]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/appmain.c
mifare usb update
[proxmark3-svn] / armsrc / appmain.c
index fcb910c9b1bdfcf43d350f24927548f6a783b932..11047b1cbdc75820e41ef104c1b3ab7447da05bd 100644 (file)
-//-----------------------------------------------------------------------------
-// The main application code. This is the first thing called after start.c
-// executes.
-// Jonathan Westhues, Mar 2006
-// Edits by Gerhard de Koning Gans, Sep 2007 (##)
-//-----------------------------------------------------------------------------
-
-
-#include <proxmark3.h>
-#include "apps.h"
-#ifdef WITH_LCD
-#include "fonts.h"
-#include "LCD.h"
-#endif
-
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
-
-//=============================================================================
-// A buffer where we can queue things up to be sent through the FPGA, for
-// any purpose (fake tag, as reader, whatever). We go MSB first, since that
-// is the order in which they go out on the wire.
-//=============================================================================
-
-BYTE ToSend[256];
-int ToSendMax;
-static int ToSendBit;
-
-
-void BufferClear(void)
-{
-       memset(BigBuf,0,sizeof(BigBuf));
-       DbpString("Buffer cleared");
-}
-
-void ToSendReset(void)
-{
-       ToSendMax = -1;
-       ToSendBit = 8;
-}
-
-void ToSendStuffBit(int b)
-{
-       if(ToSendBit >= 8) {
-               ToSendMax++;
-               ToSend[ToSendMax] = 0;
-               ToSendBit = 0;
-       }
-
-       if(b) {
-               ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
-       }
-
-       ToSendBit++;
-
-       if(ToSendBit >= sizeof(ToSend)) {
-               ToSendBit = 0;
-               DbpString("ToSendStuffBit overflowed!");
-       }
-}
-
-//=============================================================================
-// Debug print functions, to go out over USB, to the usual PC-side client.
-//=============================================================================
-
-void DbpString(char *str)
-{
-       UsbCommand c;
-       c.cmd = CMD_DEBUG_PRINT_STRING;
-       c.ext1 = strlen(str);
-       memcpy(c.d.asBytes, str, c.ext1);
-
-       UsbSendPacket((BYTE *)&c, sizeof(c));
-       // TODO fix USB so stupid things like this aren't req'd
-       SpinDelay(50);
-}
-
-void DbpIntegers(int x1, int x2, int x3)
-{
-       UsbCommand c;
-       c.cmd = CMD_DEBUG_PRINT_INTEGERS;
-       c.ext1 = x1;
-       c.ext2 = x2;
-       c.ext3 = x3;
-
-       UsbSendPacket((BYTE *)&c, sizeof(c));
-       // XXX
-       SpinDelay(50);
-}
-
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
-       if(at134khz) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       } else {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       }
-
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       // Now call the acquisition routine
-       DoAcquisition125k(at134khz);
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
-       BYTE *dest = (BYTE *)BigBuf;
-       int n = sizeof(BigBuf);
-       int i;
-
-       memset(dest,0,n);
-       i = 0;
-       for(;;) {
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-                       SSC_TRANSMIT_HOLDING = 0x43;
-                       LED_D_ON();
-               }
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-                       dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
-                       i++;
-                       LED_D_OFF();
-                       if(i >= n) {
-                               break;
-                       }
-               }
-       }
-       DbpIntegers(dest[0], dest[1], at134khz);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
-       BOOL at134khz;
-
-       // see if 'h' was specified
-       if(command[strlen(command) - 1] == 'h')
-               at134khz= TRUE;
-       else
-               at134khz= FALSE;
-       
-       if(at134khz) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       } else {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       }
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       // now modulate the reader field
-       while(*command != '\0' && *command != ' ')
-               {
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-               LED_D_OFF();
-               SpinDelayUs(delay_off);
-               if(at134khz) {
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-               } else {
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-               }
-               LED_D_ON();
-               if(*(command++) == '0')
-                       SpinDelayUs(period_0);
-               else
-                       SpinDelayUs(period_1);
-               }
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       LED_D_OFF();
-       SpinDelayUs(delay_off);
-       if(at134khz) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       } else {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       }
-
-       // now do the read
-       DoAcquisition125k(at134khz);
-}
-
-//-----------------------------------------------------------------------------
-// Read an ADC channel and block till it completes, then return the result
-// in ADC units (0 to 1023). Also a routine to average 32 samples and
-// return that.
-//-----------------------------------------------------------------------------
-static int ReadAdc(int ch)
-{
-       DWORD d;
-
-       ADC_CONTROL = ADC_CONTROL_RESET;
-       ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
-               ADC_MODE_SAMPLE_HOLD_TIME(8);
-       ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);
-
-       ADC_CONTROL = ADC_CONTROL_START;
-       while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))
-               ;
-       d = ADC_CHANNEL_DATA(ch);
-
-       return d;
-}
-
-static int AvgAdc(int ch)
-{
-       int i;
-       int a = 0;
-
-       for(i = 0; i < 32; i++) {
-               a += ReadAdc(ch);
-       }
-
-       return (a + 15) >> 5;
-}
-
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */
-void SweepLFrange()
-{
-       BYTE *dest = (BYTE *)BigBuf;
-       int i;
-
-       // clear buffer
-       memset(BigBuf,0,sizeof(BigBuf));
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-       for (i=255; i>19; i--) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
-               SpinDelay(20);
-               dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
-       }
-}
-
-void MeasureAntennaTuning(void)
-{
-// Impedances are Zc = 1/(j*omega*C), in ohms
-#define LF_TUNING_CAP_Z        1273    //  1 nF @ 125   kHz
-#define HF_TUNING_CAP_Z        235             // 50 pF @ 13.56 MHz
-
-       int vLf125, vLf134, vHf;        // in mV
-
-       UsbCommand c;
-
-       // Let the FPGA drive the low-frequency antenna around 125 kHz.
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       SpinDelay(20);
-       vLf125 = AvgAdc(ADC_CHAN_LF);
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input
-       // can measure voltages up to 137500 mV
-       vLf125 = (137500 * vLf125) >> 10;
-
-       // Let the FPGA drive the low-frequency antenna around 134 kHz.
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       SpinDelay(20);
-       vLf134 = AvgAdc(ADC_CHAN_LF);
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input
-       // can measure voltages up to 137500 mV
-       vLf134 = (137500 * vLf134) >> 10;
-
-       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
-       SpinDelay(20);
-       vHf = AvgAdc(ADC_CHAN_HF);
-       // Vref = 3300mV, and an 10:1 voltage divider on the input
-       // can measure voltages up to 33000 mV
-       vHf = (33000 * vHf) >> 10;
-
-       c.cmd = CMD_MEASURED_ANTENNA_TUNING;
-       c.ext1 = (vLf125 << 0) | (vLf134 << 16);
-       c.ext2 = vHf;
-       c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
-       UsbSendPacket((BYTE *)&c, sizeof(c));
-}
-
-void SimulateTagLowFrequency(int period)
-{
-       int i;
-       BYTE *tab = (BYTE *)BigBuf;
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
-
-       PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
-
-       PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
-       PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
-
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)
-
-       i = 0;
-       for(;;) {
-               while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
-                       if(BUTTON_PRESS()) {
-                               return;
-                       }
-                       WDT_HIT();
-               }
-
-               LED_D_ON();
-               if(tab[i]) {
-                       OPEN_COIL();
-               } else {
-                       SHORT_COIL();
-               }
-               LED_D_OFF();
-
-               while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
-                       if(BUTTON_PRESS()) {
-                               return;
-                       }
-                       WDT_HIT();
-               }
-
-               i++;
-               if(i == period) i = 0;
-       }
-}
-
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-       BYTE *dest = (BYTE *)BigBuf;
-       int idx;
-
-       // for when we want an fc8 pattern every 4 logical bits
-       if(c==0) {
-               dest[((*n)++)]=1;
-               dest[((*n)++)]=1;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-       }
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
-       if(c==8) {
-               for (idx=0; idx<6; idx++) {
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-               }
-       }
-
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
-       if(c==10) {
-               for (idx=0; idx<5; idx++) {
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-               }
-       }
-}
-
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo)
-{
-       int n=0, i=0;
-       /*
-        HID tag bitstream format
-        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
-        A 1 bit is represented as 6 fc8 and 5 fc10 patterns
-        A 0 bit is represented as 5 fc10 and 6 fc8 patterns
-        A fc8 is inserted before every 4 bits
-        A special start of frame pattern is used consisting a0b0 where a and b are neither 0
-        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
-       */
-
-       if (hi>0xFFF) {
-               DbpString("Tags can only have 44 bits.");
-               return;
-       }
-       fc(0,&n);
-       // special start of frame marker containing invalid bit sequences
-       fc(8,  &n);     fc(8,  &n);     // invalid
-       fc(8,  &n);     fc(10, &n); // logical 0
-       fc(10, &n);     fc(10, &n); // invalid
-       fc(8,  &n);     fc(10, &n); // logical 0
-
-       WDT_HIT();
-       // manchester encode bits 43 to 32
-       for (i=11; i>=0; i--) {
-               if ((i%4)==3) fc(0,&n);
-               if ((hi>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
-               } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
-               }
-       }
-
-       WDT_HIT();
-       // manchester encode bits 31 to 0
-       for (i=31; i>=0; i--) {
-               if ((i%4)==3) fc(0,&n);
-               if ((lo>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
-               } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
-               }
-       }
-
-       LED_A_ON();
-       SimulateTagLowFrequency(n);
-       LED_A_OFF();
-}
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(void)
-{
-       BYTE *dest = (BYTE *)BigBuf;
-       int m=0, n=0, i=0, idx=0, found=0, lastval=0;
-       DWORD hi=0, lo=0;
-
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       for(;;) {
-               WDT_HIT();
-               LED_A_ON();
-               if(BUTTON_PRESS()) {
-                       LED_A_OFF();
-                       return;
-               }
-
-               i = 0;
-               m = sizeof(BigBuf);
-               memset(dest,128,m);
-               for(;;) {
-                       if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-                               SSC_TRANSMIT_HOLDING = 0x43;
-                               LED_D_ON();
-                       }
-                       if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-                               dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
-                               // we don't care about actual value, only if it's more or less than a
-                               // threshold essentially we capture zero crossings for later analysis
-                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-                               i++;
-                               LED_D_OFF();
-                               if(i >= m) {
-                                       break;
-                               }
-                       }
-               }
-
-               // FSK demodulator
-
-               // sync to first lo-hi transition
-               for( idx=1; idx<m; idx++) {
-                       if (dest[idx-1]<dest[idx])
-                               lastval=idx;
-                               break;
-               }
-               WDT_HIT();
-
-               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-               for( i=0; idx<m; idx++) {
-                       if (dest[idx-1]<dest[idx]) {
-                               dest[i]=idx-lastval;
-                               if (dest[i] <= 8) {
-                                               dest[i]=1;
-                               } else {
-                                               dest[i]=0;
-                               }
-
-                               lastval=idx;
-                               i++;
-                       }
-               }
-               m=i;
-               WDT_HIT();
-
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-               lastval=dest[0];
-               idx=0;
-               i=0;
-               n=0;
-               for( idx=0; idx<m; idx++) {
-                       if (dest[idx]==lastval) {
-                               n++;
-                       } else {
-                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-                               // swallowed up by rounding
-                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-                               // special start of frame markers use invalid manchester states (no transitions) by using sequences
-                               // like 111000
-                               if (dest[idx-1]) {
-                                       n=(n+1)/6;                      // fc/8 in sets of 6
-                               } else {
-                                       n=(n+1)/5;                      // fc/10 in sets of 5
-                               }
-                               switch (n) {                    // stuff appropriate bits in buffer
-                                       case 0:
-                                       case 1: // one bit
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       case 2: // two bits
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       case 3: // 3 bit start of frame markers
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       // When a logic 0 is immediately followed by the start of the next transmisson
-                                       // (special pattern) a pattern of 4 bit duration lengths is created.
-                                       case 4:
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       default:        // this shouldn't happen, don't stuff any bits
-                                               break;
-                               }
-                               n=0;
-                               lastval=dest[idx];
-                       }
-               }
-               m=i;
-               WDT_HIT();
-
-               // final loop, go over previously decoded manchester data and decode into usable tag ID
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-               for( idx=0; idx<m-6; idx++) {
-                       // search for a start of frame marker
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-                       {
-                               found=1;
-                               idx+=6;
-                               if (found && (hi|lo)) {
-                                       DbpString("TAG ID");
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);
-                                       hi=0;
-                                       lo=0;
-                                       found=0;
-                               }
-                       }
-                       if (found) {
-                               if (dest[idx] && (!dest[idx+1]) ) {
-                                       hi=(hi<<1)|(lo>>31);
-                                       lo=(lo<<1)|0;
-                               } else if ( (!dest[idx]) && dest[idx+1]) {
-                                       hi=(hi<<1)|(lo>>31);
-                                       lo=(lo<<1)|1;
-                               } else {
-                                       found=0;
-                                       hi=0;
-                                       lo=0;
-                               }
-                               idx++;
-                       }
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-                       {
-                               found=1;
-                               idx+=6;
-                               if (found && (hi|lo)) {
-                                       DbpString("TAG ID");
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);
-                                       hi=0;
-                                       lo=0;
-                                       found=0;
-                               }
-                       }
-               }
-               WDT_HIT();
-       }
-}
-
-void SimulateTagHfListen(void)
-{
-       BYTE *dest = (BYTE *)BigBuf;
-       int n = sizeof(BigBuf);
-       BYTE v = 0;
-       int i;
-       int p = 0;
-
-       // We're using this mode just so that I can test it out; the simulated
-       // tag mode would work just as well and be simpler.
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
-
-       // We need to listen to the high-frequency, peak-detected path.
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
-       FpgaSetupSsc();
-
-       i = 0;
-       for(;;) {
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-                       SSC_TRANSMIT_HOLDING = 0xff;
-               }
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
-
-                       v <<= 1;
-                       if(r & 1) {
-                               v |= 1;
-                       }
-                       p++;
-
-                       if(p >= 8) {
-                               dest[i] = v;
-                               v = 0;
-                               p = 0;
-                               i++;
-
-                               if(i >= n) {
-                                       break;
-                               }
-                       }
-               }
-       }
-       DbpString("simulate tag (now type bitsamples)");
-}
-
-void UsbPacketReceived(BYTE *packet, int len)
-{
-       UsbCommand *c = (UsbCommand *)packet;
-
-       switch(c->cmd) {
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
-                       AcquireRawAdcSamples125k(c->ext1);
-                       break;
-
-               case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
-                       ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
-                       break;
-
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
-                       AcquireRawAdcSamplesIso15693();
-                       break;
-
-               case CMD_BUFF_CLEAR:
-                       BufferClear();
-                       break;
-
-               case CMD_READER_ISO_15693:
-                       ReaderIso15693(c->ext1);
-                       break;
-
-               case CMD_SIMTAG_ISO_15693:
-                       SimTagIso15693(c->ext1);
-                       break;
-
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
-                       AcquireRawAdcSamplesIso14443(c->ext1);
-                       break;
-
-               case CMD_READ_SRI512_TAG:
-                       ReadSRI512Iso14443(c->ext1);
-                       break;
-
-               case CMD_READER_ISO_14443a:
-                       ReaderIso14443a(c->ext1);
-                       break;
-
-               case CMD_SNOOP_ISO_14443:
-                       SnoopIso14443();
-                       break;
-
-               case CMD_SNOOP_ISO_14443a:
-                       SnoopIso14443a();
-                       break;
-
-               case CMD_SIMULATE_TAG_HF_LISTEN:
-                       SimulateTagHfListen();
-                       break;
-
-               case CMD_SIMULATE_TAG_ISO_14443:
-                       SimulateIso14443Tag();
-                       break;
-
-               case CMD_SIMULATE_TAG_ISO_14443a:
-                       SimulateIso14443aTag(c->ext1, c->ext2);  // ## Simulate iso14443a tag - pass tag type & UID
-                       break;
-
-               case CMD_MEASURE_ANTENNA_TUNING:
-                       MeasureAntennaTuning();
-                       break;
-
-               case CMD_HID_DEMOD_FSK:
-                       CmdHIDdemodFSK();                               // Demodulate HID tag
-                       break;
-
-               case CMD_HID_SIM_TAG:
-                       CmdHIDsimTAG(c->ext1, c->ext2);                                 // Simulate HID tag by ID
-                       break;
-
-               case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-                       SpinDelay(200);
-                       LED_D_OFF(); // LED D indicates field ON or OFF
-                       break;
-
-               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
-               case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
-                       UsbCommand n;
-                       if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
-                               n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
-                       } else {
-                               n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
-                       }
-                       n.ext1 = c->ext1;
-                       memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));
-                       UsbSendPacket((BYTE *)&n, sizeof(n));
-                       break;
-               }
-               case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
-                       BYTE *b = (BYTE *)BigBuf;
-                       memcpy(b+c->ext1, c->d.asBytes, 48);
-                       break;
-               }
-               case CMD_SIMULATE_TAG_125K:
-                       LED_A_ON();
-                       SimulateTagLowFrequency(c->ext1);
-                       LED_A_OFF();
-                       break;
-#ifdef WITH_LCD
-               case CMD_LCD_RESET:
-                       LCDReset();
-                       break;
-#endif
-               case CMD_SWEEP_LF:
-                       SweepLFrange();
-                       break;
-
-               case CMD_SET_LF_DIVISOR:
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
-                       break;
-#ifdef WITH_LCD
-               case CMD_LCD:
-                       LCDSend(c->ext1);
-                       break;
-#endif
-        case CMD_SETUP_WRITE:
-               case CMD_FINISH_WRITE:
-               case CMD_HARDWARE_RESET:
-                       USB_D_PLUS_PULLUP_OFF();
-                       SpinDelay(1000);
-                       SpinDelay(1000);
-                       RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
-                       for(;;) {
-                               // We're going to reset, and the bootrom will take control.
-                       }
-                       break;
-
-
-               default:
-                       DbpString("unknown command");
-                       break;
-       }
-}
-
-void AppMain(void)
-{
-       memset(BigBuf,0,sizeof(BigBuf));
-       SpinDelay(100);
-
-    LED_D_OFF();
-    LED_C_OFF();
-    LED_B_OFF();
-    LED_A_OFF();
-
-       UsbStart();
-
-       // The FPGA gets its clock from us from PCK0 output, so set that up.
-       PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);
-       PIO_DISABLE = (1 << GPIO_PCK0);
-       PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;
-       // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
-       PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |
-               PMC_CLK_PRESCALE_DIV_4;
-       PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);
-
-       // Reset SPI
-       SPI_CONTROL = SPI_CONTROL_RESET;
-       // Reset SSC
-       SSC_CONTROL = SSC_CONTROL_RESET;
-
-       // Load the FPGA image, which we have stored in our flash.
-       FpgaDownloadAndGo();
-
-#ifdef WITH_LCD
-
-       LCDInit();
-
-       // test text on different colored backgrounds
-    LCDString(" The quick brown fox  ",        &FONT6x8,1,1+8*0,WHITE  ,BLACK );
-    LCDString("  jumped over the     ",        &FONT6x8,1,1+8*1,BLACK  ,WHITE );
-    LCDString("     lazy dog.        ",        &FONT6x8,1,1+8*2,YELLOW ,RED   );
-    LCDString(" AaBbCcDdEeFfGgHhIiJj ",        &FONT6x8,1,1+8*3,RED    ,GREEN );
-    LCDString(" KkLlMmNnOoPpQqRrSsTt ",        &FONT6x8,1,1+8*4,MAGENTA,BLUE  );
-    LCDString("UuVvWwXxYyZz0123456789",        &FONT6x8,1,1+8*5,BLUE   ,YELLOW);
-    LCDString("`-=[]_;',./~!@#$%^&*()",        &FONT6x8,1,1+8*6,BLACK  ,CYAN  );
-    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);
-
-       // color bands
-       LCDFill(0, 1+8* 8, 132, 8, BLACK);
-       LCDFill(0, 1+8* 9, 132, 8, WHITE);
-       LCDFill(0, 1+8*10, 132, 8, RED);
-       LCDFill(0, 1+8*11, 132, 8, GREEN);
-       LCDFill(0, 1+8*12, 132, 8, BLUE);
-       LCDFill(0, 1+8*13, 132, 8, YELLOW);
-       LCDFill(0, 1+8*14, 132, 8, CYAN);
-       LCDFill(0, 1+8*15, 132, 8, MAGENTA);
-
-#endif
-
-       for(;;) {
-               UsbPoll(FALSE);
-               WDT_HIT();
-       }
-}
-
-void SpinDelayUs(int us)
-{
-       int ticks = (48*us) >> 10;
-
-       // Borrow a PWM unit for my real-time clock
-       PWM_ENABLE = PWM_CHANNEL(0);
-       // 48 MHz / 1024 gives 46.875 kHz
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
-       PWM_CH_DUTY_CYCLE(0) = 0;
-       PWM_CH_PERIOD(0) = 0xffff;
-
-       WORD start = (WORD)PWM_CH_COUNTER(0);
-
-       for(;;) {
-               WORD now = (WORD)PWM_CH_COUNTER(0);
-               if(now == (WORD)(start + ticks)) {
-                       return;
-               }
-               WDT_HIT();
-       }
-}
-
-void SpinDelay(int ms)
-{
-       int ticks = (48000*ms) >> 10;
-
-       // Borrow a PWM unit for my real-time clock
-       PWM_ENABLE = PWM_CHANNEL(0);
-       // 48 MHz / 1024 gives 46.875 kHz
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
-       PWM_CH_DUTY_CYCLE(0) = 0;
-       PWM_CH_PERIOD(0) = 0xffff;
-
-       WORD start = (WORD)PWM_CH_COUNTER(0);
-
-       for(;;) {
-               WORD now = (WORD)PWM_CH_COUNTER(0);
-               if(now == (WORD)(start + ticks)) {
-                       return;
-               }
-               WDT_HIT();
-       }
-}
+//-----------------------------------------------------------------------------\r
+// The main application code. This is the first thing called after start.c\r
+// executes.\r
+// Jonathan Westhues, Mar 2006\r
+// Edits by Gerhard de Koning Gans, Sep 2007 (##)\r
+//-----------------------------------------------------------------------------\r
+\r
+#include <proxmark3.h>\r
+#include <stdlib.h>\r
+#include "apps.h"\r
+#include "legicrf.h"\r
+#ifdef WITH_LCD\r
+#include "fonts.h"\r
+#include "LCD.h"\r
+#endif\r
+\r
+//=============================================================================\r
+// A buffer where we can queue things up to be sent through the FPGA, for\r
+// any purpose (fake tag, as reader, whatever). We go MSB first, since that\r
+// is the order in which they go out on the wire.\r
+//=============================================================================\r
+\r
+BYTE ToSend[256];\r
+int ToSendMax;\r
+static int ToSendBit;\r
+struct common_area common_area __attribute__((section(".commonarea")));\r
+\r
+void BufferClear(void)\r
+{\r
+       memset(BigBuf,0,sizeof(BigBuf));\r
+       DbpString("Buffer cleared");\r
+}\r
+\r
+void ToSendReset(void)\r
+{\r
+       ToSendMax = -1;\r
+       ToSendBit = 8;\r
+}\r
+\r
+void ToSendStuffBit(int b)\r
+{\r
+       if(ToSendBit >= 8) {\r
+               ToSendMax++;\r
+               ToSend[ToSendMax] = 0;\r
+               ToSendBit = 0;\r
+       }\r
+\r
+       if(b) {\r
+               ToSend[ToSendMax] |= (1 << (7 - ToSendBit));\r
+       }\r
+\r
+       ToSendBit++;\r
+\r
+       if(ToSendBit >= sizeof(ToSend)) {\r
+               ToSendBit = 0;\r
+               DbpString("ToSendStuffBit overflowed!");\r
+       }\r
+}\r
+\r
+//=============================================================================\r
+// Debug print functions, to go out over USB, to the usual PC-side client.\r
+//=============================================================================\r
+\r
+void DbpString(char *str)\r
+{\r
+       /* this holds up stuff unless we're connected to usb */\r
+       if (!UsbConnected())\r
+               return;\r
+\r
+       UsbCommand c;\r
+       c.cmd = CMD_DEBUG_PRINT_STRING;\r
+       c.arg[0] = strlen(str);\r
+       memcpy(c.d.asBytes, str, c.arg[0]);\r
+\r
+       UsbSendPacket((BYTE *)&c, sizeof(c));\r
+       // TODO fix USB so stupid things like this aren't req'd\r
+       SpinDelay(50);\r
+}\r
+\r
+void DbpIntegers(int x1, int x2, int x3)\r
+{\r
+       /* this holds up stuff unless we're connected to usb */\r
+       if (!UsbConnected())\r
+               return;\r
+\r
+       UsbCommand c;\r
+       c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r
+       c.arg[0] = x1;\r
+       c.arg[1] = x2;\r
+       c.arg[2] = x3;\r
+\r
+       UsbSendPacket((BYTE *)&c, sizeof(c));\r
+       // XXX\r
+       SpinDelay(50);\r
+}\r
+\r
+//-----------------------------------------------------------------------------\r
+// Read an ADC channel and block till it completes, then return the result\r
+// in ADC units (0 to 1023). Also a routine to average 32 samples and\r
+// return that.\r
+//-----------------------------------------------------------------------------\r
+static int ReadAdc(int ch)\r
+{\r
+       DWORD d;\r
+\r
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;\r
+       AT91C_BASE_ADC->ADC_MR =\r
+               ADC_MODE_PRESCALE(32) |\r
+               ADC_MODE_STARTUP_TIME(16) |\r
+               ADC_MODE_SAMPLE_HOLD_TIME(8);\r
+       AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);\r
+\r
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;\r
+       while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))\r
+               ;\r
+       d = AT91C_BASE_ADC->ADC_CDR[ch];\r
+\r
+       return d;\r
+}\r
+\r
+static int AvgAdc(int ch)\r
+{\r
+       int i;\r
+       int a = 0;\r
+\r
+       for(i = 0; i < 32; i++) {\r
+               a += ReadAdc(ch);\r
+       }\r
+\r
+       return (a + 15) >> 5;\r
+}\r
+\r
+void MeasureAntennaTuning(void)\r
+{\r
+       BYTE *dest = (BYTE *)BigBuf;\r
+       int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;\r
+       int vLf125 = 0, vLf134 = 0, vHf = 0;    // in mV\r
+\r
+       UsbCommand c;\r
+\r
+       DbpString("Measuring antenna characteristics, please wait.");\r
+       memset(BigBuf,0,sizeof(BigBuf));\r
+\r
+/*\r
+ * Sweeps the useful LF range of the proxmark from\r
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and\r
+ * read the voltage in the antenna, the result left\r
+ * in the buffer is a graph which should clearly show\r
+ * the resonating frequency of your LF antenna\r
+ * ( hopefully around 95 if it is tuned to 125kHz!)\r
+ */\r
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
+       for (i=255; i>19; i--) {\r
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r
+               SpinDelay(20);\r
+               // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
+               // can measure voltages up to 137500 mV\r
+               adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);\r
+               if (i==95)      vLf125 = adcval; // voltage at 125Khz\r
+               if (i==89)      vLf134 = adcval; // voltage at 134Khz\r
+\r
+               dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes\r
+               if(dest[i] > peak) {\r
+                       peakv = adcval;\r
+                       peak = dest[i];\r
+                       peakf = i;\r
+                       ptr = i;\r
+               }\r
+       }\r
+\r
+       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
+       SpinDelay(20);\r
+       // Vref = 3300mV, and an 10:1 voltage divider on the input\r
+       // can measure voltages up to 33000 mV\r
+       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;\r
+\r
+       c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r
+       c.arg[0] = (vLf125 << 0) | (vLf134 << 16);\r
+       c.arg[1] = vHf;\r
+       c.arg[2] = peakf | (peakv << 16);\r
+       UsbSendPacket((BYTE *)&c, sizeof(c));\r
+}\r
+\r
+void SimulateTagHfListen(void)\r
+{\r
+       BYTE *dest = (BYTE *)BigBuf;\r
+       int n = sizeof(BigBuf);\r
+       BYTE v = 0;\r
+       int i;\r
+       int p = 0;\r
+\r
+       // We're using this mode just so that I can test it out; the simulated\r
+       // tag mode would work just as well and be simpler.\r
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
+\r
+       // We need to listen to the high-frequency, peak-detected path.\r
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
+\r
+       FpgaSetupSsc();\r
+\r
+       i = 0;\r
+       for(;;) {\r
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
+                       AT91C_BASE_SSC->SSC_THR = 0xff;\r
+               }\r
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
+                       BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
+\r
+                       v <<= 1;\r
+                       if(r & 1) {\r
+                               v |= 1;\r
+                       }\r
+                       p++;\r
+\r
+                       if(p >= 8) {\r
+                               dest[i] = v;\r
+                               v = 0;\r
+                               p = 0;\r
+                               i++;\r
+\r
+                               if(i >= n) {\r
+                                       break;\r
+                               }\r
+                       }\r
+               }\r
+       }\r
+       DbpString("simulate tag (now type bitsamples)");\r
+}\r
+\r
+void ReadMem(int addr)\r
+{\r
+       const DWORD *data = ((DWORD *)addr);\r
+       int i;\r
+\r
+       DbpString("Reading memory at address");\r
+       DbpIntegers(0, 0, addr);\r
+       for (i = 0; i < 8; i+= 2)\r
+               DbpIntegers(0, data[i], data[i+1]);\r
+}\r
+\r
+/* osimage version information is linked in */\r
+extern struct version_information version_information;\r
+/* bootrom version information is pointed to from _bootphase1_version_pointer */\r
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;\r
+void SendVersion(void)\r
+{\r
+       char temp[48]; /* Limited data payload in USB packets */\r
+       DbpString("Prox/RFID mark3 RFID instrument");\r
+       \r
+       /* Try to find the bootrom version information. Expect to find a pointer at \r
+        * symbol _bootphase1_version_pointer, perform slight sanity checks on the\r
+        * pointer, then use it.\r
+        */\r
+       char *bootrom_version = *(char**)&_bootphase1_version_pointer;\r
+       if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {\r
+               DbpString("bootrom version information appears invalid");\r
+       } else {\r
+               FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);\r
+               DbpString(temp);\r
+       }\r
+       \r
+       FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);\r
+       DbpString(temp);\r
+       \r
+       FpgaGatherVersion(temp, sizeof(temp));\r
+       DbpString(temp);\r
+}\r
+\r
+#ifdef WITH_LF\r
+// samy's sniff and repeat routine\r
+void SamyRun()\r
+{\r
+       DbpString("Stand-alone mode! No PC necessary.");\r
+\r
+       // 3 possible options? no just 2 for now\r
+#define OPTS 2\r
+\r
+       int high[OPTS], low[OPTS];\r
+\r
+       // Oooh pretty -- notify user we're in elite samy mode now\r
+       LED(LED_RED,    200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_GREEN,  200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_RED,    200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_GREEN,  200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_RED,    200);\r
+\r
+       int selected = 0;\r
+       int playing = 0;\r
+\r
+       // Turn on selected LED\r
+       LED(selected + 1, 0);\r
+\r
+       for (;;)\r
+       {\r
+               UsbPoll(FALSE);\r
+               WDT_HIT();\r
+\r
+               // Was our button held down or pressed?\r
+               int button_pressed = BUTTON_HELD(1000);\r
+               SpinDelay(300);\r
+\r
+               // Button was held for a second, begin recording\r
+               if (button_pressed > 0)\r
+               {\r
+                       LEDsoff();\r
+                       LED(selected + 1, 0);\r
+                       LED(LED_RED2, 0);\r
+\r
+                       // record\r
+                       DbpString("Starting recording");\r
+\r
+                       // wait for button to be released\r
+                       while(BUTTON_PRESS())\r
+                               WDT_HIT();\r
+\r
+                       /* need this delay to prevent catching some weird data */\r
+                       SpinDelay(500);\r
+\r
+                       CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);\r
+                       DbpString("Recorded");\r
+                       DbpIntegers(selected, high[selected], low[selected]);\r
+\r
+                       LEDsoff();\r
+                       LED(selected + 1, 0);\r
+                       // Finished recording\r
+\r
+                       // If we were previously playing, set playing off\r
+                       // so next button push begins playing what we recorded\r
+                       playing = 0;\r
+               }\r
+\r
+               // Change where to record (or begin playing)\r
+               else if (button_pressed)\r
+               {\r
+                       // Next option if we were previously playing\r
+                       if (playing)\r
+                               selected = (selected + 1) % OPTS;\r
+                       playing = !playing;\r
+\r
+                       LEDsoff();\r
+                       LED(selected + 1, 0);\r
+\r
+                       // Begin transmitting\r
+                       if (playing)\r
+                       {\r
+                               LED(LED_GREEN, 0);\r
+                               DbpString("Playing");\r
+                               // wait for button to be released\r
+                               while(BUTTON_PRESS())\r
+                                       WDT_HIT();\r
+                               DbpIntegers(selected, high[selected], low[selected]);\r
+                               CmdHIDsimTAG(high[selected], low[selected], 0);\r
+                               DbpString("Done playing");\r
+                               if (BUTTON_HELD(1000) > 0)\r
+                                       {\r
+                                       DbpString("Exiting");\r
+                                       LEDsoff();\r
+                                       return;\r
+                                       }\r
+\r
+                               /* We pressed a button so ignore it here with a delay */\r
+                               SpinDelay(300);\r
+\r
+                               // when done, we're done playing, move to next option\r
+                               selected = (selected + 1) % OPTS;\r
+                               playing = !playing;\r
+                               LEDsoff();\r
+                               LED(selected + 1, 0);\r
+                       }\r
+                       else\r
+                               while(BUTTON_PRESS())\r
+                                       WDT_HIT();\r
+               }\r
+       }\r
+}\r
+#endif\r
+\r
+/*\r
+OBJECTIVE\r
+Listen and detect an external reader. Determine the best location\r
+for the antenna.\r
+\r
+INSTRUCTIONS:\r
+Inside the ListenReaderField() function, there is two mode.\r
+By default, when you call the function, you will enter mode 1.\r
+If you press the PM3 button one time, you will enter mode 2.\r
+If you press the PM3 button a second time, you will exit the function.\r
+\r
+DESCRIPTION OF MODE 1:\r
+This mode just listens for an external reader field and lights up green\r
+for HF and/or red for LF. This is the original mode of the detectreader\r
+function.\r
+\r
+DESCRIPTION OF MODE 2:\r
+This mode will visually represent, using the LEDs, the actual strength of the\r
+current compared to the maximum current detected. Basically, once you know\r
+what kind of external reader is present, it will help you spot the best location to place\r
+your antenna. You will probably not get some good results if there is a LF and a HF reader\r
+at the same place! :-)\r
+\r
+LIGHT SCHEME USED:\r
+*/\r
+static const char LIGHT_SCHEME[] = {\r
+               0x0, /* ----     | No field detected */\r
+               0x1, /* X---     | 14% of maximum current detected */\r
+               0x2, /* -X--     | 29% of maximum current detected */\r
+               0x4, /* --X-     | 43% of maximum current detected */\r
+               0x8, /* ---X     | 57% of maximum current detected */\r
+               0xC, /* --XX     | 71% of maximum current detected */\r
+               0xE, /* -XXX     | 86% of maximum current detected */\r
+               0xF, /* XXXX     | 100% of maximum current detected */\r
+};\r
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);\r
+\r
+void ListenReaderField(int limit)\r
+{\r
+       int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;\r
+       int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0, hf_max;\r
+       int mode=1, display_val, display_max, i;\r
+\r
+#define LF_ONLY                1\r
+#define HF_ONLY                2\r
+\r
+       LEDsoff();\r
+\r
+       lf_av=lf_max=ReadAdc(ADC_CHAN_LF);\r
+\r
+       if(limit != HF_ONLY) {\r
+               DbpString("LF 125/134 Baseline:");\r
+               DbpIntegers(lf_av,0,0);\r
+               lf_baseline= lf_av;\r
+       }\r
+\r
+       hf_av=hf_max=ReadAdc(ADC_CHAN_HF);\r
+\r
+       if (limit != LF_ONLY) {\r
+               DbpString("HF 13.56 Baseline:");\r
+               DbpIntegers(hf_av,0,0);\r
+               hf_baseline= hf_av;\r
+       }\r
+\r
+       for(;;) {\r
+               if (BUTTON_PRESS()) {\r
+                       SpinDelay(500);\r
+                       switch (mode) {\r
+                               case 1:\r
+                                       mode=2;\r
+                                       DbpString("Signal Strength Mode");\r
+                                       break;\r
+                               case 2:\r
+                               default:\r
+                                       DbpString("Stopped");\r
+                                       LEDsoff();\r
+                                       return;\r
+                                       break;\r
+                       }\r
+               }\r
+               WDT_HIT();\r
+\r
+               if (limit != HF_ONLY) {\r
+                       if(mode==1) {\r
+                               if (abs(lf_av - lf_baseline) > 10) LED_D_ON();\r
+                               else                               LED_D_OFF();\r
+                       }\r
+                       \r
+                       ++lf_count;\r
+                       lf_av_new= ReadAdc(ADC_CHAN_LF);\r
+                       // see if there's a significant change\r
+                       if(abs(lf_av - lf_av_new) > 10) {\r
+                               DbpString("LF 125/134 Field Change:");\r
+                               DbpIntegers(lf_av,lf_av_new,lf_count);\r
+                               lf_av= lf_av_new;\r
+                               if (lf_av > lf_max)\r
+                                       lf_max = lf_av;\r
+                               lf_count= 0;\r
+                       }\r
+               }\r
+\r
+               if (limit != LF_ONLY) {\r
+                       if (mode == 1){\r
+                               if (abs(hf_av - hf_baseline) > 10) LED_B_ON();\r
+                               else                               LED_B_OFF();\r
+                       }\r
+                       \r
+                       ++hf_count;\r
+                       hf_av_new= ReadAdc(ADC_CHAN_HF);\r
+                       // see if there's a significant change\r
+                       if(abs(hf_av - hf_av_new) > 10) {\r
+                               DbpString("HF 13.56 Field Change:");\r
+                               DbpIntegers(hf_av,hf_av_new,hf_count);\r
+                               hf_av= hf_av_new;\r
+                               if (hf_av > hf_max)\r
+                                       hf_max = hf_av;\r
+                               hf_count= 0;\r
+                       }\r
+               }\r
+               \r
+               if(mode == 2) {\r
+                       if (limit == LF_ONLY) {\r
+                               display_val = lf_av;\r
+                               display_max = lf_max;\r
+                       } else if (limit == HF_ONLY) {\r
+                               display_val = hf_av;\r
+                               display_max = hf_max;\r
+                       } else { /* Pick one at random */\r
+                               if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {\r
+                                       display_val = hf_av;\r
+                                       display_max = hf_max;\r
+                               } else {\r
+                                       display_val = lf_av;\r
+                                       display_max = lf_max;\r
+                               }\r
+                       }\r
+                       for (i=0; i<LIGHT_LEN; i++) {\r
+                               if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {\r
+                                       if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();\r
+                                       if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();\r
+                                       if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();\r
+                                       if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();\r
+                                       break;\r
+                               }\r
+                       }\r
+               }\r
+       }\r
+}\r
+\r
+void UsbPacketReceived(BYTE *packet, int len)\r
+{\r
+       UsbCommand *c = (UsbCommand *)packet;\r
+\r
+       switch(c->cmd) {\r
+#ifdef WITH_LF\r
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
+                       AcquireRawAdcSamples125k(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+               case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
+                       ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO15693\r
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r
+                       AcquireRawAdcSamplesIso15693();\r
+                       break;\r
+#endif\r
+\r
+               case CMD_BUFF_CLEAR:\r
+                       BufferClear();\r
+                       break;\r
+\r
+#ifdef WITH_ISO15693\r
+               case CMD_READER_ISO_15693:\r
+                       ReaderIso15693(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+               case CMD_READER_LEGIC_RF:\r
+                       LegicRfReader();\r
+                       break;\r
+\r
+#ifdef WITH_ISO15693\r
+               case CMD_SIMTAG_ISO_15693:\r
+                       SimTagIso15693(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443b\r
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r
+                       AcquireRawAdcSamplesIso14443(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443b\r
+               case CMD_READ_SRI512_TAG:\r
+                       ReadSRI512Iso14443(c->arg[0]);\r
+                       break;\r
+               case CMD_READ_SRIX4K_TAG:\r
+                       ReadSRIX4KIso14443(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443a\r
+               case CMD_READER_ISO_14443a:\r
+                       ReaderIso14443a(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443a\r
+               case CMD_READER_MIFARE:\r
+                       ReaderMifare(c->arg[0]);\r
+                       break;\r
+#endif\r
+      \r
+#ifdef WITH_ISO14443b\r
+               case CMD_SNOOP_ISO_14443:\r
+                       SnoopIso14443();\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443a\r
+               case CMD_SNOOP_ISO_14443a:\r
+                       SnoopIso14443a();\r
+                       break;\r
+#endif\r
+\r
+               case CMD_SIMULATE_TAG_HF_LISTEN:\r
+                       SimulateTagHfListen();\r
+                       break;\r
+\r
+#ifdef WITH_ISO14443b\r
+               case CMD_SIMULATE_TAG_ISO_14443:\r
+                       SimulateIso14443Tag();\r
+                       break;\r
+#endif\r
+               \r
+#ifdef WITH_ISO14443a\r
+               case CMD_SIMULATE_TAG_ISO_14443a:\r
+                       SimulateIso14443aTag(c->arg[0], c->arg[1]);  // ## Simulate iso14443a tag - pass tag type & UID\r
+                       break;\r
+#endif\r
+\r
+               case CMD_MEASURE_ANTENNA_TUNING:\r
+                       MeasureAntennaTuning();\r
+                       break;\r
+\r
+               case CMD_LISTEN_READER_FIELD:\r
+                       ListenReaderField(c->arg[0]);\r
+                       break;\r
+\r
+#ifdef WITH_LF\r
+               case CMD_HID_DEMOD_FSK:\r
+                       CmdHIDdemodFSK(0, 0, 0, 1);                             // Demodulate HID tag\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+               case CMD_HID_SIM_TAG:\r
+                       CmdHIDsimTAG(c->arg[0], c->arg[1], 1);                                  // Simulate HID tag by ID\r
+                       break;\r
+#endif\r
+\r
+               case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control\r
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
+                       SpinDelay(200);\r
+                       LED_D_OFF(); // LED D indicates field ON or OFF\r
+                       break;\r
+\r
+#ifdef WITH_LF\r
+               case CMD_READ_TI_TYPE:\r
+                       ReadTItag();\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+               case CMD_WRITE_TI_TYPE:\r
+                       WriteTItag(c->arg[0],c->arg[1],c->arg[2]);\r
+                       break;\r
+#endif\r
+\r
+               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {\r
+                       UsbCommand n;\r
+                       if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r
+                               n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r
+                       } else {\r
+                               n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r
+                       }\r
+                       n.arg[0] = c->arg[0];\r
+                       memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD));\r
+                       UsbSendPacket((BYTE *)&n, sizeof(n));\r
+                       break;\r
+               }\r
+\r
+               case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r
+                       BYTE *b = (BYTE *)BigBuf;\r
+                       memcpy(b+c->arg[0], c->d.asBytes, 48);\r
+                       break;\r
+               }\r
+\r
+#ifdef WITH_LF\r
+               case CMD_SIMULATE_TAG_125K:\r
+                       LED_A_ON();\r
+                       SimulateTagLowFrequency(c->arg[0], 1);\r
+                       LED_A_OFF();\r
+                       break;\r
+#endif\r
+\r
+               case CMD_READ_MEM:\r
+                       ReadMem(c->arg[0]);\r
+                       break;\r
+\r
+               case CMD_SET_LF_DIVISOR:\r
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);\r
+                       break;\r
+\r
+               case CMD_SET_ADC_MUX:\r
+                       switch(c->arg[0]) {\r
+                               case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;\r
+                               case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;\r
+                               case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;\r
+                               case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;\r
+                       }\r
+                       break;\r
+\r
+               case CMD_VERSION:\r
+                       SendVersion();\r
+                       break;\r
+\r
+#ifdef WITH_LF\r
+               case CMD_LF_SIMULATE_BIDIR:\r
+                       SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_LCD\r
+               case CMD_LCD_RESET:\r
+                       LCDReset();\r
+                       break;\r
+               case CMD_LCD:\r
+                       LCDSend(c->arg[0]);\r
+                       break;\r
+#endif\r
+               case CMD_SETUP_WRITE:\r
+               case CMD_FINISH_WRITE:\r
+               case CMD_HARDWARE_RESET:\r
+                       USB_D_PLUS_PULLUP_OFF();\r
+                       SpinDelay(1000);\r
+                       SpinDelay(1000);\r
+                       AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;\r
+                       for(;;) {\r
+                               // We're going to reset, and the bootrom will take control.\r
+                       }\r
+                       break;\r
+\r
+               case CMD_START_FLASH:\r
+                       if(common_area.flags.bootrom_present) {\r
+                               common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;\r
+                       }\r
+                       USB_D_PLUS_PULLUP_OFF();\r
+                       AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;\r
+                       for(;;);\r
+                       break;\r
+                       \r
+               case CMD_DEVICE_INFO: {\r
+                       UsbCommand c;\r
+                       c.cmd = CMD_DEVICE_INFO;\r
+                       c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;\r
+                       if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;\r
+                       UsbSendPacket((BYTE*)&c, sizeof(c));\r
+               }\r
+                       break;\r
+               default:\r
+                       DbpString("unknown command");\r
+                       break;\r
+       }\r
+}\r
+\r
+void  __attribute__((noreturn)) AppMain(void)\r
+{\r
+       SpinDelay(100);\r
+       \r
+       if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {\r
+               /* Initialize common area */\r
+               memset(&common_area, 0, sizeof(common_area));\r
+               common_area.magic = COMMON_AREA_MAGIC;\r
+               common_area.version = 1;\r
+       }\r
+       common_area.flags.osimage_present = 1;\r
+\r
+       LED_D_OFF();\r
+       LED_C_OFF();\r
+       LED_B_OFF();\r
+       LED_A_OFF();\r
+\r
+       UsbStart();\r
+\r
+       // The FPGA gets its clock from us from PCK0 output, so set that up.\r
+       AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;\r
+       AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;\r
+       AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;\r
+       // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r
+       AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |\r
+               AT91C_PMC_PRES_CLK_4;\r
+       AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;\r
+\r
+       // Reset SPI\r
+       AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;\r
+       // Reset SSC\r
+       AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;\r
+\r
+       // Load the FPGA image, which we have stored in our flash.\r
+       FpgaDownloadAndGo();\r
+\r
+#ifdef WITH_LCD\r
+\r
+       LCDInit();\r
+\r
+       // test text on different colored backgrounds\r
+       LCDString(" The quick brown fox  ",     (char *)&FONT6x8,1,1+8*0,WHITE  ,BLACK );\r
+       LCDString("  jumped over the     ",     (char *)&FONT6x8,1,1+8*1,BLACK  ,WHITE );\r
+       LCDString("     lazy dog.        ",     (char *)&FONT6x8,1,1+8*2,YELLOW ,RED   );\r
+       LCDString(" AaBbCcDdEeFfGgHhIiJj ",     (char *)&FONT6x8,1,1+8*3,RED    ,GREEN );\r
+       LCDString(" KkLlMmNnOoPpQqRrSsTt ",     (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE  );\r
+       LCDString("UuVvWwXxYyZz0123456789",     (char *)&FONT6x8,1,1+8*5,BLUE   ,YELLOW);\r
+       LCDString("`-=[]_;',./~!@#$%^&*()",     (char *)&FONT6x8,1,1+8*6,BLACK  ,CYAN  );\r
+       LCDString("     _+{}|:\\\"<>?     ",(char *)&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);\r
+\r
+       // color bands\r
+       LCDFill(0, 1+8* 8, 132, 8, BLACK);\r
+       LCDFill(0, 1+8* 9, 132, 8, WHITE);\r
+       LCDFill(0, 1+8*10, 132, 8, RED);\r
+       LCDFill(0, 1+8*11, 132, 8, GREEN);\r
+       LCDFill(0, 1+8*12, 132, 8, BLUE);\r
+       LCDFill(0, 1+8*13, 132, 8, YELLOW);\r
+       LCDFill(0, 1+8*14, 132, 8, CYAN);\r
+       LCDFill(0, 1+8*15, 132, 8, MAGENTA);\r
+\r
+#endif\r
+\r
+       for(;;) {\r
+               UsbPoll(FALSE);\r
+               WDT_HIT();\r
+\r
+#ifdef WITH_LF\r
+               if (BUTTON_HELD(1000) > 0)\r
+                       SamyRun();\r
+#endif\r
+       }\r
+}\r
Impressum, Datenschutz