_string) {
+ DecodeReader->output = data;
+ DecodeReader->byteCountMax = max_len;
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReader->byteCount = 0;
+ DecodeReader->bitCount = 0;
+ DecodeReader->posCount = 1;
+ DecodeReader->shiftReg = 0;
+ DecodeReader->jam_search_len = jam_search_len;
+ DecodeReader->jam_search_string = jam_search_string;
+}
+
+
+static void DecodeReaderReset(DecodeReader_t* DecodeReader) {
+ DecodeReader->state = STATE_READER_UNSYNCD;
+}
+
+
+static int inline __attribute__((always_inline)) Handle15693SampleFromReader(bool bit, DecodeReader_t *DecodeReader) {
+ switch (DecodeReader->state) {
+ case STATE_READER_UNSYNCD:
+ // wait for unmodulated carrier
+ if (bit) {
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ }
+ break;
+
+ case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
+ if (!bit) {
+ // we went low, so this could be the beginning of a SOF
+ DecodeReader->posCount = 1;
+ DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
+ }
+ break;
+
+ case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
+ DecodeReader->posCount++;
+ if (bit) { // detected rising edge
+ if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ } else { // SOF
+ DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
+ }
+ } else {
+ if (DecodeReader->posCount > 5) { // stayed low for too long
+ DecodeReaderReset(DecodeReader);
+ } else {
+ // do nothing, keep waiting
+ }
+ }
+ break;
+
+ case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
+ DecodeReader->posCount++;
+ if (!bit) { // detected a falling edge
+ if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
+ DecodeReaderReset(DecodeReader);
+ } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
+ DecodeReader->Coding = CODING_1_OUT_OF_4;
+ DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
+ } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
+ DecodeReaderReset(DecodeReader);
+ } else { // SOF for 1 out of 256 coding
+ DecodeReader->Coding = CODING_1_OUT_OF_256;
+ DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
+ }
+ } else {
+ if (DecodeReader->posCount > 29) { // stayed high for too long
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ } else {
+ // do nothing, keep waiting
+ }
+ }
+ break;
+
+ case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
+ DecodeReader->posCount++;
+ if (bit) { // detected rising edge
+ if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
+ if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ } else {
+ DecodeReader->posCount = 1;
+ DecodeReader->bitCount = 0;
+ DecodeReader->byteCount = 0;
+ DecodeReader->sum1 = 1;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
+ LED_B_ON();
+ }
+ } else { // CODING_1_OUT_OF_4
+ if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ } else {
+ DecodeReader->posCount = 1;
+ DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
+ }
+ }
+ } else {
+ if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
+ if (DecodeReader->posCount > 34) { // signal stayed low for too long
+ DecodeReaderReset(DecodeReader);
+ } else {
+ // do nothing, keep waiting
+ }
+ } else { // CODING_1_OUT_OF_4
+ if (DecodeReader->posCount > 26) { // signal stayed low for too long
+ DecodeReaderReset(DecodeReader);
+ } else {
+ // do nothing, keep waiting
+ }
+ }
+ }
+ break;
+
+ case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
+ DecodeReader->posCount++;
+ if (bit) {
+ if (DecodeReader->posCount == 9) {
+ DecodeReader->posCount = 1;
+ DecodeReader->bitCount = 0;
+ DecodeReader->byteCount = 0;
+ DecodeReader->sum1 = 1;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
+ LED_B_ON();
+ } else {
+ // do nothing, keep waiting
+ }
+ } else { // unexpected falling edge
+ DecodeReaderReset(DecodeReader);
+ }
+ break;
+
+ case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
+ DecodeReader->posCount++;
+ if (DecodeReader->posCount == 1) {
+ DecodeReader->sum1 = bit?1:0;
+ } else if (DecodeReader->posCount <= 4) {
+ if (bit) DecodeReader->sum1++;
+ } else if (DecodeReader->posCount == 5) {
+ DecodeReader->sum2 = bit?1:0;
+ } else {
+ if (bit) DecodeReader->sum2++;
+ }
+ if (DecodeReader->posCount == 8) {
+ DecodeReader->posCount = 0;
+ if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
+ LED_B_OFF(); // Finished receiving
+ DecodeReaderReset(DecodeReader);
+ if (DecodeReader->byteCount != 0) {
+ return true;
+ }
+ } else if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
+ DecodeReader->shiftReg >>= 2;
+ DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
+ }
+ if (DecodeReader->bitCount == 15) { // we have a full byte
+ DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
+ if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
+ // buffer overflow, give up
+ LED_B_OFF();
+ DecodeReaderReset(DecodeReader);
+ }
+ DecodeReader->bitCount = 0;
+ DecodeReader->shiftReg = 0;
+ if (DecodeReader->byteCount == DecodeReader->jam_search_len) {
+ if (!memcmp(DecodeReader->output, DecodeReader->jam_search_string, DecodeReader->jam_search_len)) {
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM);
+ DecodeReader->state = STATE_READER_RECEIVE_JAMMING;
+ }
+ }
+ } else {
+ DecodeReader->bitCount++;
+ }
+ }
+ break;
+
+ case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
+ DecodeReader->posCount++;
+ if (DecodeReader->posCount == 1) {
+ DecodeReader->sum1 = bit?1:0;
+ } else if (DecodeReader->posCount <= 4) {
+ if (bit) DecodeReader->sum1++;
+ } else if (DecodeReader->posCount == 5) {
+ DecodeReader->sum2 = bit?1:0;
+ } else if (bit) {
+ DecodeReader->sum2++;
+ }
+ if (DecodeReader->posCount == 8) {
+ DecodeReader->posCount = 0;
+ if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
+ LED_B_OFF(); // Finished receiving
+ DecodeReaderReset(DecodeReader);
+ if (DecodeReader->byteCount != 0) {
+ return true;
+ }
+ } else if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
+ DecodeReader->shiftReg = DecodeReader->bitCount;
+ }
+ if (DecodeReader->bitCount == 255) { // we have a full byte
+ DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
+ if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
+ // buffer overflow, give up
+ LED_B_OFF();
+ DecodeReaderReset(DecodeReader);
+ }
+ if (DecodeReader->byteCount == DecodeReader->jam_search_len) {
+ if (!memcmp(DecodeReader->output, DecodeReader->jam_search_string, DecodeReader->jam_search_len)) {
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM);
+ DecodeReader->state = STATE_READER_RECEIVE_JAMMING;
+ }
+ }
+ }
+ DecodeReader->bitCount++;
+ }
+ break;
+
+ case STATE_READER_RECEIVE_JAMMING:
+ DecodeReader->posCount++;
+ if (DecodeReader->Coding == CODING_1_OUT_OF_4) {
+ if (DecodeReader->posCount == 7*16) { // 7 bits jammed
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); // stop jamming
+ // FpgaDisableTracing();
+ LED_D_OFF();
+ } else if (DecodeReader->posCount == 8*16) {
+ DecodeReader->posCount = 0;
+ DecodeReader->output[DecodeReader->byteCount++] = 0x00;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
+ }
+ } else {
+ if (DecodeReader->posCount == 7*256) { // 7 bits jammend
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); // stop jamming
+ LED_D_OFF();
+ } else if (DecodeReader->posCount == 8*256) {
+ DecodeReader->posCount = 0;
+ DecodeReader->output[DecodeReader->byteCount++] = 0x00;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
+ }
+ }
+ break;
+
+ default:
+ LED_B_OFF();
+ DecodeReaderReset(DecodeReader);
+ break;
+ }
+
+ return false;
+}
+
+
+//-----------------------------------------------------------------------------
+// Receive a command (from the reader to us, where we are the simulated tag),
+// and store it in the given buffer, up to the given maximum length. Keeps
+// spinning, waiting for a well-framed command, until either we get one
+// (returns len) or someone presses the pushbutton on the board (returns -1).
+//
+// Assume that we're called with the SSC (to the FPGA) and ADC path set
+// correctly.
+//-----------------------------------------------------------------------------
+
+int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
+ int samples = 0;
+ bool gotFrame = false;
+ uint8_t b;
+
+ uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+ // the decoder data structure
+ DecodeReader_t DecodeReader = {0};
+ DecodeReaderInit(&DecodeReader, received, max_len, 0, NULL);
+
+ // wait for last transfer to complete
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+
+ // clear receive register and wait for next transfer
+ uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
+ (void) temp;
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
+
+ uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
+
+ // Setup and start DMA.
+ FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint8_t *upTo = dmaBuf;
+
+ for (;;) {
+ uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+
+ if (behindBy == 0) continue;
+
+ b = *upTo++;
+ if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ break;
+ }
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
+ }
+
+ for (int i = 7; i >= 0; i--) {
+ if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
+ *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
+ gotFrame = true;
+ break;
+ }
+ samples++;
+ }
+
+ if (gotFrame) {
+ break;
+ }
+
+ if (BUTTON_PRESS()) {
+ DecodeReader.byteCount = -1;
+ break;
+ }
+
+ WDT_HIT();
+ }
+
+ FpgaDisableSscDma();
+
+ if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
+
+ if (DecodeReader.byteCount > 0) {
+ uint32_t sof_time = *eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
+ - 32 // time for SOF transfer
+ - 16; // time for EOF transfer
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
+ }
+
+ return DecodeReader.byteCount;
+}
+
+
+// Construct an identify (Inventory) request, which is the first
+// thing that you must send to a tag to get a response.
+static void BuildIdentifyRequest(uint8_t *cmd) {
+ uint16_t crc;
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1 | ISO15693_REQ_DATARATE_HIGH;
+ // inventory command code
+ cmd[1] = 0x01;
+ // no mask
+ cmd[2] = 0x00;
+ //Now the CRC
+ crc = Iso15693Crc(cmd, 3);
+ cmd[3] = crc & 0xff;
+ cmd[4] = crc >> 8;
+}
+
+
+//-----------------------------------------------------------------------------
+// Start to read an ISO 15693 tag. We send an identify request, then wait
+// for the response. The response is not demodulated, just left in the buffer
+// so that it can be downloaded to a PC and processed there.
+//-----------------------------------------------------------------------------
+void AcquireRawAdcSamplesIso15693(void) {
+ LED_A_ON();
+
+ uint8_t *dest = BigBuf_get_addr();
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ LED_D_ON();
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ uint8_t cmd[5];
+ BuildIdentifyRequest(cmd);
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+
+ // Give the tags time to energize
+ SpinDelay(100);
+
+ // Now send the command
+ uint32_t start_time = 0;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+
+ // wait for last transfer to complete
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
+
+ for(int c = 0; c < 4000; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint16_t r = AT91C_BASE_SSC->SSC_RHR;
+ dest[c++] = r >> 5;
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+}
+
+
+void SnoopIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
+
+ LED_A_ON();
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ clear_trace();
+ set_tracing(true);
+
+ // The DMA buffer, used to stream samples from the FPGA
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ int samples = 0;
+
+ DecodeTag_t DecodeTag = {0};
+ uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
+ DecodeTagInit(&DecodeTag, response, sizeof(response));
+
+ DecodeReader_t DecodeReader = {0};
+ uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+ DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd), jam_search_len, jam_search_string);
+
+ // Print some debug information about the buffer sizes
+ if (DEBUG) {
+ Dbprintf("Snooping buffers initialized:");
+ Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
+ Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH);
+ Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH);
+ Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
+ }
+ Dbprintf("Snoop started. Press PM3 Button to stop.");
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
+ LED_D_OFF();
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+ StartCountSspClk();
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+
+ bool TagIsActive = false;
+ bool ReaderIsActive = false;
+ bool ExpectTagAnswer = false;
+ uint32_t dma_start_time = 0;
+ uint16_t *upTo = dmaBuf;
+
+ uint16_t max_behindBy = 0;
+
+ // And now we loop, receiving samples.
+ for(;;) {
+ uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+ if (behindBy > max_behindBy) {
+ max_behindBy = behindBy;
+ }
+
+ if (behindBy == 0) continue;
+
+ samples++;
+ if (samples == 1) {
+ // DMA has transferred the very first data
+ dma_start_time = GetCountSspClk() & 0xfffffff0;
+ }
+
+ uint16_t snoopdata = *upTo++;
+
+ if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ // FpgaDisableTracing();
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
+ break;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
+ WDT_HIT();
+ if (BUTTON_PRESS()) {
+ DbpString("Snoop stopped.");
+ break;
+ }
+ }
+ }
+
+ if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
+ if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
+ // FpgaDisableSscDma();
+ uint32_t eof_time = dma_start_time + samples*16 + 8 - DELAY_READER_TO_ARM_SNOOP; // end of EOF
+ if (DecodeReader.byteCount > 0) {
+ uint32_t sof_time = eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers
+ - 32*16 // time for SOF transfer
+ - 16*16; // time for EOF transfer
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true);
+ }
+ /* And ready to receive another command. */
+ DecodeReaderReset(&DecodeReader);
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DecodeTagReset(&DecodeTag);
+ ReaderIsActive = false;
+ ExpectTagAnswer = true;
+ // upTo = dmaBuf;
+ // samples = 0;
+ // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ // continue;
+ } else if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
+ // FpgaDisableSscDma();
+ uint32_t eof_time = dma_start_time + samples*16 + 16 - DELAY_READER_TO_ARM_SNOOP; // end of EOF
+ if (DecodeReader.byteCount > 0) {
+ uint32_t sof_time = eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers
+ - 32*16 // time for SOF transfer
+ - 16*16; // time for EOF transfer
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true);
+ }
+ /* And ready to receive another command. */
+ DecodeReaderReset(&DecodeReader);
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DecodeTagReset(&DecodeTag);
+ ReaderIsActive = false;
+ ExpectTagAnswer = true;
+ // upTo = dmaBuf;
+ // samples = 0;
+ // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ // continue;
+ } else {
+ ReaderIsActive = (DecodeReader.state >= STATE_READER_RECEIVE_DATA_1_OUT_OF_4);
+ }
+ }
+
+ if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
+ if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
+ // FpgaDisableSscDma();
+ uint32_t eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM_SNOOP; // end of EOF
+ if (DecodeTag.lastBit == SOF_PART2) {
+ eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+ }
+ uint32_t sof_time = eof_time
+ - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+ - 32 * 16 // time for SOF transfer
+ - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, eof_time*4, NULL, false);
+ // And ready to receive another response.
+ DecodeTagReset(&DecodeTag);
+ DecodeReaderReset(&DecodeReader);
+ ExpectTagAnswer = false;
+ TagIsActive = false;
+ // upTo = dmaBuf;
+ // samples = 0;
+ // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ // continue;
+ } else {
+ TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
+ }
+ }
+
+ }
+
+ FpgaDisableSscDma();
+
+ DbpString("Snoop statistics:");
+ Dbprintf(" ExpectTagAnswer: %d, TagIsActive: %d, ReaderIsActive: %d", ExpectTagAnswer, TagIsActive, ReaderIsActive);
+ Dbprintf(" DecodeTag State: %d", DecodeTag.state);
+ Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len);
+ Dbprintf(" DecodeTag posCount: %d", DecodeTag.posCount);
+ Dbprintf(" DecodeReader State: %d", DecodeReader.state);
+ Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount);
+ Dbprintf(" DecodeReader posCount: %d", DecodeReader.posCount);
+ Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
+ Dbprintf(" Max behindBy: %d", max_behindBy);
+}
+
+
+// Initialize the proxmark as iso15k reader
+void Iso15693InitReader() {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ // Start from off (no field generated)
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(10);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+ // Give the tags time to energize
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ SpinDelay(250);
+}
+
+///////////////////////////////////////////////////////////////////////
+// ISO 15693 Part 3 - Air Interface
+// This section basically contains transmission and receiving of bits
+///////////////////////////////////////////////////////////////////////
+
+
+// uid is in transmission order (which is reverse of display order)
+static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber, uint8_t *cmd) {
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
+ cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
+ // READ BLOCK command code
+ cmd[1] = ISO15693_READBLOCK;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = uid[0];
+ cmd[3] = uid[1];
+ cmd[4] = uid[2];
+ cmd[5] = uid[3];
+ cmd[6] = uid[4];
+ cmd[7] = uid[5];
+ cmd[8] = uid[6];
+ cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
+ // Block number to read
+ cmd[10] = blockNumber;
+ //Now the CRC
+ crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
+ cmd[11] = crc & 0xff;
+ cmd[12] = crc >> 8;
+
+}
+
+
+// Now the VICC>VCD responses when we are simulating a tag
+static void BuildInventoryResponse(uint8_t *uid) {
+ uint8_t cmd[12];
+
+ uint16_t crc;
+
+ cmd[0] = 0; // No error, no protocol format extension
+ cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
+ // 64-bit UID
+ cmd[2] = uid[7]; //0x32;
+ cmd[3] = uid[6]; //0x4b;
+ cmd[4] = uid[5]; //0x03;
+ cmd[5] = uid[4]; //0x01;
+ cmd[6] = uid[3]; //0x00;
+ cmd[7] = uid[2]; //0x10;
+ cmd[8] = uid[1]; //0x05;
+ cmd[9] = uid[0]; //0xe0;
+ //Now the CRC
+ crc = Iso15693Crc(cmd, 10);
+ cmd[10] = crc & 0xff;
+ cmd[11] = crc >> 8;
+
+ CodeIso15693AsTag(cmd, sizeof(cmd));
+}
+
+// Universal Method for sending to and recv bytes from a tag
+// init ... should we initialize the reader?
+// speed ... 0 low speed, 1 hi speed
+// *recv will contain the tag's answer
+// return: length of received data, or -1 for timeout
+int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) {
+
+ if (init) {
+ Iso15693InitReader();
+ StartCountSspClk();
+ }
+
+ int answerLen = 0;
+
+ if (speed_fast) {
+ // high speed (1 out of 4)
+ CodeIso15693AsReader(send, sendlen);
+ } else {
+ // low speed (1 out of 256)
+ CodeIso15693AsReader256(send, sendlen);
+ }
+
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+ uint32_t end_time = start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(send, sendlen, start_time*4, end_time*4, NULL, true);
+
+ // Now wait for a response
+ if (recv != NULL) {
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time);
+ }
+
+ return answerLen;
+}
+
+
+int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) {
+
+ int answerLen = 0;
+
+ CodeIso15693AsReaderEOF();
+
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+ uint32_t end_time = start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(NULL, 0, start_time*4, end_time*4, NULL, true);
+
+ // Now wait for a response
+ if (recv != NULL) {
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time);
+ }
+
+ return answerLen;
+}
+
+
+// --------------------------------------------------------------------
+// Debug Functions
+// --------------------------------------------------------------------
+
+// Decodes a message from a tag and displays its metadata and content
+#define DBD15STATLEN 48
+void DbdecodeIso15693Answer(int len, uint8_t *d) {
+ char status[DBD15STATLEN+1]={0};
+ uint16_t crc;
+
+ if (len > 3) {
+ if (d[0] & ISO15693_RES_EXT)
+ strncat(status,"ProtExt ", DBD15STATLEN);
+ if (d[0] & ISO15693_RES_ERROR) {
+ // error
+ strncat(status,"Error ", DBD15STATLEN);
+ switch (d[1]) {
+ case 0x01:
+ strncat(status,"01:notSupp", DBD15STATLEN);
+ break;
+ case 0x02:
+ strncat(status,"02:notRecog", DBD15STATLEN);
+ break;
+ case 0x03:
+ strncat(status,"03:optNotSupp", DBD15STATLEN);
+ break;
+ case 0x0f:
+ strncat(status,"0f:noInfo", DBD15STATLEN);
+ break;
+ case 0x10:
+ strncat(status,"10:doesn'tExist", DBD15STATLEN);
+ break;
+ case 0x11:
+ strncat(status,"11:lockAgain", DBD15STATLEN);
+ break;
+ case 0x12:
+ strncat(status,"12:locked", DBD15STATLEN);
+ break;
+ case 0x13:
+ strncat(status,"13:progErr", DBD15STATLEN);
+ break;
+ case 0x14:
+ strncat(status,"14:lockErr", DBD15STATLEN);
+ break;
+ default:
+ strncat(status,"unknownErr", DBD15STATLEN);
+ }
+ strncat(status," ", DBD15STATLEN);
+ } else {
+ strncat(status,"NoErr ", DBD15STATLEN);
+ }
+
+ crc=Iso15693Crc(d,len-2);
+ if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
+ strncat(status,"CrcOK",DBD15STATLEN);
+ else
+ strncat(status,"CrcFail!",DBD15STATLEN);
+
+ Dbprintf("%s",status);
+ }
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+// Functions called via USB/Client
+///////////////////////////////////////////////////////////////////////
+
+void SetDebugIso15693(uint32_t debug) {
+ DEBUG=debug;
+ Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
+ return;
+}
+
+
+//---------------------------------------------------------------------------------------
+// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
+// all demodulation performed in arm rather than host. - greg
+//---------------------------------------------------------------------------------------
+void ReaderIso15693(uint32_t parameter) {
+
+ LED_A_ON();
+
+ set_tracing(true);
+
+ uint8_t TagUID[8] = {0x00};
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ // Setup SSC
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+ // Start from off (no field generated)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ // Give the tags time to energize
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ SpinDelay(200);
+ StartCountSspClk();
+
+
+ // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
+ // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
+
+ // Now send the IDENTIFY command
+ uint8_t cmd[5];
+ BuildIdentifyRequest(cmd);
+ uint32_t start_time = 0;
+ uint32_t eof_time;
+ int answerLen = SendDataTag(cmd, sizeof(cmd), true, true, answer, sizeof(answer), start_time, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+
+ if (answerLen >= 12) { // we should do a better check than this
+ TagUID[0] = answer[2];
+ TagUID[1] = answer[3];
+ TagUID[2] = answer[4];
+ TagUID[3] = answer[5];
+ TagUID[4] = answer[6];
+ TagUID[5] = answer[7];
+ TagUID[6] = answer[8]; // IC Manufacturer code
+ TagUID[7] = answer[9]; // always E0
+ }
+
+ Dbprintf("%d octets read from IDENTIFY request:", answerLen);
+ DbdecodeIso15693Answer(answerLen, answer);
+ Dbhexdump(answerLen, answer, false);
+
+ // UID is reverse
+ if (answerLen >= 12)
+ Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
+ TagUID[7],TagUID[6],TagUID[5],TagUID[4],
+ TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
+
+ // read all pages
+ if (answerLen >= 12 && DEBUG) {
+ for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
+ uint8_t cmd[13];
+ BuildReadBlockRequest(TagUID, i, cmd);
+ answerLen = SendDataTag(cmd, sizeof(cmd), false, true, answer, sizeof(answer), start_time, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+ if (answerLen > 0) {
+ Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
+ DbdecodeIso15693Answer(answerLen, answer);
+ Dbhexdump(answerLen, answer, false);
+ if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr
+ }
+ }
+ }
+
+ // for the time being, switch field off to protect RDV4
+ // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ LED_A_OFF();
+}
+
+
+// Simulate an ISO15693 TAG.
+// For Inventory command: print command and send Inventory Response with given UID
+// TODO: interpret other reader commands and send appropriate response
+void SimTagIso15693(uint32_t parameter, uint8_t *uid) {
+
+ LED_A_ON();
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
+
+ StartCountSspClk();
+
+ uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+
+ // Build a suitable response to the reader INVENTORY command
+ BuildInventoryResponse(uid);
+
+ // Listen to reader
+ while (!BUTTON_PRESS()) {
+ uint32_t eof_time = 0, start_time = 0;
+ int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
+
+ if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
+ bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
+ start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
+ TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
+ }
+
+ Dbprintf("%d bytes read from reader:", cmd_len);
+ Dbhexdump(cmd_len, cmd, false);
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ LED_A_OFF();
+}
+
+
+// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
+// (some manufactures offer a way to read the AFI, though)
+void BruteforceIso15693Afi(uint32_t speed) {
+ LED_A_ON();
+
+ uint8_t data[6];
+ uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
+ int datalen = 0, recvlen = 0;
+ uint32_t eof_time;
+
+ // first without AFI
+ // Tags should respond without AFI and with AFI=0 even when AFI is active
+
+ data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
+ data[1] = ISO15693_INVENTORY;
+ data[2] = 0; // mask length
+ datalen = Iso15693AddCrc(data,3);
+ uint32_t start_time = GetCountSspClk();
+ recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+ WDT_HIT();
+ if (recvlen>=12) {
+ Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
+ }
+
+ // now with AFI
+
+ data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
+ data[1] = ISO15693_INVENTORY;
+ data[2] = 0; // AFI
+ data[3] = 0; // mask length
+
+ for (int i = 0; i < 256; i++) {
+ data[2] = i & 0xFF;
+ datalen = Iso15693AddCrc(data,4);
+ recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+ WDT_HIT();
+ if (recvlen >= 12) {
+ Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
+ }
+ }
+ Dbprintf("AFI Bruteforcing done.");
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ LED_A_OFF();
+
+}
+
+// Allows to directly send commands to the tag via the client
+void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
+
+ LED_A_ON();
+
+ int recvlen = 0;
+ uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
+ uint32_t eof_time;
+
+ uint16_t timeout;
+ bool request_answer = false;
+
+ switch (data[1]) {
+ case ISO15693_WRITEBLOCK:
+ case ISO15693_LOCKBLOCK:
+ case ISO15693_WRITE_MULTI_BLOCK:
+ case ISO15693_WRITE_AFI:
+ case ISO15693_LOCK_AFI:
+ case ISO15693_WRITE_DSFID:
+ case ISO15693_LOCK_DSFID:
+ timeout = ISO15693_READER_TIMEOUT_WRITE;
+ request_answer = data[0] & ISO15693_REQ_OPTION;
+ break;
+ default:
+ timeout = ISO15693_READER_TIMEOUT;
+ }
+
+ if (DEBUG) {
+ Dbprintf("SEND:");
+ Dbhexdump(datalen, data, false);
+ }
+
+ recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, timeout, &eof_time);
+
+ if (request_answer) { // send a single EOF to get the tag response
+ recvlen = SendDataTagEOF((recv?recvbuf:NULL), sizeof(recvbuf), 0, ISO15693_READER_TIMEOUT, &eof_time);
+ }
+
+ // for the time being, switch field off to protect rdv4.0
+ // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ if (recv) {
+ if (DEBUG) {
+ Dbprintf("RECV:");
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
+ }
+ if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
+ recvlen = ISO15693_MAX_RESPONSE_LENGTH;
+ }
+ cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+ }
+
+ LED_A_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Work with "magic Chinese" card.
+//
+//-----------------------------------------------------------------------------
+
+// Set the UID on Magic ISO15693 tag (based on Iceman's LUA-script).
+void SetTag15693Uid(uint8_t *uid) {
+
+ LED_A_ON();
+
+ uint8_t cmd[4][9] = {
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3e, 0x00, 0x00, 0x00, 0x00},
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3f, 0x69, 0x96, 0x00, 0x00},
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x38},
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x39}
+ };
+
+ uint16_t crc;
+
+ int recvlen = 0;
+ uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
+ uint32_t eof_time;
+
+ // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
+ cmd[2][3] = uid[7];
+ cmd[2][4] = uid[6];
+ cmd[2][5] = uid[5];
+ cmd[2][6] = uid[4];
+
+ // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
+ cmd[3][3] = uid[3];
+ cmd[3][4] = uid[2];
+ cmd[3][5] = uid[1];
+ cmd[3][6] = uid[0];
+
+ uint32_t start_time = 0;
+
+ for (int i = 0; i < 4; i++) {
+ // Add the CRC
+ crc = Iso15693Crc(cmd[i], 7);
+ cmd[i][7] = crc & 0xff;
+ cmd[i][8] = crc >> 8;
+
+ recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), i==0?true:false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+ if (DEBUG) {
+ Dbprintf("SEND:");
+ Dbhexdump(sizeof(cmd[i]), cmd[i], false);
+ Dbprintf("RECV:");
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
+ }
+ // Note: need to know if we expect an answer from one of the magic commands
+ // if (recvlen < 0) {
+ // break;
+ // }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, recvlen);
+ LED_A_OFF();
+}
+
+
+
+// --------------------------------------------------------------------
+// -- Misc & deprecated functions
+// --------------------------------------------------------------------
+
+/*
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
+{
+ uint8_t cmd[12];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // System Information command code
+ cmd[1] = 0x2B;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ //Now the CRC
+ crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
+ cmd[10] = crc & 0xff;
+ cmd[11] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
+{
+ uint8_t cmd[14];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // READ Multi BLOCK command code
+ cmd[1] = 0x23;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ // First Block number to read
+ cmd[10] = 0x00;
+ // Number of Blocks to read
+ cmd[11] = 0x2f; // read quite a few
+ //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ cmd[12] = crc & 0xff;
+ cmd[13] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
+{
+ uint8_t cmd[14];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // READ BLOCK command code
+ cmd[1] = CmdCode;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ // Parameter
+ cmd[10] = 0x00;
+ cmd[11] = 0x0a;
+
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ cmd[12] = crc & 0xff;
+ cmd[13] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
+{
+ uint8_t cmd[14];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // READ BLOCK command code
+ cmd[1] = CmdCode;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ // Parameter
+ cmd[10] = 0x05; // for custom codes this must be manufacturer code
+ cmd[11] = 0x00;
+
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ cmd[12] = crc & 0xff;
+ cmd[13] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+
+
+*/
+
+