-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 14443 type A.\r
-//\r
-// Gerhard de Koning Gans - May 2008\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "../common/iso14443_crc.c"\r
-\r
-static BYTE *trace = (BYTE *) BigBuf;\r
-static int traceLen = 0;\r
-static int rsamples = 0;\r
-\r
-typedef enum {\r
- SEC_D = 1,\r
- SEC_E = 2,\r
- SEC_F = 3,\r
- SEC_X = 4,\r
- SEC_Y = 5,\r
- SEC_Z = 6\r
-} SecType;\r
-\r
-static const BYTE OddByteParity[256] = {\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1\r
-};\r
-\r
-// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT\r
-#define RECV_CMD_OFFSET 3032\r
-#define RECV_RES_OFFSET 3096\r
-#define DMA_BUFFER_OFFSET 3160\r
-#define DMA_BUFFER_SIZE 4096\r
-#define TRACE_LENGTH 3000\r
-\r
-//-----------------------------------------------------------------------------\r
-// Generate the parity value for a byte sequence\r
-// \r
-//-----------------------------------------------------------------------------\r
-DWORD GetParity(const BYTE * pbtCmd, int iLen)\r
-{\r
- int i;\r
- DWORD dwPar = 0;\r
- \r
- // Generate the encrypted data\r
- for (i = 0; i < iLen; i++) {\r
- // Save the encrypted parity bit\r
- dwPar |= ((OddByteParity[pbtCmd[i]]) << i);\r
- }\r
- return dwPar;\r
-}\r
-\r
-static void AppendCrc14443a(BYTE* data, int len)\r
-{\r
- ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);\r
-}\r
-\r
-BOOL LogTrace(const BYTE * btBytes, int iLen, int iSamples, DWORD dwParity, BOOL bReader)\r
-{\r
- // Return when trace is full\r
- if (traceLen >= TRACE_LENGTH) return FALSE;\r
- \r
- // Trace the random, i'm curious\r
- rsamples += iSamples;\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 24) & 0xff);\r
- if (!bReader) {\r
- trace[traceLen - 1] |= 0x80;\r
- }\r
- trace[traceLen++] = ((dwParity >> 0) & 0xff);\r
- trace[traceLen++] = ((dwParity >> 8) & 0xff);\r
- trace[traceLen++] = ((dwParity >> 16) & 0xff);\r
- trace[traceLen++] = ((dwParity >> 24) & 0xff);\r
- trace[traceLen++] = iLen;\r
- memcpy(trace + traceLen, btBytes, iLen);\r
- traceLen += iLen;\r
- return TRUE;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// The software UART that receives commands from the reader, and its state\r
-// variables.\r
-//-----------------------------------------------------------------------------\r
-static struct {\r
- enum {\r
- STATE_UNSYNCD,\r
- STATE_START_OF_COMMUNICATION,\r
- STATE_MILLER_X,\r
- STATE_MILLER_Y,\r
- STATE_MILLER_Z,\r
- STATE_ERROR_WAIT\r
- } state;\r
- WORD shiftReg;\r
- int bitCnt;\r
- int byteCnt;\r
- int byteCntMax;\r
- int posCnt;\r
- int syncBit;\r
- int parityBits;\r
- int samples;\r
- int highCnt;\r
- int bitBuffer;\r
- enum {\r
- DROP_NONE,\r
- DROP_FIRST_HALF,\r
- DROP_SECOND_HALF\r
- } drop;\r
- BYTE *output;\r
-} Uart;\r
-\r
-static BOOL MillerDecoding(int bit)\r
-{\r
- int error = 0;\r
- int bitright;\r
-\r
- if(!Uart.bitBuffer) {\r
- Uart.bitBuffer = bit ^ 0xFF0;\r
- return FALSE;\r
- }\r
- else {\r
- Uart.bitBuffer <<= 4;\r
- Uart.bitBuffer ^= bit;\r
- }\r
-\r
- BOOL EOC = FALSE;\r
-\r
- if(Uart.state != STATE_UNSYNCD) {\r
- Uart.posCnt++;\r
-\r
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {\r
- bit = 0x00;\r
- }\r
- else {\r
- bit = 0x01;\r
- }\r
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {\r
- bitright = 0x00;\r
- }\r
- else {\r
- bitright = 0x01;\r
- }\r
- if(bit != bitright) { bit = bitright; }\r
-\r
- if(Uart.posCnt == 1) {\r
- // measurement first half bitperiod\r
- if(!bit) {\r
- Uart.drop = DROP_FIRST_HALF;\r
- }\r
- }\r
- else {\r
- // measurement second half bitperiod\r
- if(!bit & (Uart.drop == DROP_NONE)) {\r
- Uart.drop = DROP_SECOND_HALF;\r
- }\r
- else if(!bit) {\r
- // measured a drop in first and second half\r
- // which should not be possible\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x01;\r
- }\r
-\r
- Uart.posCnt = 0;\r
-\r
- switch(Uart.state) {\r
- case STATE_START_OF_COMMUNICATION:\r
- Uart.shiftReg = 0;\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // error, should not happen in SOC\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x02;\r
- }\r
- else {\r
- // correct SOC\r
- Uart.state = STATE_MILLER_Z;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_Z:\r
- Uart.bitCnt++;\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // logic '0' followed by sequence Y\r
- // end of communication\r
- Uart.state = STATE_UNSYNCD;\r
- EOC = TRUE;\r
- }\r
- // if(Uart.drop == DROP_FIRST_HALF) {\r
- // Uart.state = STATE_MILLER_Z; stay the same\r
- // we see a logic '0' }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // we see a logic '1'\r
- Uart.shiftReg |= 0x100;\r
- Uart.state = STATE_MILLER_X;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_X:\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // sequence Y, we see a '0'\r
- Uart.state = STATE_MILLER_Y;\r
- Uart.bitCnt++;\r
- }\r
- if(Uart.drop == DROP_FIRST_HALF) {\r
- // Would be STATE_MILLER_Z\r
- // but Z does not follow X, so error\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x03;\r
- }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // We see a '1' and stay in state X\r
- Uart.shiftReg |= 0x100;\r
- Uart.bitCnt++;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_Y:\r
- Uart.bitCnt++;\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // logic '0' followed by sequence Y\r
- // end of communication\r
- Uart.state = STATE_UNSYNCD;\r
- EOC = TRUE;\r
- }\r
- if(Uart.drop == DROP_FIRST_HALF) {\r
- // we see a '0'\r
- Uart.state = STATE_MILLER_Z;\r
- }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // We see a '1' and go to state X\r
- Uart.shiftReg |= 0x100;\r
- Uart.state = STATE_MILLER_X;\r
- }\r
- break;\r
-\r
- case STATE_ERROR_WAIT:\r
- // That went wrong. Now wait for at least two bit periods\r
- // and try to sync again\r
- if(Uart.drop == DROP_NONE) {\r
- Uart.highCnt = 6;\r
- Uart.state = STATE_UNSYNCD;\r
- }\r
- break;\r
-\r
- default:\r
- Uart.state = STATE_UNSYNCD;\r
- Uart.highCnt = 0;\r
- break;\r
- }\r
-\r
- Uart.drop = DROP_NONE;\r
-\r
- // should have received at least one whole byte...\r
- if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {\r
- return TRUE;\r
- }\r
-\r
- if(Uart.bitCnt == 9) {\r
- Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);\r
- Uart.byteCnt++;\r
-\r
- Uart.parityBits <<= 1;\r
- Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);\r
-\r
- if(EOC) {\r
- // when End of Communication received and\r
- // all data bits processed..\r
- return TRUE;\r
- }\r
- Uart.bitCnt = 0;\r
- }\r
-\r
- /*if(error) {\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = error & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- return TRUE;\r
- }*/\r
- }\r
-\r
- }\r
- else {\r
- bit = Uart.bitBuffer & 0xf0;\r
- bit >>= 4;\r
- bit ^= 0x0F;\r
- if(bit) {\r
- // should have been high or at least (4 * 128) / fc\r
- // according to ISO this should be at least (9 * 128 + 20) / fc\r
- if(Uart.highCnt == 8) {\r
- // we went low, so this could be start of communication\r
- // it turns out to be safer to choose a less significant\r
- // syncbit... so we check whether the neighbour also represents the drop\r
- Uart.posCnt = 1; // apparently we are busy with our first half bit period\r
- Uart.syncBit = bit & 8;\r
- Uart.samples = 3;\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }\r
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }\r
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;\r
- if(Uart.syncBit & (Uart.bitBuffer & 8)) {\r
- Uart.syncBit = 8;\r
-\r
- // the first half bit period is expected in next sample\r
- Uart.posCnt = 0;\r
- Uart.samples = 3;\r
- }\r
- }\r
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }\r
-\r
- Uart.syncBit <<= 4;\r
- Uart.state = STATE_START_OF_COMMUNICATION;\r
- Uart.drop = DROP_FIRST_HALF;\r
- Uart.bitCnt = 0;\r
- Uart.byteCnt = 0;\r
- Uart.parityBits = 0;\r
- error = 0;\r
- }\r
- else {\r
- Uart.highCnt = 0;\r
- }\r
- }\r
- else {\r
- if(Uart.highCnt < 8) {\r
- Uart.highCnt++;\r
- }\r
- }\r
- }\r
-\r
- return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// ISO 14443 Type A - Manchester\r
-//=============================================================================\r
-\r
-static struct {\r
- enum {\r
- DEMOD_UNSYNCD,\r
- DEMOD_START_OF_COMMUNICATION,\r
- DEMOD_MANCHESTER_D,\r
- DEMOD_MANCHESTER_E,\r
- DEMOD_MANCHESTER_F,\r
- DEMOD_ERROR_WAIT\r
- } state;\r
- int bitCount;\r
- int posCount;\r
- int syncBit;\r
- int parityBits;\r
- WORD shiftReg;\r
- int buffer;\r
- int buff;\r
- int samples;\r
- int len;\r
- enum {\r
- SUB_NONE,\r
- SUB_FIRST_HALF,\r
- SUB_SECOND_HALF\r
- } sub;\r
- BYTE *output;\r
-} Demod;\r
-\r
-static BOOL ManchesterDecoding(int v)\r
-{\r
- int bit;\r
- int modulation;\r
- int error = 0;\r
-\r
- if(!Demod.buff) {\r
- Demod.buff = 1;\r
- Demod.buffer = v;\r
- return FALSE;\r
- }\r
- else {\r
- bit = Demod.buffer;\r
- Demod.buffer = v;\r
- }\r
-\r
- if(Demod.state==DEMOD_UNSYNCD) {\r
- Demod.output[Demod.len] = 0xfa;\r
- Demod.syncBit = 0;\r
- //Demod.samples = 0;\r
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part\r
- if(bit & 0x08) { Demod.syncBit = 0x08; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x04) { Demod.syncBit = 0x04; }\r
- }\r
- else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x02) { Demod.syncBit = 0x02; }\r
- }\r
- else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
- if(Demod.syncBit & (Demod.buffer & 0x08)) {\r
- Demod.syncBit = 0x08;\r
-\r
- // The first half bitperiod is expected in next sample\r
- Demod.posCount = 0;\r
- Demod.output[Demod.len] = 0xfb;\r
- }\r
- }\r
- else if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
- if(Demod.syncBit) {\r
- Demod.len = 0;\r
- Demod.state = DEMOD_START_OF_COMMUNICATION;\r
- Demod.sub = SUB_FIRST_HALF;\r
- Demod.bitCount = 0;\r
- Demod.shiftReg = 0;\r
- Demod.parityBits = 0;\r
- Demod.samples = 0;\r
- if(Demod.posCount) {\r
- switch(Demod.syncBit) {\r
- case 0x08: Demod.samples = 3; break;\r
- case 0x04: Demod.samples = 2; break;\r
- case 0x02: Demod.samples = 1; break;\r
- case 0x01: Demod.samples = 0; break;\r
- }\r
- }\r
- error = 0;\r
- }\r
- }\r
- else {\r
- //modulation = bit & Demod.syncBit;\r
- modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;\r
-\r
- Demod.samples += 4;\r
-\r
- if(Demod.posCount==0) {\r
- Demod.posCount = 1;\r
- if(modulation) {\r
- Demod.sub = SUB_FIRST_HALF;\r
- }\r
- else {\r
- Demod.sub = SUB_NONE;\r
- }\r
- }\r
- else {\r
- Demod.posCount = 0;\r
- if(modulation && (Demod.sub == SUB_FIRST_HALF)) {\r
- if(Demod.state!=DEMOD_ERROR_WAIT) {\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- Demod.output[Demod.len] = 0xaa;\r
- error = 0x01;\r
- }\r
- }\r
- else if(modulation) {\r
- Demod.sub = SUB_SECOND_HALF;\r
- }\r
-\r
- switch(Demod.state) {\r
- case DEMOD_START_OF_COMMUNICATION:\r
- if(Demod.sub == SUB_FIRST_HALF) {\r
- Demod.state = DEMOD_MANCHESTER_D;\r
- }\r
- else {\r
- Demod.output[Demod.len] = 0xab;\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- error = 0x02;\r
- }\r
- break;\r
-\r
- case DEMOD_MANCHESTER_D:\r
- case DEMOD_MANCHESTER_E:\r
- if(Demod.sub == SUB_FIRST_HALF) {\r
- Demod.bitCount++;\r
- Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;\r
- Demod.state = DEMOD_MANCHESTER_D;\r
- }\r
- else if(Demod.sub == SUB_SECOND_HALF) {\r
- Demod.bitCount++;\r
- Demod.shiftReg >>= 1;\r
- Demod.state = DEMOD_MANCHESTER_E;\r
- }\r
- else {\r
- Demod.state = DEMOD_MANCHESTER_F;\r
- }\r
- break;\r
-\r
- case DEMOD_MANCHESTER_F:\r
- // Tag response does not need to be a complete byte!\r
- if(Demod.len > 0 || Demod.bitCount > 0) {\r
- if(Demod.bitCount > 0) {\r
- Demod.shiftReg >>= (9 - Demod.bitCount);\r
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
- Demod.len++;\r
- // No parity bit, so just shift a 0\r
- Demod.parityBits <<= 1;\r
- }\r
-\r
- Demod.state = DEMOD_UNSYNCD;\r
- return TRUE;\r
- }\r
- else {\r
- Demod.output[Demod.len] = 0xad;\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- error = 0x03;\r
- }\r
- break;\r
-\r
- case DEMOD_ERROR_WAIT:\r
- Demod.state = DEMOD_UNSYNCD;\r
- break;\r
-\r
- default:\r
- Demod.output[Demod.len] = 0xdd;\r
- Demod.state = DEMOD_UNSYNCD;\r
- break;\r
- }\r
-\r
- if(Demod.bitCount>=9) {\r
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
- Demod.len++;\r
-\r
- Demod.parityBits <<= 1;\r
- Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);\r
-\r
- Demod.bitCount = 0;\r
- Demod.shiftReg = 0;\r
- }\r
-\r
- /*if(error) {\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- Demod.output[Demod.len] = error & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- Demod.output[Demod.len] = bit & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = Demod.buffer & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = Demod.syncBit & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- return TRUE;\r
- }*/\r
-\r
- }\r
-\r
- } // end (state != UNSYNCED)\r
-\r
- return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// Finally, a `sniffer' for ISO 14443 Type A\r
-// Both sides of communication!\r
-//=============================================================================\r
-\r
-//-----------------------------------------------------------------------------\r
-// Record the sequence of commands sent by the reader to the tag, with\r
-// triggering so that we start recording at the point that the tag is moved\r
-// near the reader.\r
-//-----------------------------------------------------------------------------\r
-void SnoopIso14443a(void)\r
-{\r
-// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values\r
-// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values\r
-// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values\r
-// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values\r
-// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values\r
-\r
- // We won't start recording the frames that we acquire until we trigger;\r
- // a good trigger condition to get started is probably when we see a\r
- // response from the tag.\r
- BOOL triggered = TRUE; // FALSE to wait first for card\r
-\r
- // The command (reader -> tag) that we're receiving.\r
- // The length of a received command will in most cases be no more than 18 bytes.\r
- // So 32 should be enough!\r
- BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);\r
- // The response (tag -> reader) that we're receiving.\r
- BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);\r
-\r
- // As we receive stuff, we copy it from receivedCmd or receivedResponse\r
- // into trace, along with its length and other annotations.\r
- //BYTE *trace = (BYTE *)BigBuf;\r
- //int traceLen = 0;\r
-\r
- // The DMA buffer, used to stream samples from the FPGA\r
- SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;\r
- int lastRxCounter;\r
- SBYTE *upTo;\r
- int smpl;\r
- int maxBehindBy = 0;\r
-\r
- // Count of samples received so far, so that we can include timing\r
- // information in the trace buffer.\r
- int samples = 0;\r
- int rsamples = 0;\r
-\r
- memset(trace, 0x44, RECV_CMD_OFFSET);\r
-\r
- // Set up the demodulator for tag -> reader responses.\r
- Demod.output = receivedResponse;\r
- Demod.len = 0;\r
- Demod.state = DEMOD_UNSYNCD;\r
-\r
- // And the reader -> tag commands\r
- memset(&Uart, 0, sizeof(Uart));\r
- Uart.output = receivedCmd;\r
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////\r
- Uart.state = STATE_UNSYNCD;\r
-\r
- // And put the FPGA in the appropriate mode\r
- // Signal field is off with the appropriate LED\r
- LED_D_OFF();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
- // Setup for the DMA.\r
- FpgaSetupSsc();\r
- upTo = dmaBuf;\r
- lastRxCounter = DMA_BUFFER_SIZE;\r
- FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);\r
-\r
- LED_A_ON();\r
-\r
- // And now we loop, receiving samples.\r
- for(;;) {\r
- WDT_HIT();\r
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &\r
- (DMA_BUFFER_SIZE-1);\r
- if(behindBy > maxBehindBy) {\r
- maxBehindBy = behindBy;\r
- if(behindBy > 400) {\r
- DbpString("blew circular buffer!");\r
- goto done;\r
- }\r
- }\r
- if(behindBy < 1) continue;\r
-\r
- smpl = upTo[0];\r
- upTo++;\r
- lastRxCounter -= 1;\r
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {\r
- upTo -= DMA_BUFFER_SIZE;\r
- lastRxCounter += DMA_BUFFER_SIZE;\r
- AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo;\r
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;\r
- }\r
-\r
- samples += 4;\r
-#define HANDLE_BIT_IF_BODY \\r
- LED_C_ON(); \\r
- if(triggered) { \\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 24) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \\r
- trace[traceLen++] = Uart.byteCnt; \\r
- memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \\r
- traceLen += Uart.byteCnt; \\r
- if(traceLen > TRACE_LENGTH) break; \\r
- } \\r
- /* And ready to receive another command. */ \\r
- Uart.state = STATE_UNSYNCD; \\r
- /* And also reset the demod code, which might have been */ \\r
- /* false-triggered by the commands from the reader. */ \\r
- Demod.state = DEMOD_UNSYNCD; \\r
- LED_B_OFF(); \\r
-\r
- if(MillerDecoding((smpl & 0xF0) >> 4)) {\r
- rsamples = samples - Uart.samples;\r
- HANDLE_BIT_IF_BODY\r
- }\r
- if(ManchesterDecoding(smpl & 0x0F)) {\r
- rsamples = samples - Demod.samples;\r
- LED_B_ON();\r
-\r
- // timestamp, as a count of samples\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- // length\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedResponse, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) break;\r
-\r
- triggered = TRUE;\r
-\r
- // And ready to receive another response.\r
- memset(&Demod, 0, sizeof(Demod));\r
- Demod.output = receivedResponse;\r
- Demod.state = DEMOD_UNSYNCD;\r
- LED_C_OFF();\r
- }\r
-\r
- if(BUTTON_PRESS()) {\r
- DbpString("cancelled_a");\r
- goto done;\r
- }\r
- }\r
-\r
- DbpString("COMMAND FINISHED");\r
-\r
- DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
- DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
-\r
-done:\r
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;\r
- DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
- DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
-\r
-// Prepare communication bits to send to FPGA\r
-void Sequence(SecType seq)\r
-{\r
- ToSendMax++;\r
- switch(seq) {\r
- // CARD TO READER\r
- case SEC_D:\r
- // Sequence D: 11110000\r
- // modulation with subcarrier during first half\r
- ToSend[ToSendMax] = 0xf0;\r
- break;\r
- case SEC_E:\r
- // Sequence E: 00001111\r
- // modulation with subcarrier during second half\r
- ToSend[ToSendMax] = 0x0f;\r
- break;\r
- case SEC_F:\r
- // Sequence F: 00000000\r
- // no modulation with subcarrier\r
- ToSend[ToSendMax] = 0x00;\r
- break;\r
- // READER TO CARD\r
- case SEC_X:\r
- // Sequence X: 00001100\r
- // drop after half a period\r
- ToSend[ToSendMax] = 0x0c;\r
- break;\r
- case SEC_Y:\r
- default:\r
- // Sequence Y: 00000000\r
- // no drop\r
- ToSend[ToSendMax] = 0x00;\r
- break;\r
- case SEC_Z:\r
- // Sequence Z: 11000000\r
- // drop at start\r
- ToSend[ToSendMax] = 0xc0;\r
- break;\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare tag messages\r
-//-----------------------------------------------------------------------------\r
-static void CodeIso14443aAsTag(const BYTE *cmd, int len)\r
-{\r
- int i;\r
- int oddparity;\r
-\r
- ToSendReset();\r
-\r
- // Correction bit, might be removed when not needed\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1); // 1\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
-\r
- // Send startbit\r
- Sequence(SEC_D);\r
-\r
- for(i = 0; i < len; i++) {\r
- int j;\r
- BYTE b = cmd[i];\r
-\r
- // Data bits\r
- oddparity = 0x01;\r
- for(j = 0; j < 8; j++) {\r
- oddparity ^= (b & 1);\r
- if(b & 1) {\r
- Sequence(SEC_D);\r
- } else {\r
- Sequence(SEC_E);\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // Parity bit\r
- if(oddparity) {\r
- Sequence(SEC_D);\r
- } else {\r
- Sequence(SEC_E);\r
- }\r
- }\r
-\r
- // Send stopbit\r
- Sequence(SEC_F);\r
-\r
- // Flush the buffer in FPGA!!\r
- for(i = 0; i < 5; i++) {\r
- Sequence(SEC_F);\r
- }\r
-\r
- // Convert from last byte pos to length\r
- ToSendMax++;\r
-\r
- // Add a few more for slop\r
- ToSend[ToSendMax++] = 0x00;\r
- ToSend[ToSendMax++] = 0x00;\r
- //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4\r
-//-----------------------------------------------------------------------------\r
-static void CodeStrangeAnswer()\r
-{\r
- int i;\r
-\r
- ToSendReset();\r
-\r
- // Correction bit, might be removed when not needed\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1); // 1\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
-\r
- // Send startbit\r
- Sequence(SEC_D);\r
-\r
- // 0\r
- Sequence(SEC_E);\r
-\r
- // 0\r
- Sequence(SEC_E);\r
-\r
- // 1\r
- Sequence(SEC_D);\r
-\r
- // Send stopbit\r
- Sequence(SEC_F);\r
-\r
- // Flush the buffer in FPGA!!\r
- for(i = 0; i < 5; i++) {\r
- Sequence(SEC_F);\r
- }\r
-\r
- // Convert from last byte pos to length\r
- ToSendMax++;\r
-\r
- // Add a few more for slop\r
- ToSend[ToSendMax++] = 0x00;\r
- ToSend[ToSendMax++] = 0x00;\r
- //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait for commands from reader\r
-// Stop when button is pressed\r
-// Or return TRUE when command is captured\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)\r
-{\r
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r
- // only, since we are receiving, not transmitting).\r
- // Signal field is off with the appropriate LED\r
- LED_D_OFF();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);\r
-\r
- // Now run a `software UART' on the stream of incoming samples.\r
- Uart.output = received;\r
- Uart.byteCntMax = maxLen;\r
- Uart.state = STATE_UNSYNCD;\r
-\r
- for(;;) {\r
- WDT_HIT();\r
-\r
- if(BUTTON_PRESS()) return FALSE;\r
-\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x00;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- if(MillerDecoding((b & 0xf0) >> 4)) {\r
- *len = Uart.byteCnt;\r
- return TRUE;\r
- }\r
- if(MillerDecoding(b & 0x0f)) {\r
- *len = Uart.byteCnt;\r
- return TRUE;\r
- }\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Main loop of simulated tag: receive commands from reader, decide what\r
-// response to send, and send it.\r
-//-----------------------------------------------------------------------------\r
-void SimulateIso14443aTag(int tagType, int TagUid)\r
-{\r
- // This function contains the tag emulation\r
-\r
- // Prepare protocol messages\r
- // static const BYTE cmd1[] = { 0x26 };\r
-// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg\r
-//\r
- static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me\r
-// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me\r
-\r
- // UID response\r
- // static const BYTE cmd2[] = { 0x93, 0x20 };\r
- //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg\r
-\r
-\r
-\r
-// my desfire\r
- static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips\r
-\r
-\r
-// When reader selects us during cascade1 it will send cmd3\r
-//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)\r
-BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);\r
-\r
-// send cascade2 2nd half of UID\r
-static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck\r
-// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID\r
-\r
-\r
-// When reader selects us during cascade2 it will send cmd3a\r
-//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)\r
-BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);\r
-\r
- static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce\r
-\r
- BYTE *resp;\r
- int respLen;\r
-\r
- // Longest possible response will be 16 bytes + 2 CRC = 18 bytes\r
- // This will need\r
- // 144 data bits (18 * 8)\r
- // 18 parity bits\r
- // 2 Start and stop\r
- // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)\r
- // 1 just for the case\r
- // ----------- +\r
- // 166\r
- //\r
- // 166 bytes, since every bit that needs to be send costs us a byte\r
- //\r
-\r
-\r
- // Respond with card type\r
- BYTE *resp1 = (((BYTE *)BigBuf) + 800);\r
- int resp1Len;\r
-\r
- // Anticollision cascade1 - respond with uid\r
- BYTE *resp2 = (((BYTE *)BigBuf) + 970);\r
- int resp2Len;\r
-\r
- // Anticollision cascade2 - respond with 2nd half of uid if asked\r
- // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88\r
- BYTE *resp2a = (((BYTE *)BigBuf) + 1140);\r
- int resp2aLen;\r
-\r
- // Acknowledge select - cascade 1\r
- BYTE *resp3 = (((BYTE *)BigBuf) + 1310);\r
- int resp3Len;\r
-\r
- // Acknowledge select - cascade 2\r
- BYTE *resp3a = (((BYTE *)BigBuf) + 1480);\r
- int resp3aLen;\r
-\r
- // Response to a read request - not implemented atm\r
- BYTE *resp4 = (((BYTE *)BigBuf) + 1550);\r
- int resp4Len;\r
-\r
- // Authenticate response - nonce\r
- BYTE *resp5 = (((BYTE *)BigBuf) + 1720);\r
- int resp5Len;\r
-\r
- BYTE *receivedCmd = (BYTE *)BigBuf;\r
- int len;\r
-\r
- int i;\r
- int u;\r
- BYTE b;\r
-\r
- // To control where we are in the protocol\r
- int order = 0;\r
- int lastorder;\r
-\r
- // Just to allow some checks\r
- int happened = 0;\r
- int happened2 = 0;\r
-\r
- int cmdsRecvd = 0;\r
-\r
- BOOL fdt_indicator;\r
-\r
- memset(receivedCmd, 0x44, 400);\r
-\r
- // Prepare the responses of the anticollision phase\r
- // there will be not enough time to do this at the moment the reader sends it REQA\r
-\r
- // Answer to request\r
- CodeIso14443aAsTag(response1, sizeof(response1));\r
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;\r
-\r
- // Send our UID (cascade 1)\r
- CodeIso14443aAsTag(response2, sizeof(response2));\r
- memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;\r
-\r
- // Answer to select (cascade1)\r
- CodeIso14443aAsTag(response3, sizeof(response3));\r
- memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;\r
-\r
- // Send the cascade 2 2nd part of the uid\r
- CodeIso14443aAsTag(response2a, sizeof(response2a));\r
- memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;\r
-\r
- // Answer to select (cascade 2)\r
- CodeIso14443aAsTag(response3a, sizeof(response3a));\r
- memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;\r
-\r
- // Strange answer is an example of rare message size (3 bits)\r
- CodeStrangeAnswer();\r
- memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;\r
-\r
- // Authentication answer (random nonce)\r
- CodeIso14443aAsTag(response5, sizeof(response5));\r
- memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;\r
-\r
- // We need to listen to the high-frequency, peak-detected path.\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- cmdsRecvd = 0;\r
-\r
- LED_A_ON();\r
- for(;;) {\r
-\r
- if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {\r
- DbpString("button press");\r
- break;\r
- }\r
- // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated\r
- // Okay, look at the command now.\r
- lastorder = order;\r
- i = 1; // first byte transmitted\r
- if(receivedCmd[0] == 0x26) {\r
- // Received a REQUEST\r
- resp = resp1; respLen = resp1Len; order = 1;\r
- //DbpString("Hello request from reader:");\r
- } else if(receivedCmd[0] == 0x52) {\r
- // Received a WAKEUP\r
- resp = resp1; respLen = resp1Len; order = 6;\r
-// //DbpString("Wakeup request from reader:");\r
-\r
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision\r
- // Received request for UID (cascade 1)\r
- resp = resp2; respLen = resp2Len; order = 2;\r
-// DbpString("UID (cascade 1) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision\r
- // Received request for UID (cascade 2)\r
- resp = resp2a; respLen = resp2aLen; order = 20;\r
-// DbpString("UID (cascade 2) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select\r
- // Received a SELECT\r
- resp = resp3; respLen = resp3Len; order = 3;\r
-// DbpString("Select (cascade 1) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select\r
- // Received a SELECT\r
- resp = resp3a; respLen = resp3aLen; order = 30;\r
-// DbpString("Select (cascade 2) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[0] == 0x30) {\r
- // Received a READ\r
- resp = resp4; respLen = resp4Len; order = 4; // Do nothing\r
- DbpString("Read request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[0] == 0x50) {\r
- // Received a HALT\r
- resp = resp1; respLen = 0; order = 5; // Do nothing\r
- DbpString("Reader requested we HALT!:");\r
-\r
- } else if(receivedCmd[0] == 0x60) {\r
- // Received an authentication request\r
- resp = resp5; respLen = resp5Len; order = 7;\r
- DbpString("Authenticate request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
- } else if(receivedCmd[0] == 0xE0) {\r
- // Received a RATS request\r
- resp = resp1; respLen = 0;order = 70;\r
- DbpString("RATS request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
- } else {\r
- // Never seen this command before\r
- DbpString("Unknown command received from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
- DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);\r
- DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);\r
-\r
- // Do not respond\r
- resp = resp1; respLen = 0; order = 0;\r
- }\r
-\r
- // Count number of wakeups received after a halt\r
- if(order == 6 && lastorder == 5) { happened++; }\r
-\r
- // Count number of other messages after a halt\r
- if(order != 6 && lastorder == 5) { happened2++; }\r
-\r
- // Look at last parity bit to determine timing of answer\r
- if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {\r
- // 1236, so correction bit needed\r
- i = 0;\r
- }\r
-\r
- memset(receivedCmd, 0x44, 32);\r
-\r
- if(cmdsRecvd > 999) {\r
- DbpString("1000 commands later...");\r
- break;\r
- }\r
- else {\r
- cmdsRecvd++;\r
- }\r
-\r
- if(respLen <= 0) continue;\r
-\r
- // Modulate Manchester\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);\r
- AT91C_BASE_SSC->SSC_THR = 0x00;\r
- FpgaSetupSsc();\r
-\r
- // ### Transmit the response ###\r
- u = 0;\r
- b = 0x00;\r
- fdt_indicator = FALSE;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- (void)b;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- if(i > respLen) {\r
- b = 0x00;\r
- u++;\r
- } else {\r
- b = resp[i];\r
- i++;\r
- }\r
- AT91C_BASE_SSC->SSC_THR = b;\r
-\r
- if(u > 4) {\r
- break;\r
- }\r
- }\r
- if(BUTTON_PRESS()) {\r
- break;\r
- }\r
- }\r
-\r
- }\r
-\r
- DbpIntegers(happened, happened2, cmdsRecvd);\r
- LED_A_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
- \r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
- \r
- if (wait)\r
- if(*wait < 10)\r
- *wait = 10;\r
- \r
- for(c = 0; c < *wait;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!\r
- c++;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- \r
- c = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- if (samples) *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// To generate an arbitrary stream from reader\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ArbitraryFromReader(const BYTE *cmd, int parity, int len)\r
-{\r
- int i;\r
- int j;\r
- int last;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- for(i = 0; i < len; i++) {\r
- // Data bits\r
- b = cmd[i];\r
- for(j = 0; j < 8; j++) {\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
-\r
- }\r
-\r
- // Predefined parity bit, the flipper flips when needed, because of flips in byte sent\r
- if(((parity >> (len - i - 1)) & 1)) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Code a 7-bit command without parity bit\r
-// This is especially for 0x26 and 0x52 (REQA and WUPA)\r
-//-----------------------------------------------------------------------------\r
-void ShortFrameFromReader(const BYTE bt)\r
-{\r
- int j;\r
- int last;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- b = bt;\r
- for(j = 0; j < 7; j++) {\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare reader command to send to FPGA\r
-// \r
-//-----------------------------------------------------------------------------\r
-void CodeIso14443aAsReaderPar(const BYTE * cmd, int len, DWORD dwParity)\r
-{\r
- int i, j;\r
- int last;\r
- BYTE b;\r
- \r
- ToSendReset();\r
- \r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
- \r
- // Generate send structure for the data bits\r
- for (i = 0; i < len; i++) {\r
- // Get the current byte to send\r
- b = cmd[i];\r
- \r
- for (j = 0; j < 8; j++) {\r
- if (b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if (last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- } else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
- }\r
- \r
- // Get the parity bit\r
- if ((dwParity >> i) & 0x01) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if (last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- } else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- }\r
- \r
- // End of Communication\r
- if (last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- } else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- \r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- \r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait a certain time for tag response\r
-// If a response is captured return TRUE\r
-// If it takes to long return FALSE\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer\r
-{\r
- // buffer needs to be 512 bytes\r
- int c;\r
-\r
- // Set FPGA mode to "reader listen mode", no modulation (listen\r
- // only, since we are receiving, not transmitting).\r
- // Signal field is on with the appropriate LED\r
- LED_D_ON();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);\r
-\r
- // Now get the answer from the card\r
- Demod.output = receivedResponse;\r
- Demod.len = 0;\r
- Demod.state = DEMOD_UNSYNCD;\r
-\r
- BYTE b;\r
- if (elapsed) *elapsed = 0;\r
-\r
- c = 0;\r
- for(;;) {\r
- WDT_HIT();\r
-\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!\r
- if (elapsed) (*elapsed)++;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- if(c < 512) { c++; } else { return FALSE; }\r
- b = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- if(ManchesterDecoding((b & 0xf0) >> 4)) {\r
- *samples = ((c - 1) << 3) + 4;\r
- return TRUE;\r
- }\r
- if(ManchesterDecoding(b & 0x0f)) {\r
- *samples = c << 3;\r
- return TRUE;\r
- }\r
- }\r
- }\r
-}\r
-\r
-void ReaderTransmitShort(const BYTE* bt)\r
-{\r
- int wait = 0;\r
- int samples = 0;\r
-\r
- ShortFrameFromReader(*bt);\r
- \r
- // Select the card\r
- TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); \r
- \r
- // Store reader command in buffer\r
- LogTrace(bt,1,0,GetParity(bt,1),TRUE);\r
-}\r
-\r
-void ReaderTransmitPar(BYTE* frame, int len, DWORD par)\r
-{\r
- int wait = 0;\r
- int samples = 0;\r
- \r
- // This is tied to other size changes\r
- // BYTE* frame_addr = ((BYTE*)BigBuf) + 2024; \r
- \r
- CodeIso14443aAsReaderPar(frame,len,par);\r
- \r
- // Select the card\r
- TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); \r
- \r
- // Store reader command in buffer\r
- LogTrace(frame,len,0,par,TRUE);\r
-}\r
-\r
-\r
-void ReaderTransmit(BYTE* frame, int len)\r
-{\r
- // Generate parity and redirect\r
- ReaderTransmitPar(frame,len,GetParity(frame,len));\r
-}\r
-\r
-BOOL ReaderReceive(BYTE* receivedAnswer)\r
-{\r
- int samples = 0;\r
- if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE;\r
- LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);\r
- return TRUE;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ISO 14443a tag. Send out commands and store answers.\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso14443a(DWORD parameter)\r
-{\r
- // Anticollision\r
- BYTE wupa[] = { 0x52 };\r
- BYTE sel_all[] = { 0x93,0x20 };\r
- BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };\r
- BYTE sel_all_c2[] = { 0x95,0x20 };\r
- BYTE sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };\r
-\r
- // Mifare AUTH\r
- BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };\r
-// BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };\r
- \r
- BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes\r
- traceLen = 0;\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- // Signal field is off with the appropriate LED\r
- LED_D_OFF();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Now give it time to spin up.\r
- // Signal field is on with the appropriate LED\r
- LED_D_ON();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
- SpinDelay(200);\r
-\r
- LED_A_ON();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
-\r
- while(traceLen < TRACE_LENGTH)\r
- {\r
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field\r
- ReaderTransmitShort(wupa);\r
- \r
- // Test if the action was cancelled\r
- if(BUTTON_PRESS()) {\r
- break;\r
- }\r
- \r
- // Receive the ATQA\r
- if (!ReaderReceive(receivedAnswer)) continue;\r
-\r
- // Transmit SELECT_ALL\r
- ReaderTransmit(sel_all,sizeof(sel_all));\r
-\r
- // Receive the UID\r
- if (!ReaderReceive(receivedAnswer)) continue;\r
- \r
- // Construct SELECT UID command\r
- // First copy the 5 bytes (Mifare Classic) after the 93 70\r
- memcpy(sel_uid+2,receivedAnswer,5);\r
- // Secondly compute the two CRC bytes at the end\r
- AppendCrc14443a(sel_uid,7);\r
-\r
- // Transmit SELECT_UID\r
- ReaderTransmit(sel_uid,sizeof(sel_uid));\r
- \r
- // Receive the SAK\r
- if (!ReaderReceive(receivedAnswer)) continue;\r
-\r
- // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in\r
- // which case we need to make a cascade 2 request and select - this is a long UID\r
- // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. \r
- if (receivedAnswer[0] &= 0x04)\r
- {\r
- // Transmit SELECT_ALL\r
- ReaderTransmit(sel_all_c2,sizeof(sel_all_c2));\r
- \r
- // Receive the UID\r
- if (!ReaderReceive(receivedAnswer)) continue;\r
- \r
- // Construct SELECT UID command\r
- memcpy(sel_uid_c2+2,receivedAnswer,5);\r
- // Secondly compute the two CRC bytes at the end\r
- AppendCrc14443a(sel_uid_c2,7);\r
- \r
- // Transmit SELECT_UID\r
- ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2));\r
- \r
- // Receive the SAK\r
- if (!ReaderReceive(receivedAnswer)) continue;\r
- }\r
-\r
- // Transmit MIFARE_CLASSIC_AUTH\r
- ReaderTransmit(mf_auth,sizeof(mf_auth));\r
-\r
- // Receive the (16 bit) "random" nonce\r
- if (!ReaderReceive(receivedAnswer)) continue;\r
- }\r
-\r
- // Thats it...\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- LEDsoff();\r
- DbpIntegers(rsamples, 0xCC, 0xCC);\r
- DbpString("ready..");\r
-}\r
+ //-----------------------------------------------------------------------------
+// Merlok - June 2011, 2012
+// Gerhard de Koning Gans - May 2008
+// Hagen Fritsch - June 2010
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
+//-----------------------------------------------------------------------------
+#include "iso14443a.h"
+
+static uint32_t iso14a_timeout;
+int rsamples = 0;
+uint8_t trigger = 0;
+// the block number for the ISO14443-4 PCB
+static uint8_t iso14_pcb_blocknum = 0;
+
+static uint8_t* free_buffer_pointer;
+
+//
+// ISO14443 timing:
+//
+// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
+#define REQUEST_GUARD_TIME (7000/16 + 1)
+// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
+#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
+// bool LastCommandWasRequest = FALSE;
+
+//
+// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
+//
+// When the PM acts as reader and is receiving tag data, it takes
+// 3 ticks delay in the AD converter
+// 16 ticks until the modulation detector completes and sets curbit
+// 8 ticks until bit_to_arm is assigned from curbit
+// 8*16 ticks for the transfer from FPGA to ARM
+// 4*16 ticks until we measure the time
+// - 8*16 ticks because we measure the time of the previous transfer
+#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
+
+// When the PM acts as a reader and is sending, it takes
+// 4*16 ticks until we can write data to the sending hold register
+// 8*16 ticks until the SHR is transferred to the Sending Shift Register
+// 8 ticks until the first transfer starts
+// 8 ticks later the FPGA samples the data
+// 1 tick to assign mod_sig_coil
+#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
+
+// When the PM acts as tag and is receiving it takes
+// 2 ticks delay in the RF part (for the first falling edge),
+// 3 ticks for the A/D conversion,
+// 8 ticks on average until the start of the SSC transfer,
+// 8 ticks until the SSC samples the first data
+// 7*16 ticks to complete the transfer from FPGA to ARM
+// 8 ticks until the next ssp_clk rising edge
+// 4*16 ticks until we measure the time
+// - 8*16 ticks because we measure the time of the previous transfer
+#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
+
+// The FPGA will report its internal sending delay in
+uint16_t FpgaSendQueueDelay;
+// the 5 first bits are the number of bits buffered in mod_sig_buf
+// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
+#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
+
+// When the PM acts as tag and is sending, it takes
+// 4*16 ticks until we can write data to the sending hold register
+// 8*16 ticks until the SHR is transferred to the Sending Shift Register
+// 8 ticks until the first transfer starts
+// 8 ticks later the FPGA samples the data
+// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
+// + 1 tick to assign mod_sig_coil
+#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
+
+// When the PM acts as sniffer and is receiving tag data, it takes
+// 3 ticks A/D conversion
+// 14 ticks to complete the modulation detection
+// 8 ticks (on average) until the result is stored in to_arm
+// + the delays in transferring data - which is the same for
+// sniffing reader and tag data and therefore not relevant
+#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
+
+// When the PM acts as sniffer and is receiving reader data, it takes
+// 2 ticks delay in analogue RF receiver (for the falling edge of the
+// start bit, which marks the start of the communication)
+// 3 ticks A/D conversion
+// 8 ticks on average until the data is stored in to_arm.
+// + the delays in transferring data - which is the same for
+// sniffing reader and tag data and therefore not relevant
+#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
+
+//variables used for timing purposes:
+//these are in ssp_clk cycles:
+static uint32_t NextTransferTime;
+static uint32_t LastTimeProxToAirStart;
+static uint32_t LastProxToAirDuration;
+
+// CARD TO READER - manchester
+// Sequence D: 11110000 modulation with subcarrier during first half
+// Sequence E: 00001111 modulation with subcarrier during second half
+// Sequence F: 00000000 no modulation with subcarrier
+// READER TO CARD - miller
+// Sequence X: 00001100 drop after half a period
+// Sequence Y: 00000000 no drop
+// Sequence Z: 11000000 drop at start
+#define SEC_D 0xf0
+#define SEC_E 0x0f
+#define SEC_F 0x00
+#define SEC_X 0x0c
+#define SEC_Y 0x00
+#define SEC_Z 0xc0
+
+void iso14a_set_trigger(bool enable) {
+ trigger = enable;
+}
+
+void iso14a_set_timeout(uint32_t timeout) {
+ iso14a_timeout = timeout;
+ if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+}
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+ uint8_t tb1;
+ uint8_t fwi;
+ uint32_t fwt;
+
+ if (ats[0] > 1) { // there is a format byte T0
+ if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
+
+ if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
+ tb1 = ats[3];
+ else
+ tb1 = ats[2];
+
+ fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
+ fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ //fwt = 4096 * (1 << fwi);
+
+ iso14a_set_timeout(fwt/(8*16));
+ //iso14a_set_timeout(fwt/128);
+ }
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Generate the parity value for a byte sequence
+//
+//-----------------------------------------------------------------------------
+void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) {
+ uint16_t paritybit_cnt = 0;
+ uint16_t paritybyte_cnt = 0;
+ uint8_t parityBits = 0;
+
+ for (uint16_t i = 0; i < iLen; i++) {
+ // Generate the parity bits
+ parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
+ if (paritybit_cnt == 7) {
+ par[paritybyte_cnt] = parityBits; // save 8 Bits parity
+ parityBits = 0; // and advance to next Parity Byte
+ paritybyte_cnt++;
+ paritybit_cnt = 0;
+ } else {
+ paritybit_cnt++;
+ }
+ }
+
+ // save remaining parity bits
+ par[paritybyte_cnt] = parityBits;
+}
+
+void AppendCrc14443a(uint8_t* data, int len) {
+ ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+}
+
+//=============================================================================
+// ISO 14443 Type A - Miller decoder
+//=============================================================================
+// Basics:
+// This decoder is used when the PM3 acts as a tag.
+// The reader will generate "pauses" by temporarily switching of the field.
+// At the PM3 antenna we will therefore measure a modulated antenna voltage.
+// The FPGA does a comparison with a threshold and would deliver e.g.:
+// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
+// The Miller decoder needs to identify the following sequences:
+// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
+// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
+// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
+// Note 1: the bitstream may start at any time. We therefore need to sync.
+// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
+//-----------------------------------------------------------------------------
+static tUart Uart;
+
+// Lookup-Table to decide if 4 raw bits are a modulation.
+// We accept the following:
+// 0001 - a 3 tick wide pause
+// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111 - a 2 tick wide pause shifted left
+// 1001 - a 2 tick wide pause shifted right
+const bool Mod_Miller_LUT[] = {
+ FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
+ FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
+};
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
+
+void UartReset() {
+ Uart.state = STATE_UNSYNCD;
+ Uart.bitCount = 0;
+ Uart.len = 0; // number of decoded data bytes
+ Uart.parityLen = 0; // number of decoded parity bytes
+ Uart.shiftReg = 0; // shiftreg to hold decoded data bits
+ Uart.parityBits = 0; // holds 8 parity bits
+ Uart.startTime = 0;
+ Uart.endTime = 0;
+
+ Uart.byteCntMax = 0;
+ Uart.posCnt = 0;
+ Uart.syncBit = 9999;
+}
+
+void UartInit(uint8_t *data, uint8_t *parity) {
+ Uart.output = data;
+ Uart.parity = parity;
+ Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
+ UartReset();
+}
+
+// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
+static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
+ Uart.fourBits = (Uart.fourBits << 8) | bit;
+
+ if (Uart.state == STATE_UNSYNCD) { // not yet synced
+ Uart.syncBit = 9999; // not set
+
+ // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
+ // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
+ // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
+
+ // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+ // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
+ // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
+ // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+ //
+#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
+
+ if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+ if (Uart.syncBit != 9999) { // found a sync bit
+ Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
+ Uart.startTime -= Uart.syncBit;
+ Uart.endTime = Uart.startTime;
+ Uart.state = STATE_START_OF_COMMUNICATION;
+ }
+ } else {
+
+ if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
+ UartReset();
+ } else { // Modulation in first half = Sequence Z = logic "0"
+ if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
+ UartReset();
+ } else {
+ Uart.bitCount++;
+ Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
+ Uart.state = STATE_MILLER_Z;
+ Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // make room for the parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.bitCount = 0;
+ Uart.shiftReg = 0;
+ if((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
+ }
+ }
+ }
+ } else {
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
+ Uart.bitCount++;
+ Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
+ Uart.state = STATE_MILLER_X;
+ Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // make room for the new parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.bitCount = 0;
+ Uart.shiftReg = 0;
+ if ((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
+ }
+ } else { // no modulation in both halves - Sequence Y
+ if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
+ Uart.state = STATE_UNSYNCD;
+ Uart.bitCount--; // last "0" was part of EOC sequence
+ Uart.shiftReg <<= 1; // drop it
+ if(Uart.bitCount > 0) { // if we decoded some bits
+ Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
+ Uart.parityBits <<= 1; // add a (void) parity bit
+ Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
+ return TRUE;
+ } else if (Uart.len & 0x0007) { // there are some parity bits to store
+ Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
+ }
+ if (Uart.len) {
+ return TRUE; // we are finished with decoding the raw data sequence
+ } else {
+ UartReset(); // Nothing received - start over
+ }
+ }
+ if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
+ UartReset();
+ } else { // a logic "0"
+ Uart.bitCount++;
+ Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
+ Uart.state = STATE_MILLER_Y;
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // make room for the parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.bitCount = 0;
+ Uart.shiftReg = 0;
+ if ((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ return FALSE; // not finished yet, need more data
+}
+
+//=============================================================================
+// ISO 14443 Type A - Manchester decoder
+//=============================================================================
+// Basics:
+// This decoder is used when the PM3 acts as a reader.
+// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
+// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
+// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
+// The Manchester decoder needs to identify the following sequences:
+// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
+// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
+// 8 ticks unmodulated: Sequence F = end of communication
+// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
+// Note 1: the bitstream may start at any time. We therefore need to sync.
+// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
+static tDemod Demod;
+
+// Lookup-Table to decide if 4 raw bits are a modulation.
+// We accept three or four "1" in any position
+const bool Mod_Manchester_LUT[] = {
+ FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
+ FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
+};
+
+#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
+#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
+
+void DemodReset() {
+ Demod.state = DEMOD_UNSYNCD;
+ Demod.len = 0; // number of decoded data bytes
+ Demod.parityLen = 0;
+ Demod.shiftReg = 0; // shiftreg to hold decoded data bits
+ Demod.parityBits = 0; //
+ Demod.collisionPos = 0; // Position of collision bit
+ Demod.twoBits = 0xffff; // buffer for 2 Bits
+ Demod.highCnt = 0;
+ Demod.startTime = 0;
+ Demod.endTime = 0;
+ Demod.bitCount = 0;
+ Demod.syncBit = 0xFFFF;
+ Demod.samples = 0;
+}
+
+void DemodInit(uint8_t *data, uint8_t *parity) {
+ Demod.output = data;
+ Demod.parity = parity;
+ DemodReset();
+}
+
+// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
+static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
+ Demod.twoBits = (Demod.twoBits << 8) | bit;
+
+ if (Demod.state == DEMOD_UNSYNCD) {
+
+ if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
+ if (Demod.twoBits == 0x0000) {
+ Demod.highCnt++;
+ } else {
+ Demod.highCnt = 0;
+ }
+ } else {
+ Demod.syncBit = 0xFFFF; // not set
+ if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
+ else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
+ else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
+ else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
+ else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
+ else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
+ else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
+ else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
+ if (Demod.syncBit != 0xFFFF) {
+ Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
+ Demod.startTime -= Demod.syncBit;
+ Demod.bitCount = offset; // number of decoded data bits
+ Demod.state = DEMOD_MANCHESTER_DATA;
+ }
+ }
+ } else {
+
+ if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
+ if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
+ if (!Demod.collisionPos) {
+ Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
+ }
+ } // modulation in first half only - Sequence D = 1
+ Demod.bitCount++;
+ Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
+ if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
+ Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+ Demod.parityBits <<= 1; // make room for the parity bit
+ Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
+ Demod.bitCount = 0;
+ Demod.shiftReg = 0;
+ if((Demod.len&0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
+ Demod.parityBits = 0;
+ }
+ }
+ Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
+ } else { // no modulation in first half
+ if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
+ Demod.bitCount++;
+ Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
+ if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+ Demod.parityBits <<= 1; // make room for the new parity bit
+ Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
+ Demod.bitCount = 0;
+ Demod.shiftReg = 0;
+ if ((Demod.len&0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
+ Demod.parityBits = 0;
+ }
+ }
+ Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
+ } else { // no modulation in both halves - End of communication
+ if(Demod.bitCount > 0) { // there are some remaining data bits
+ Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
+ Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
+ Demod.parityBits <<= 1; // add a (void) parity bit
+ Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ return TRUE;
+ } else if (Demod.len & 0x0007) { // there are some parity bits to store
+ Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ }
+ if (Demod.len) {
+ return TRUE; // we are finished with decoding the raw data sequence
+ } else { // nothing received. Start over
+ DemodReset();
+ }
+ }
+ }
+ }
+ return FALSE; // not finished yet, need more data
+}
+
+//=============================================================================
+// Finally, a `sniffer' for ISO 14443 Type A
+// Both sides of communication!
+//=============================================================================
+
+//-----------------------------------------------------------------------------
+// Record the sequence of commands sent by the reader to the tag, with
+// triggering so that we start recording at the point that the tag is moved
+// near the reader.
+// "hf 14a sniff"
+//-----------------------------------------------------------------------------
+void RAMFUNC SniffIso14443a(uint8_t param) {
+ // param:
+ // bit 0 - trigger from first card answer
+ // bit 1 - trigger from first reader 7-bit request
+ LEDsoff();
+
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+ // Allocate memory from BigBuf for some buffers
+ // free all previous allocations first
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(TRUE);
+
+ // The command (reader -> tag) that we're receiving.
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+
+ // The response (tag -> reader) that we're receiving.
+ uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
+
+ // The DMA buffer, used to stream samples from the FPGA
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+ uint8_t *data = dmaBuf;
+ uint8_t previous_data = 0;
+ int maxDataLen = 0;
+ int dataLen = 0;
+ bool TagIsActive = FALSE;
+ bool ReaderIsActive = FALSE;
+
+ // Set up the demodulator for tag -> reader responses.
+ DemodInit(receivedResponse, receivedResponsePar);
+
+ // Set up the demodulator for the reader -> tag commands
+ UartInit(receivedCmd, receivedCmdPar);
+
+ // Setup and start DMA.
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
+
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ // triggered == FALSE -- to wait first for card
+ bool triggered = !(param & 0x03);
+
+ // And now we loop, receiving samples.
+ for(uint32_t rsamples = 0; TRUE; ) {
+
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled by button");
+ break;
+ }
+
+ LED_A_ON();
+ WDT_HIT();
+
+ int register readBufDataP = data - dmaBuf;
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+ if (readBufDataP <= dmaBufDataP){
+ dataLen = dmaBufDataP - readBufDataP;
+ } else {
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
+ }
+ // test for length of buffer
+ if(dataLen > maxDataLen) {
+ maxDataLen = dataLen;
+ if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
+ Dbprintf("blew circular buffer! dataLen=%d", dataLen);
+ break;
+ }
+ }
+ if(dataLen < 1) continue;
+
+ // primary buffer was stopped( <-- we lost data!
+ if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+ AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+ }
+ // secondary buffer sets as primary, secondary buffer was stopped
+ if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ LED_A_OFF();
+
+ if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
+
+ if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
+ uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
+ if (MillerDecoding(readerdata, (rsamples-1)*4)) {
+ LED_C_ON();
+
+ // check - if there is a short 7bit request from reader
+ if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
+
+ if(triggered) {
+ if (!LogTrace(receivedCmd,
+ Uart.len,
+ Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+ Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+ Uart.parity,
+ TRUE)) break;
+ }
+ /* And ready to receive another command. */
+ UartReset();
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DemodReset();
+ LED_B_OFF();
+ }
+ ReaderIsActive = (Uart.state != STATE_UNSYNCD);
+ }
+
+ if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
+ uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
+ if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
+ LED_B_ON();
+
+ if (!LogTrace(receivedResponse,
+ Demod.len,
+ Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ Demod.parity,
+ FALSE)) break;
+
+ if ((!triggered) && (param & 0x01)) triggered = TRUE;
+
+ // And ready to receive another response.
+ DemodReset();
+ // And reset the Miller decoder including itS (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
+ LED_C_OFF();
+ }
+ TagIsActive = (Demod.state != DEMOD_UNSYNCD);
+ }
+ }
+
+ previous_data = *data;
+ rsamples++;
+ data++;
+ if(data == dmaBuf + DMA_BUFFER_SIZE) {
+ data = dmaBuf;
+ }
+ } // main cycle
+
+ if (MF_DBGLEVEL >= 1) {
+ Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+ Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+ }
+ FpgaDisableSscDma();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ set_tracing(FALSE);
+}
+
+//-----------------------------------------------------------------------------
+// Prepare tag messages
+//-----------------------------------------------------------------------------
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ ToSend[++ToSendMax] = SEC_D;
+ LastProxToAirDuration = 8 * ToSendMax - 4;
+
+ for(uint16_t i = 0; i < len; i++) {
+ uint8_t b = cmd[i];
+
+ // Data bits
+ for(uint16_t j = 0; j < 8; j++) {
+ if(b & 1) {
+ ToSend[++ToSendMax] = SEC_D;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ }
+ b >>= 1;
+ }
+
+ // Get the parity bit
+ if (parity[i>>3] & (0x80>>(i&0x0007))) {
+ ToSend[++ToSendMax] = SEC_D;
+ LastProxToAirDuration = 8 * ToSendMax - 4;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ LastProxToAirDuration = 8 * ToSendMax;
+ }
+ }
+
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Convert from last byte pos to length
+ ++ToSendMax;
+}
+
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) {
+ uint8_t par[MAX_PARITY_SIZE] = {0};
+ GetParity(cmd, len, par);
+ CodeIso14443aAsTagPar(cmd, len, par);
+}
+
+static void Code4bitAnswerAsTag(uint8_t cmd) {
+ uint8_t b = cmd;
+
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ ToSend[++ToSendMax] = SEC_D;
+
+ for(uint8_t i = 0; i < 4; i++) {
+ if(b & 1) {
+ ToSend[++ToSendMax] = SEC_D;
+ LastProxToAirDuration = 8 * ToSendMax - 4;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ LastProxToAirDuration = 8 * ToSendMax;
+ }
+ b >>= 1;
+ }
+
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed
+// Or return TRUE when command is captured
+//-----------------------------------------------------------------------------
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // Now run a `software UART` on the stream of incoming samples.
+ UartInit(received, parity);
+
+ // clear RXRDY:
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
+ for(;;) {
+ WDT_HIT();
+
+ if(BUTTON_PRESS()) return FALSE;
+
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding(b, 0)) {
+ *len = Uart.len;
+ return TRUE;
+ }
+ }
+ }
+}
+
+bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
+ // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
+ // This will need the following byte array for a modulation sequence
+ // 144 data bits (18 * 8)
+ // 18 parity bits
+ // 2 Start and stop
+ // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
+ // 1 just for the case
+ // ----------- +
+ // 166 bytes, since every bit that needs to be send costs us a byte
+ //
+ // Prepare the tag modulation bits from the message
+ CodeIso14443aAsTag(response_info->response,response_info->response_n);
+
+ // Make sure we do not exceed the free buffer space
+ if (ToSendMax > max_buffer_size) {
+ Dbprintf("Out of memory, when modulating bits for tag answer:");
+ Dbhexdump(response_info->response_n,response_info->response,false);
+ return FALSE;
+ }
+
+ // Copy the byte array, used for this modulation to the buffer position
+ memcpy(response_info->modulation,ToSend,ToSendMax);
+
+ // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
+ response_info->modulation_n = ToSendMax;
+ response_info->ProxToAirDuration = LastProxToAirDuration;
+ return TRUE;
+}
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
+
+bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
+ // Retrieve and store the current buffer index
+ response_info->modulation = free_buffer_pointer;
+
+ // Determine the maximum size we can use from our buffer
+ size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
+
+ // Forward the prepare tag modulation function to the inner function
+ if (prepare_tag_modulation(response_info, max_buffer_size)) {
+ // Update the free buffer offset
+ free_buffer_pointer += ToSendMax;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Main loop of simulated tag: receive commands from reader, decide what
+// response to send, and send it.
+// 'hf 14a sim'
+//-----------------------------------------------------------------------------
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
+
+ #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
+ // init pseudorand
+ fast_prand();
+
+ uint8_t sak = 0;
+ uint32_t cuid = 0;
+ uint32_t nonce = 0;
+
+ // PACK response to PWD AUTH for EV1/NTAG
+ uint8_t response8[4] = {0,0,0,0};
+ // Counter for EV1/NTAG
+ uint32_t counters[] = {0,0,0};
+
+ // The first response contains the ATQA (note: bytes are transmitted in reverse order).
+ uint8_t response1[] = {0,0};
+
+ // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
+ // it should also collect block, keytype.
+ uint8_t cardAUTHSC = 0;
+ uint8_t cardAUTHKEY = 0xff; // no authentication
+ // allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
+
+ nonces_t ar_nr_nonces[ATTACK_KEY_COUNT]; // for attack types moebius
+ memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
+ uint8_t moebius_count = 0;
+
+ switch (tagType) {
+ case 1: { // MIFARE Classic 1k
+ response1[0] = 0x04;
+ sak = 0x08;
+ } break;
+ case 2: { // MIFARE Ultralight
+ response1[0] = 0x44;
+ sak = 0x00;
+ } break;
+ case 3: { // MIFARE DESFire
+ response1[0] = 0x04;
+ response1[1] = 0x03;
+ sak = 0x20;
+ } break;
+ case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
+ response1[0] = 0x04;
+ sak = 0x28;
+ } break;
+ case 5: { // MIFARE TNP3XXX
+ response1[0] = 0x01;
+ response1[1] = 0x0f;
+ sak = 0x01;
+ } break;
+ case 6: { // MIFARE Mini 320b
+ response1[0] = 0x44;
+ sak = 0x09;
+ } break;
+ case 7: { // NTAG
+ response1[0] = 0x44;
+ sak = 0x00;
+ // PACK
+ response8[0] = 0x80;
+ response8[1] = 0x80;
+ ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+ // uid not supplied then get from emulator memory
+ if (data[0]==0) {
+ uint16_t start = 4 * (0+12);
+ uint8_t emdata[8];
+ emlGetMemBt( emdata, start, sizeof(emdata));
+ memcpy(data, emdata, 3); // uid bytes 0-2
+ memcpy(data+3, emdata+4, 4); // uid bytes 3-7
+ flags |= FLAG_7B_UID_IN_DATA;
+ }
+ } break;
+ case 8: { // MIFARE Classic 4k
+ response1[0] = 0x02;
+ sak = 0x18;
+ } break;
+ default: {
+ Dbprintf("Error: unkown tagtype (%d)",tagType);
+ return;
+ } break;
+ }
+
+ // The second response contains the (mandatory) first 24 bits of the UID
+ uint8_t response2[5] = {0x00};
+
+ // For UID size 7,
+ uint8_t response2a[5] = {0x00};
+
+ if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
+ response2[0] = 0x88; // Cascade Tag marker
+ response2[1] = data[0];
+ response2[2] = data[1];
+ response2[3] = data[2];
+
+ response2a[0] = data[3];
+ response2a[1] = data[4];
+ response2a[2] = data[5];
+ response2a[3] = data[6]; //??
+ response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
+
+ // Configure the ATQA and SAK accordingly
+ response1[0] |= 0x40;
+ sak |= 0x04;
+
+ cuid = bytes_to_num(data+3, 4);
+ } else {
+ memcpy(response2, data, 4);
+ // Configure the ATQA and SAK accordingly
+ response1[0] &= 0xBF;
+ sak &= 0xFB;
+ cuid = bytes_to_num(data, 4);
+ }
+
+ // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
+ response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
+
+ // Prepare the mandatory SAK (for 4 and 7 byte UID)
+ uint8_t response3[3] = {sak, 0x00, 0x00};
+ ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+
+ // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
+ uint8_t response3a[3] = {0x00};
+ response3a[0] = sak & 0xFB;
+ ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
+
+ // Tag NONCE.
+ uint8_t response5[4];
+
+ uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
+ // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
+ // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
+ // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
+ // TC(1) = 0x02: CID supported, NAD not supported
+ ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
+
+ // Prepare GET_VERSION (different for UL EV-1 / NTAG)
+ // uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
+ // uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+ // Prepare CHK_TEARING
+ // uint8_t response9[] = {0xBD,0x90,0x3f};
+
+ #define TAG_RESPONSE_COUNT 10
+ tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
+ { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
+ { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
+ { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
+ { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
+ { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
+ { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
+ { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
+
+ { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
+ };
+ // { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+ // { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
+
+
+ // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
+ // Such a response is less time critical, so we can prepare them on the fly
+ #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
+ #define DYNAMIC_MODULATION_BUFFER_SIZE 512
+ uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
+ uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
+ tag_response_info_t dynamic_response_info = {
+ .response = dynamic_response_buffer,
+ .response_n = 0,
+ .modulation = dynamic_modulation_buffer,
+ .modulation_n = 0
+ };
+
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ BigBuf_free_keep_EM();
+ clear_trace();
+ set_tracing(TRUE);
+
+ // allocate buffers:
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+ free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+ // Prepare the responses of the anticollision phase
+ // there will be not enough time to do this at the moment the reader sends it REQA
+ for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
+ prepare_allocated_tag_modulation(&responses[i]);
+
+ int len = 0;
+
+ // To control where we are in the protocol
+ int order = 0;
+ int lastorder;
+
+ // Just to allow some checks
+ int happened = 0;
+ int happened2 = 0;
+ int cmdsRecvd = 0;
+ tag_response_info_t* p_response;
+
+ LED_A_ON();
+ for(;;) {
+ WDT_HIT();
+
+ // Clean receive command buffer
+ if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
+ Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+ break;
+ }
+ p_response = NULL;
+
+ // Okay, look at the command now.
+ lastorder = order;
+ if(receivedCmd[0] == ISO14443A_CMD_REQA) { // Received a REQUEST
+ p_response = &responses[0]; order = 1;
+ } else if(receivedCmd[0] == ISO14443A_CMD_WUPA) { // Received a WAKEUP
+ p_response = &responses[0]; order = 6;
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received request for UID (cascade 1)
+ p_response = &responses[1]; order = 2;
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received request for UID (cascade 2)
+ p_response = &responses[2]; order = 20;
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received a SELECT (cascade 1)
+ p_response = &responses[3]; order = 3;
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received a SELECT (cascade 2)
+ p_response = &responses[4]; order = 30;
+ } else if(receivedCmd[0] == ISO14443A_CMD_READBLOCK) { // Received a (plain) READ
+ uint8_t block = receivedCmd[1];
+ // if Ultralight or NTAG (4 byte blocks)
+ if ( tagType == 7 || tagType == 2 ) {
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * (block+12);
+ uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+ emlGetMemBt( emdata, start, 16);
+ AppendCrc14443a(emdata, 16);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ p_response = NULL;
+ } else { // all other tags (16 byte block tags)
+ uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+ emlGetMemBt( emdata, block, 16);
+ AppendCrc14443a(emdata, 16);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ // EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+ // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ p_response = NULL;
+ }
+ } else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) { // Received a FAST READ (ranged read)
+ uint8_t emdata[MAX_FRAME_SIZE];
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ int start = (receivedCmd[1]+12) * 4;
+ int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+ emlGetMemBt( emdata, start, len);
+ AppendCrc14443a(emdata, len);
+ EmSendCmdEx(emdata, len+2, false);
+ p_response = NULL;
+ } else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) { // Received a READ SIGNATURE --
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * 4;
+ uint8_t emdata[34];
+ emlGetMemBt( emdata, start, 32);
+ AppendCrc14443a(emdata, 32);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && tagType == 7) { // Received a READ COUNTER --
+ uint8_t index = receivedCmd[1];
+ uint8_t cmd[] = {0x00,0x00,0x00,0x14,0xa5};
+ if ( counters[index] > 0) {
+ num_to_bytes(counters[index], 3, cmd);
+ AppendCrc14443a(cmd, sizeof(cmd)-2);
+ }
+ EmSendCmdEx(cmd,sizeof(cmd),false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) { // Received a INC COUNTER --
+ // number of counter
+ uint8_t counter = receivedCmd[1];
+ uint32_t val = bytes_to_num(receivedCmd+2,4);
+ counters[counter] = val;
+
+ // send ACK
+ uint8_t ack[] = {0x0a};
+ EmSendCmdEx(ack,sizeof(ack),false);
+ p_response = NULL;
+ } else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT --
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint8_t emdata[3];
+ uint8_t counter=0;
+ if (receivedCmd[1]<3) counter = receivedCmd[1];
+ emlGetMemBt( emdata, 10+counter, 1);
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ } else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ p_response = NULL;
+ } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request
+ if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
+ uint8_t emdata[10];
+ emlGetMemBt( emdata, 0, 8 );
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ } else {
+
+ cardAUTHKEY = receivedCmd[0] - 0x60;
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+
+ // incease nonce at AUTH requests. this is time consuming.
+ nonce = prand();
+ //num_to_bytes(nonce, 4, response5);
+ num_to_bytes(nonce, 4, dynamic_response_info.response);
+ dynamic_response_info.response_n = 4;
+
+ //prepare_tag_modulation(&responses[5], DYNAMIC_MODULATION_BUFFER_SIZE);
+ prepare_tag_modulation(&dynamic_response_info, DYNAMIC_MODULATION_BUFFER_SIZE);
+ p_response = &dynamic_response_info;
+ //p_response = &responses[5];
+ order = 7;
+ }
+ } else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request
+ if (tagType == 1 || tagType == 2) { // RATS not supported
+ EmSend4bit(CARD_NACK_NA);
+ p_response = NULL;
+ } else {
+ p_response = &responses[6]; order = 70;
+ }
+ } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ uint32_t nr = bytes_to_num(receivedCmd,4);
+ uint32_t ar = bytes_to_num(receivedCmd+4,4);
+
+ // Collect AR/NR per keytype & sector
+ if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
+
+ int8_t index = -1;
+ int8_t empty = -1;
+ for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ // find which index to use
+ if ( (cardAUTHSC == ar_nr_nonces[i].sector) && (cardAUTHKEY == ar_nr_nonces[i].keytype))
+ index = i;
+
+ // keep track of empty slots.
+ if ( ar_nr_nonces[i].state == EMPTY)
+ empty = i;
+ }
+ // if no empty slots. Choose first and overwrite.
+ if ( index == -1 ) {
+ if ( empty == -1 ) {
+ index = 0;
+ ar_nr_nonces[index].state = EMPTY;
+ } else {
+ index = empty;
+ }
+ }
+
+ switch(ar_nr_nonces[index].state) {
+ case EMPTY: {
+ // first nonce collect
+ ar_nr_nonces[index].cuid = cuid;
+ ar_nr_nonces[index].sector = cardAUTHSC;
+ ar_nr_nonces[index].keytype = cardAUTHKEY;
+ ar_nr_nonces[index].nonce = nonce;
+ ar_nr_nonces[index].nr = nr;
+ ar_nr_nonces[index].ar = ar;
+ ar_nr_nonces[index].state = FIRST;
+ break;
+ }
+ case FIRST : {
+ // second nonce collect
+ ar_nr_nonces[index].nonce2 = nonce;
+ ar_nr_nonces[index].nr2 = nr;
+ ar_nr_nonces[index].ar2 = ar;
+ ar_nr_nonces[index].state = SECOND;
+
+ // send to client
+ cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, 0, 0, &ar_nr_nonces[index], sizeof(nonces_t));
+
+ ar_nr_nonces[index].state = EMPTY;
+ ar_nr_nonces[index].sector = 0;
+ ar_nr_nonces[index].keytype = 0;
+
+ moebius_count++;
+ break;
+ }
+ default: break;
+ }
+ }
+ p_response = NULL;
+
+ } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
+ } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
+ if ( tagType == 7 ) {
+ uint16_t start = 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+ uint8_t emdata[4];
+ emlGetMemBt( emdata, start, 2);
+ AppendCrc14443a(emdata, 2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+
+ if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
+ }
+ } else {
+ // Check for ISO 14443A-4 compliant commands, look at left nibble
+ switch (receivedCmd[0]) {
+ case 0x02:
+ case 0x03: { // IBlock (command no CID)
+ dynamic_response_info.response[0] = receivedCmd[0];
+ dynamic_response_info.response[1] = 0x90;
+ dynamic_response_info.response[2] = 0x00;
+ dynamic_response_info.response_n = 3;
+ } break;
+ case 0x0B:
+ case 0x0A: { // IBlock (command CID)
+ dynamic_response_info.response[0] = receivedCmd[0];
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response[2] = 0x90;
+ dynamic_response_info.response[3] = 0x00;
+ dynamic_response_info.response_n = 4;
+ } break;
+
+ case 0x1A:
+ case 0x1B: { // Chaining command
+ dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ case 0xAA:
+ case 0xBB: {
+ dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ case 0xBA: { // ping / pong
+ dynamic_response_info.response[0] = 0xAB;
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ case 0xCA:
+ case 0xC2: { // Readers sends deselect command
+ dynamic_response_info.response[0] = 0xCA;
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ default: {
+ // Never seen this command before
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ Dbprintf("Received unknown command (len=%d):",len);
+ Dbhexdump(len,receivedCmd,false);
+ // Do not respond
+ dynamic_response_info.response_n = 0;
+ } break;
+ }
+
+ if (dynamic_response_info.response_n > 0) {
+ // Copy the CID from the reader query
+ dynamic_response_info.response[1] = receivedCmd[1];
+
+ // Add CRC bytes, always used in ISO 14443A-4 compliant cards
+ AppendCrc14443a(dynamic_response_info.response, dynamic_response_info.response_n);
+ dynamic_response_info.response_n += 2;
+
+ if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
+ DbpString("Error preparing tag response");
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ p_response = &dynamic_response_info;
+ }
+ }
+
+ // Count number of wakeups received after a halt
+ if(order == 6 && lastorder == 5) { happened++; }
+
+ // Count number of other messages after a halt
+ if(order != 6 && lastorder == 5) { happened2++; }
+
+ // comment this limit if you want to simulation longer
+ if (!tracing) {
+ DbpString("Trace Full. Simulation stopped.");
+ break;
+ }
+ // comment this limit if you want to simulation longer
+ if(cmdsRecvd > 999) {
+ DbpString("1000 commands later...");
+ break;
+ }
+ cmdsRecvd++;
+
+ if (p_response != NULL) {
+ EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
+ // do the tracing for the previous reader request and this tag answer:
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(p_response->response, p_response->response_n, par);
+
+ EmLogTrace(Uart.output,
+ Uart.len,
+ Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.parity,
+ p_response->response,
+ p_response->response_n,
+ LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
+ (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
+ par);
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
+ BigBuf_free_keep_EM();
+ LED_A_OFF();
+
+ /*
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
+
+ for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ if (ar_nr_collected[i] == 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+ ar_nr_resp[i].cuid, //UID
+ ar_nr_resp[i].nonce, //NT
+ ar_nr_resp[i].nr, //NR1
+ ar_nr_resp[i].ar, //AR1
+ ar_nr_resp[i].nr2, //NR2
+ ar_nr_resp[i].ar2 //AR2
+ );
+ }
+ }
+
+ for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+ if (ar_nr_collected[i] == 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+ Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_resp[i].cuid, //UID
+ ar_nr_resp[i].nonce, //NT
+ ar_nr_resp[i].nr, //NR1
+ ar_nr_resp[i].ar, //AR1
+ ar_nr_resp[i].nonce2,//NT2
+ ar_nr_resp[i].nr2, //NR2
+ ar_nr_resp[i].ar2 //AR2
+ );
+ }
+ }
+ }
+ */
+
+ if (MF_DBGLEVEL >= 4){
+ Dbprintf("-[ Wake ups after halt [%d]", happened);
+ Dbprintf("-[ Messages after halt [%d]", happened2);
+ Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+ Dbprintf("-[ Num of moebius tries [%d]", moebius_count);
+ }
+
+ cmd_send(CMD_ACK,1,0,0,0,0);
+}
+
+// prepare a delayed transfer. This simply shifts ToSend[] by a number
+// of bits specified in the delay parameter.
+void PrepareDelayedTransfer(uint16_t delay) {
+ delay &= 0x07;
+ if (!delay) return;
+
+ uint8_t bitmask = 0;
+ uint8_t bits_to_shift = 0;
+ uint8_t bits_shifted = 0;
+ uint16_t i = 0;
+
+ for (i = 0; i < delay; ++i)
+ bitmask |= (0x01 << i);
+
+ ToSend[++ToSendMax] = 0x00;
+
+ for (i = 0; i < ToSendMax; ++i) {
+ bits_to_shift = ToSend[i] & bitmask;
+ ToSend[i] = ToSend[i] >> delay;
+ ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
+ bits_shifted = bits_to_shift;
+ }
+ }
+
+
+//-------------------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+// Parameter timing:
+// if NULL: transfer at next possible time, taking into account
+// request guard time and frame delay time
+// if == 0: transfer immediately and return time of transfer
+// if != 0: delay transfer until time specified
+//-------------------------------------------------------------------------------------
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+ uint32_t ThisTransferTime = 0;
+
+ if (timing) {
+ if(*timing == 0) { // Measure time
+ *timing = (GetCountSspClk() + 8) & 0xfffffff8;
+ } else {
+ PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
+ }
+ if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+ while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
+ LastTimeProxToAirStart = *timing;
+ } else {
+ ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
+
+ while(GetCountSspClk() < ThisTransferTime);
+
+ LastTimeProxToAirStart = ThisTransferTime;
+ }
+
+ // clear TXRDY
+ AT91C_BASE_SSC->SSC_THR = SEC_Y;
+
+ uint16_t c = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = cmd[c];
+ ++c;
+ if(c >= len)
+ break;
+ }
+ }
+
+ NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command (in bits, support short frames) to send to FPGA
+//-----------------------------------------------------------------------------
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
+ int i, j;
+ int last = 0;
+ uint8_t b;
+
+ ToSendReset();
+
+ // Start of Communication (Seq. Z)
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+
+ size_t bytecount = nbytes(bits);
+ // Generate send structure for the data bits
+ for (i = 0; i < bytecount; i++) {
+ // Get the current byte to send
+ b = cmd[i];
+ size_t bitsleft = MIN((bits-(i*8)),8);
+
+ for (j = 0; j < bitsleft; j++) {
+ if (b & 1) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ }
+ b >>= 1;
+ }
+
+ // Only transmit parity bit if we transmitted a complete byte
+ if (j == 8 && parity != NULL) {
+ // Get the parity bit
+ if (parity[i>>3] & (0x80 >> (i&0x0007))) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ }
+ }
+ }
+
+ // End of Communication: Logic 0 followed by Sequence Y
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ ToSend[++ToSendMax] = SEC_Y;
+
+ // Convert to length of command:
+ ++ToSendMax;
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command to send to FPGA
+//-----------------------------------------------------------------------------
+void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) {
+ CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed (return 1) or field was gone (return 2)
+// Or return 0 when command is captured
+//-----------------------------------------------------------------------------
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
+ *len = 0;
+
+ uint32_t timer = 0, vtime = 0;
+ int analogCnt = 0;
+ int analogAVG = 0;
+
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // Set ADC to read field strength
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(63) |
+ ADC_MODE_STARTUP_TIME(1) |
+ ADC_MODE_SAMPLE_HOLD_TIME(15);
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
+ // start ADC
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
+ // Now run a 'software UART' on the stream of incoming samples.
+ UartInit(received, parity);
+
+ // Clear RXRDY:
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
+ for(;;) {
+ WDT_HIT();
+
+ if (BUTTON_PRESS()) return 1;
+
+ // test if the field exists
+ if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
+ analogCnt++;
+ analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ if (analogCnt >= 32) {
+ if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+ vtime = GetTickCount();
+ if (!timer) timer = vtime;
+ // 50ms no field --> card to idle state
+ if (vtime - timer > 50) return 2;
+ } else
+ if (timer) timer = 0;
+ analogCnt = 0;
+ analogAVG = 0;
+ }
+ }
+
+ // receive and test the miller decoding
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding(b, 0)) {
+ *len = Uart.len;
+ return 0;
+ }
+ }
+ }
+}
+
+int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) {
+ uint8_t b;
+ uint16_t i = 0;
+ uint32_t ThisTransferTime;
+
+ // Modulate Manchester
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+
+ // include correction bit if necessary
+ if (Uart.parityBits & 0x01) {
+ correctionNeeded = TRUE;
+ }
+ // 1236, so correction bit needed
+ i = (correctionNeeded) ? 0 : 1;
+
+ // clear receiving shift register and holding register
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ b = AT91C_BASE_SSC->SSC_RHR; (void) b;
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ b = AT91C_BASE_SSC->SSC_RHR; (void) b;
+
+ // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
+ for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ if (AT91C_BASE_SSC->SSC_RHR) break;
+ }
+
+ while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
+
+ // Clear TXRDY:
+ AT91C_BASE_SSC->SSC_THR = SEC_F;
+
+ // send cycle
+ for(; i < respLen; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = resp[i++];
+ FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ }
+
+ if(BUTTON_PRESS()) break;
+ }
+
+ // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
+ uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3,
+ for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = SEC_F;
+ FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ }
+ }
+ LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
+ return 0;
+}
+
+int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
+ Code4bitAnswerAsTag(resp);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ // do the tracing for the previous reader request and this tag answer:
+ uint8_t par[1] = {0x00};
+ GetParity(&resp, 1, par);
+ EmLogTrace(Uart.output,
+ Uart.len,
+ Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.parity,
+ &resp,
+ 1,
+ LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
+ (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
+ par);
+ return res;
+}
+
+int EmSend4bit(uint8_t resp){
+ return EmSend4bitEx(resp, false);
+}
+
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
+ CodeIso14443aAsTagPar(resp, respLen, par);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ // do the tracing for the previous reader request and this tag answer:
+ EmLogTrace(Uart.output,
+ Uart.len,
+ Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.parity,
+ resp,
+ respLen,
+ LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
+ (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
+ par);
+ return res;
+}
+
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(resp, respLen, par);
+ return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
+}
+
+int EmSendCmd(uint8_t *resp, uint16_t respLen){
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(resp, respLen, par);
+ return EmSendCmdExPar(resp, respLen, false, par);
+}
+
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
+ return EmSendCmdExPar(resp, respLen, false, par);
+}
+
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
+{
+ // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+ // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+ // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_EndTime = tag_StartTime - exact_fdt;
+ reader_StartTime = reader_EndTime - reader_modlen;
+
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
+ return FALSE;
+ else
+ return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
+
+}
+
+//-----------------------------------------------------------------------------
+// Wait a certain time for tag response
+// If a response is captured return TRUE
+// If it takes too long return FALSE
+//-----------------------------------------------------------------------------
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
+ uint32_t c = 0x00;
+
+ // Set FPGA mode to "reader listen mode", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+
+ // Now get the answer from the card
+ DemodInit(receivedResponse, receivedResponsePar);
+
+ // clear RXRDY:
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
+ for(;;) {
+ WDT_HIT();
+
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(ManchesterDecoding(b, offset, 0)) {
+ NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
+ return TRUE;
+ } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
+ return FALSE;
+ }
+ }
+ }
+}
+
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
+
+ CodeIso14443aBitsAsReaderPar(frame, bits, par);
+ // Send command to tag
+ TransmitFor14443a(ToSend, ToSendMax, timing);
+ if(trigger) LED_A_ON();
+
+ LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
+}
+
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
+}
+
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
+ // Generate parity and redirect
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(frame, len/8, par);
+ ReaderTransmitBitsPar(frame, len, par, timing);
+}
+
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
+ // Generate parity and redirect
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+ GetParity(frame, len, par);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
+}
+
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
+ return FALSE;
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ return Demod.len;
+}
+
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
+ return FALSE;
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ return Demod.len;
+}
+
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[]
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
+ uint8_t wupa[] = { ISO14443A_CMD_WUPA }; // 0x26 - ISO14443A_CMD_REQA 0x52 - ISO14443A_CMD_WUPA
+ uint8_t sel_all[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x20 };
+ uint8_t sel_uid[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t rats[] = { ISO14443A_CMD_RATS,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+ uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
+ uint8_t resp_par[MAX_PARITY_SIZE] = {0};
+ byte_t uid_resp[4] = {0};
+ size_t uid_resp_len = 0;
+
+ uint8_t sak = 0x04; // cascade uid
+ int cascade_level = 0;
+ int len;
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
+
+ // Receive the ATQA
+ if(!ReaderReceive(resp, resp_par)) return 0;
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->atqa, resp, 2);
+ p_hi14a_card->uidlen = 0;
+ memset(p_hi14a_card->uid,0,10);
+ }
+
+ if (anticollision) {
+ // clear uid
+ if (uid_ptr)
+ memset(uid_ptr,0,10);
+ }
+
+ // reset the PCB block number
+ iso14_pcb_blocknum = 0;
+
+ // check for proprietary anticollision:
+ if ((resp[0] & 0x1F) == 0) return 3;
+
+ // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+ // which case we need to make a cascade 2 request and select - this is a long UID
+ // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+ for(; sak & 0x04; cascade_level++) {
+ // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+ sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+ if (anticollision) {
+ // SELECT_ALL
+ ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ memset(uid_resp, 0, 4);
+ uint16_t uid_resp_bits = 0;
+ uint16_t collision_answer_offset = 0;
+ // anti-collision-loop:
+ while (Demod.collisionPos) {
+ Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ }
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp_bits++;
+ // construct anticollosion command:
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+ sel_uid[2+i] = uid_resp[i];
+ }
+ collision_answer_offset = uid_resp_bits%8;
+ ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+ if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+ }
+ // finally, add the last bits and BCC of the UID
+ for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+ uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+ uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+ }
+
+ } else { // no collision, use the response to SELECT_ALL as current uid
+ memcpy(uid_resp, resp, 4);
+ }
+
+ } else {
+ if (cascade_level < num_cascades - 1) {
+ uid_resp[0] = 0x88;
+ memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+ } else {
+ memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
+ }
+ }
+ uid_resp_len = 4;
+
+ // calculate crypto UID. Always use last 4 Bytes.
+ if(cuid_ptr)
+ *cuid_ptr = bytes_to_num(uid_resp, 4);
+
+ // Construct SELECT UID command
+ sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
+ sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
+ AppendCrc14443a(sel_uid, 7); // calculate and add CRC
+ ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
+
+ // Receive the SAK
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ sak = resp[0];
+
+ // Test if more parts of the uid are coming
+ if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
+ // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+ // http://www.nxp.com/documents/application_note/AN10927.pdf
+ uid_resp[0] = uid_resp[1];
+ uid_resp[1] = uid_resp[2];
+ uid_resp[2] = uid_resp[3];
+ uid_resp_len = 3;
+ }
+
+ if(uid_ptr && anticollision)
+ memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+ p_hi14a_card->uidlen += uid_resp_len;
+ }
+ }
+
+ if(p_hi14a_card) {
+ p_hi14a_card->sak = sak;
+ p_hi14a_card->ats_len = 0;
+ }
+
+ // non iso14443a compliant tag
+ if( (sak & 0x20) == 0) return 2;
+
+ // Request for answer to select
+ AppendCrc14443a(rats, 2);
+ ReaderTransmit(rats, sizeof(rats), NULL);
+
+ if (!(len = ReaderReceive(resp, resp_par))) return 0;
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+ p_hi14a_card->ats_len = len;
+ }
+
+ // set default timeout based on ATS
+ iso14a_set_ATS_timeout(resp);
+ return 1;
+}
+
+void iso14443a_setup(uint8_t fpga_minor_mode) {
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ // Set up the synchronous serial port
+ FpgaSetupSsc();
+ // connect Demodulated Signal to ADC:
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ LED_D_OFF();
+ // Signal field is on with the appropriate LED
+ if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
+ fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
+ LED_D_ON();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
+
+ SpinDelay(20);
+
+ // Start the timer
+ StartCountSspClk();
+
+ // Prepare the demodulation functions
+ DemodReset();
+ UartReset();
+ NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
+ iso14a_set_timeout(10*106); // 20ms default
+}
+
+int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
+ uint8_t parity[MAX_PARITY_SIZE] = {0x00};
+ uint8_t real_cmd[cmd_len+4];
+ real_cmd[0] = 0x0a; //I-Block
+ // put block number into the PCB
+ real_cmd[0] |= iso14_pcb_blocknum;
+ real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
+ memcpy(real_cmd+2, cmd, cmd_len);
+ AppendCrc14443a(real_cmd,cmd_len+2);
+
+ ReaderTransmit(real_cmd, cmd_len+4, NULL);
+ size_t len = ReaderReceive(data, parity);
+ //DATA LINK ERROR
+ if (!len) return 0;
+
+ uint8_t *data_bytes = (uint8_t *) data;
+
+ // if we received an I- or R(ACK)-Block with a block number equal to the
+ // current block number, toggle the current block number
+ if (len >= 4 // PCB+CID+CRC = 4 bytes
+ && ((data_bytes[0] & 0xC0) == 0 // I-Block
+ || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+ && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+ {
+ iso14_pcb_blocknum ^= 1;
+ }
+ return len;
+}
+
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//-----------------------------------------------------------------------------
+void ReaderIso14443a(UsbCommand *c) {
+ iso14a_command_t param = c->arg[0];
+ size_t len = c->arg[1] & 0xffff;
+ size_t lenbits = c->arg[1] >> 16;
+ uint32_t timeout = c->arg[2];
+ uint8_t *cmd = c->d.asBytes;
+ uint32_t arg0 = 0;
+ byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
+
+ if (param & ISO14A_CONNECT)
+ clear_trace();
+
+ set_tracing(TRUE);
+
+ if (param & ISO14A_REQUEST_TRIGGER)
+ iso14a_set_trigger(TRUE);
+
+ if (param & ISO14A_CONNECT) {
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
+ if(!(param & ISO14A_NO_SELECT)) {
+ iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
+ arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
+ cmd_send(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t));
+ // if it fails, the cmdhf14a.c client quites.. however this one still executes.
+ if ( arg0 == 0 ) return;
+ }
+ }
+
+ if (param & ISO14A_SET_TIMEOUT)
+ iso14a_set_timeout(timeout);
+
+ if (param & ISO14A_APDU) {
+ arg0 = iso14_apdu(cmd, len, buf);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ }
+
+ if (param & ISO14A_RAW) {
+ if (param & ISO14A_APPEND_CRC) {
+ if (param & ISO14A_TOPAZMODE)
+ AppendCrc14443b(cmd,len);
+ else
+ AppendCrc14443a(cmd,len);
+
+ len += 2;
+ if (lenbits) lenbits += 16;
+ }
+ if (lenbits>0) { // want to send a specific number of bits (e.g. short commands)
+ if (param & ISO14A_TOPAZMODE) {
+ int bits_to_send = lenbits;
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
+ bits_to_send -= 7;
+ while (bits_to_send > 0) {
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
+ bits_to_send -= 8;
+ }
+ } else {
+ GetParity(cmd, lenbits/8, par);
+ ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
+ }
+ } else { // want to send complete bytes only
+ if (param & ISO14A_TOPAZMODE) {
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
+ while (i < len) {
+ ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
+ }
+ } else {
+ ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
+ }
+ }
+ arg0 = ReaderReceive(buf, par);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ }
+
+ if (param & ISO14A_REQUEST_TRIGGER)
+ iso14a_set_trigger(FALSE);
+
+ if (param & ISO14A_NO_DISCONNECT)
+ return;
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
+ LEDsoff();
+}
+
+// Determine the distance between two nonces.
+// Assume that the difference is small, but we don't know which is first.
+// Therefore try in alternating directions.
+int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
+
+ if (nt1 == nt2) return 0;
+
+ uint32_t nttmp1 = nt1;
+ uint32_t nttmp2 = nt2;
+
+ // 0xFFFF -- Half up and half down to find distance between nonces
+ for (uint16_t i = 1; i < 32768/8; i += 8) {
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6;
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7;
+
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2);
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3);
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4);
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5);
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6);
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7);
+ }
+ // either nt1 or nt2 are invalid nonces
+ return(-99999);
+}
+
+//-----------------------------------------------------------------------------
+// Recover several bits of the cypher stream. This implements (first stages of)
+// the algorithm described in "The Dark Side of Security by Obscurity and
+// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
+// (article by Nicolas T. Courtois, 2009)
+//-----------------------------------------------------------------------------
+
+void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype ) {
+
+ uint8_t mf_auth[] = { keytype, block, 0x00, 0x00 };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
+ uint8_t ks_list[8] = {0,0,0,0,0,0,0,0};
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+ uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
+ byte_t nt_diff = 0;
+ uint32_t nt = 0;
+ uint32_t previous_nt = 0;
+ uint32_t cuid = 0;
+
+ int32_t catch_up_cycles = 0;
+ int32_t last_catch_up = 0;
+ int32_t isOK = 0;
+ int32_t nt_distance = 0;
+
+ uint16_t elapsed_prng_sequences = 1;
+ uint16_t consecutive_resyncs = 0;
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+
+ // static variables here, is re-used in the next call
+ static uint32_t nt_attacked = 0;
+ static uint32_t sync_time = 0;
+ static uint32_t sync_cycles = 0;
+ static uint8_t par_low = 0;
+ static uint8_t mf_nr_ar3 = 0;
+
+ #define PRNG_SEQUENCE_LENGTH (1 << 16)
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+
+ AppendCrc14443a(mf_auth, 2);
+
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(FALSE);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+
+ sync_time = GetCountSspClk() & 0xfffffff8;
+ sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ nt_attacked = 0;
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("Mifare::Sync %u", sync_time);
+
+ if (first_try) {
+ mf_nr_ar3 = 0;
+ par_low = 0;
+ } else {
+ // we were unsuccessful on a previous call.
+ // Try another READER nonce (first 3 parity bits remain the same)
+ ++mf_nr_ar3;
+ mf_nr_ar[3] = mf_nr_ar3;
+ par[0] = par_low;
+ }
+
+ bool have_uid = FALSE;
+ uint8_t cascade_levels = 0;
+
+ LED_C_ON();
+ uint16_t i;
+ for(i = 0; TRUE; ++i) {
+
+ WDT_HIT();
+
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ isOK = -1;
+ break;
+ }
+
+ // this part is from Piwi's faster nonce collecting part in Hardnested.
+ if (!have_uid) { // need a full select cycle to get the uid first
+ iso14a_card_select_t card_info;
+ if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0)) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (ALL)");
+ break;
+ }
+ switch (card_info.uidlen) {
+ case 4 : cascade_levels = 1; break;
+ case 7 : cascade_levels = 2; break;
+ case 10: cascade_levels = 3; break;
+ default: break;
+ }
+ have_uid = TRUE;
+ } else { // no need for anticollision. We can directly select the card
+ if(!iso14443a_select_card(uid, NULL, &cuid, false, cascade_levels)) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (UID)");
+ continue;
+ }
+ }
+
+ // Sending timeslot of ISO14443a frame
+ sync_time = (sync_time & 0xfffffff8 ) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
+
+ // if we missed the sync time already, advance to the next nonce repeat
+ while( GetCountSspClk() > sync_time) {
+ ++elapsed_prng_sequences;
+ sync_time = (sync_time & 0xfffffff8 ) + sync_cycles;
+ }
+
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+
+ // Receive the (4 Byte) "random" nonce from TAG
+ if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
+ continue;
+
+ previous_nt = nt;
+ nt = bytes_to_num(receivedAnswer, 4);
+
+ // Transmit reader nonce with fake par
+ ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+
+ // we didn't calibrate our clock yet,
+ // iceman: has to be calibrated every time.
+ if (previous_nt && !nt_attacked) {
+
+ nt_distance = dist_nt(previous_nt, nt);
+
+ // if no distance between, then we are in sync.
+ if (nt_distance == 0) {
+ nt_attacked = nt;
+ } else {
+ if (nt_distance == -99999) { // invalid nonce received
+ ++unexpected_random;
+ if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+ isOK = -3; // Card has an unpredictable PRNG. Give up
+ break;
+ } else {
+ if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH;
+ LED_B_OFF();
+ continue; // continue trying...
+ }
+ }
+
+ if (++sync_tries > MAX_SYNC_TRIES) {
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ break;
+ }
+
+ sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
+
+ if (sync_cycles <= 0)
+ sync_cycles += PRNG_SEQUENCE_LENGTH;
+
+ if (MF_DBGLEVEL >= 4)
+ Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+
+ LED_B_OFF();
+ continue;
+ }
+ }
+ LED_B_OFF();
+
+ if ( (nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+
+ catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
+ if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
+ catch_up_cycles = 0;
+ continue;
+ }
+ // average?
+ catch_up_cycles /= elapsed_prng_sequences;
+
+ if (catch_up_cycles == last_catch_up) {
+ ++consecutive_resyncs;
+ } else {
+ last_catch_up = catch_up_cycles;
+ consecutive_resyncs = 0;
+ }
+
+ if (consecutive_resyncs < 3) {
+ if (MF_DBGLEVEL >= 4)
+ Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
+ } else {
+ sync_cycles += catch_up_cycles;
+
+ if (MF_DBGLEVEL >= 4)
+ Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
+
+ last_catch_up = 0;
+ catch_up_cycles = 0;
+ consecutive_resyncs = 0;
+ }
+ continue;
+ }
+
+ // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
+ catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
+
+ if (nt_diff == 0)
+ par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+
+ par_list[nt_diff] = SwapBits(par[0], 8);
+ ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // xor with NACK value to get keystream
+
+ // Test if the information is complete
+ if (nt_diff == 0x07) {
+ isOK = 1;
+ break;
+ }
+
+ nt_diff = (nt_diff + 1) & 0x07;
+ mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
+ par[0] = par_low;
+
+ } else {
+ // No NACK.
+ if (nt_diff == 0 && first_try) {
+ par[0]++;
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ isOK = -2;
+ break;
+ }
+ } else {
+ // Why this?
+ par[0] = ((par[0] & 0x1F) + 1) | par_low;
+ }
+ }
+
+ // reset the resyncs since we got a complete transaction on right time.
+ consecutive_resyncs = 0;
+ } // end for loop
+
+ mf_nr_ar[3] &= 0x1F;
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
+
+ uint8_t buf[28] = {0x00};
+ memset(buf, 0x00, sizeof(buf));
+ num_to_bytes(cuid, 4, buf);
+ num_to_bytes(nt, 4, buf + 4);
+ memcpy(buf + 8, par_list, 8);
+ memcpy(buf + 16, ks_list, 8);
+ memcpy(buf + 24, mf_nr_ar, 4);
+
+ cmd_send(CMD_ACK, isOK, 0, 0, buf, sizeof(buf) );
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ set_tracing(FALSE);
+}
+
+
+/**
+ *MIFARE 1K simulate.
+ *
+ *@param flags :
+ * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
+ * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section
+ * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section
+ * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section
+ * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory
+ * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later
+ *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
+ */
+void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) {
+
+ // init pseudorand
+ fast_prand( GetTickCount() );
+
+ int cardSTATE = MFEMUL_NOFIELD;
+ int _UID_LEN = 0; // 4, 7, 10
+ int vHf = 0; // in mV
+ int res = 0;
+ uint32_t selTimer = 0;
+ uint32_t authTimer = 0;
+ uint16_t len = 0;
+ uint8_t cardWRBL = 0;
+ uint8_t cardAUTHSC = 0;
+ uint8_t cardAUTHKEY = 0xff; // no authentication
+ uint32_t cuid = 0;
+ uint32_t ans = 0;
+ uint32_t cardINTREG = 0;
+ uint8_t cardINTBLOCK = 0;
+ struct Crypto1State mpcs = {0, 0};
+ struct Crypto1State *pcs;
+ pcs = &mpcs;
+ uint32_t numReads = 0; // Counts numer of times reader read a block
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+ uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
+ uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k
+ uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
+ uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
+ uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
+ // uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
+
+ uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+ uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+ uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+
+ // TAG Nonce - Authenticate response
+ uint8_t rAUTH_NT[4];
+ uint32_t nonce = prand();
+ num_to_bytes(nonce, 4, rAUTH_NT);
+
+ // uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
+ uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
+
+ // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
+ // This can be used in a reader-only attack.
+ nonces_t ar_nr_nonces[ATTACK_KEY_COUNT];
+ memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
+
+ // -- Determine the UID
+ // Can be set from emulator memory or incoming data
+ // Length: 4,7,or 10 bytes
+ if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
+ emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
+
+ if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
+ memcpy(rUIDBCC1, datain, 4);
+ _UID_LEN = 4;
+ } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
+ memcpy(&rUIDBCC1[1], datain, 3);
+ memcpy( rUIDBCC2, datain+3, 4);
+ _UID_LEN = 7;
+ } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
+ memcpy(&rUIDBCC1[1], datain, 3);
+ memcpy(&rUIDBCC2[1], datain+3, 3);
+ memcpy( rUIDBCC3, datain+6, 4);
+ _UID_LEN = 10;
+ }
+
+ switch (_UID_LEN) {
+ case 4:
+ sak_4[0] &= 0xFB;
+ // save CUID
+ cuid = bytes_to_num(rUIDBCC1, 4);
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("4B UID: %02x%02x%02x%02x",
+ rUIDBCC1[0],
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3]
+ );
+ }
+ break;
+ case 7:
+ atqa[0] |= 0x40;
+ sak_7[0] &= 0xFB;
+ // save CUID
+ cuid = bytes_to_num(rUIDBCC2, 4);
+ // CascadeTag, CT
+ rUIDBCC1[0] = 0x88;
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3],
+ rUIDBCC2[0],
+ rUIDBCC2[1],
+ rUIDBCC2[2],
+ rUIDBCC2[3]
+ );
+ }
+ break;
+ case 10:
+ atqa[0] |= 0x80;
+ sak_10[0] &= 0xFB;
+ // save CUID
+ cuid = bytes_to_num(rUIDBCC3, 4);
+ // CascadeTag, CT
+ rUIDBCC1[0] = 0x88;
+ rUIDBCC2[0] = 0x88;
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
+
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3],
+ rUIDBCC2[1],
+ rUIDBCC2[2],
+ rUIDBCC2[3],
+ rUIDBCC3[0],
+ rUIDBCC3[1],
+ rUIDBCC3[2],
+ rUIDBCC3[3]
+ );
+ }
+ break;
+ default:
+ break;
+ }
+ // calc some crcs
+ ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
+ ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
+ ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
+
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // free eventually allocated BigBuf memory but keep Emulator Memory
+ BigBuf_free_keep_EM();
+ clear_trace();
+ set_tracing(TRUE);
+
+ bool finished = FALSE;
+ while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
+ WDT_HIT();
+
+ // find reader field
+ if (cardSTATE == MFEMUL_NOFIELD) {
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ if (vHf > MF_MINFIELDV) {
+ cardSTATE_TO_IDLE();
+ LED_A_ON();
+ }
+ }
+ if (cardSTATE == MFEMUL_NOFIELD) continue;
+
+ // Now, get data
+ res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
+ if (res == 2) { //Field is off!
+ cardSTATE = MFEMUL_NOFIELD;
+ LEDsoff();
+ continue;
+ } else if (res == 1) {
+ break; // return value 1 means button press
+ }
+
+ // REQ or WUP request in ANY state and WUP in HALTED state
+ // this if-statement doesn't match the specification above. (iceman)
+ if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
+ selTimer = GetTickCount();
+ EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
+ cardSTATE = MFEMUL_SELECT1;
+ crypto1_destroy(pcs);
+ cardAUTHKEY = 0xff;
+ LEDsoff();
+ nonce = prand();
+ continue;
+ }
+
+ switch (cardSTATE) {
+ case MFEMUL_NOFIELD:
+ case MFEMUL_HALTED:
+ case MFEMUL_IDLE:{
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ case MFEMUL_SELECT1:{
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
+ EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
+ break;
+ }
+ // select card
+ if (len == 9 &&
+ ( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+
+ // SAK 4b
+ EmSendCmd(sak_4, sizeof(sak_4));
+ switch(_UID_LEN){
+ case 4:
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+ continue;
+ case 7:
+ case 10:
+ cardSTATE = MFEMUL_SELECT2;
+ continue;
+ default:break;
+ }
+ } else {
+ cardSTATE_TO_IDLE();
+ }
+ break;
+ }
+ case MFEMUL_SELECT2:{
+ if (!len) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+ break;
+ }
+ if (len == 9 &&
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
+
+ EmSendCmd(sak_7, sizeof(sak_7));
+ switch(_UID_LEN){
+ case 7:
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+ continue;
+ case 10:
+ cardSTATE = MFEMUL_SELECT3;
+ continue;
+ default:break;
+ }
+ }
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ case MFEMUL_SELECT3:{
+ if (!len) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
+ break;
+ }
+ if (len == 9 &&
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
+
+ EmSendCmd(sak_10, sizeof(sak_10));
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
+ break;
+ }
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ case MFEMUL_AUTH1:{
+ if( len != 8) {
+ cardSTATE_TO_IDLE();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+
+ uint32_t nr = bytes_to_num(receivedCmd, 4);
+ uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
+
+ // Collect AR/NR per keytype & sector
+ if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
+
+ int8_t index = -1;
+ int8_t empty = -1;
+ for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ // find which index to use
+ if ( (cardAUTHSC == ar_nr_nonces[i].sector) && (cardAUTHKEY == ar_nr_nonces[i].keytype))
+ index = i;
+
+ // keep track of empty slots.
+ if ( ar_nr_nonces[i].state == EMPTY)
+ empty = i;
+ }
+ // if no empty slots. Choose first and overwrite.
+ if ( index == -1 ) {
+ if ( empty == -1 ) {
+ index = 0;
+ ar_nr_nonces[index].state = EMPTY;
+ } else {
+ index = empty;
+ }
+ }
+
+ switch(ar_nr_nonces[index].state) {
+ case EMPTY: {
+ // first nonce collect
+ ar_nr_nonces[index].cuid = cuid;
+ ar_nr_nonces[index].sector = cardAUTHSC;
+ ar_nr_nonces[index].keytype = cardAUTHKEY;
+ ar_nr_nonces[index].nonce = nonce;
+ ar_nr_nonces[index].nr = nr;
+ ar_nr_nonces[index].ar = ar;
+ ar_nr_nonces[index].state = FIRST;
+ break;
+ }
+ case FIRST : {
+ // second nonce collect
+ ar_nr_nonces[index].nonce2 = nonce;
+ ar_nr_nonces[index].nr2 = nr;
+ ar_nr_nonces[index].ar2 = ar;
+ ar_nr_nonces[index].state = SECOND;
+
+ // send to client
+ cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, 0, 0, &ar_nr_nonces[index], sizeof(nonces_t));
+
+ ar_nr_nonces[index].state = EMPTY;
+ ar_nr_nonces[index].sector = 0;
+ ar_nr_nonces[index].keytype = 0;
+ break;
+ }
+ default: break;
+ }
+ }
+
+ /*
+ // Interactive mode flag, means we need to send ACK
+
+ crypto1_word(pcs, ar , 1);
+ cardRr = nr ^ crypto1_word(pcs, 0, 0);
+
+ test if auth OK
+ if (cardRr != prng_successor(nonce, 64)){
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+ cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ cardRr, prng_successor(nonce, 64));
+ Shouldn't we respond anything here?
+ Right now, we don't nack or anything, which causes the
+ reader to do a WUPA after a while. /Martin
+ -- which is the correct response. /piwi
+ cardSTATE_TO_IDLE();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ */
+
+ ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
+ num_to_bytes(ans, 4, rAUTH_AT);
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ LED_C_ON();
+
+ if (MF_DBGLEVEL >= 4) {
+ Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
+ cardAUTHSC,
+ cardAUTHKEY == 0 ? 'A' : 'B',
+ GetTickCount() - authTimer
+ );
+ }
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_WORK:{
+ if (len == 0) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ bool encrypted_data = (cardAUTHKEY != 0xFF) ;
+
+ if(encrypted_data)
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+
+ if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA ||
+ receivedCmd[0] == MIFARE_AUTH_KEYB) ) {
+
+ authTimer = GetTickCount();
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+ cardAUTHKEY = receivedCmd[0] - 0x60; // & 1
+ crypto1_destroy(pcs);
+ crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+
+ if (!encrypted_data) {
+ // first authentication
+ crypto1_word(pcs, cuid ^ nonce, 0);// Update crypto state
+ num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+
+ } else {
+ // nested authentication
+ ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
+ num_to_bytes(ans, 4, rAUTH_AT);
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+ }
+
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ cardSTATE = MFEMUL_AUTH1;
+ break;
+ }
+
+ // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
+ // BUT... ACK --> NACK
+ if (len == 1 && receivedCmd[0] == CARD_ACK) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+
+ // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
+ if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ break;
+ }
+
+ if(len != 4) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+
+ if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK ||
+ receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK ||
+ receivedCmd[0] == MIFARE_CMD_INC ||
+ receivedCmd[0] == MIFARE_CMD_DEC ||
+ receivedCmd[0] == MIFARE_CMD_RESTORE ||
+ receivedCmd[0] == MIFARE_CMD_TRANSFER ) {
+
+ if (receivedCmd[1] >= 16 * 4) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ break;
+ }
+
+ if (receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+ break;
+ }
+ }
+ // read block
+ if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]);
+
+ emlGetMem(response, receivedCmd[1], 1);
+ AppendCrc14443a(response, 16);
+ mf_crypto1_encrypt(pcs, response, 18, response_par);
+ EmSendCmdPar(response, 18, response_par);
+ numReads++;
+ if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
+ Dbprintf("%d reads done, exiting", numReads);
+ finished = true;
+ }
+ break;
+ }
+ // write block
+ if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]);
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ cardSTATE = MFEMUL_WRITEBL2;
+ cardWRBL = receivedCmd[1];
+ break;
+ }
+ // increment, decrement, restore
+ if ( receivedCmd[0] == MIFARE_CMD_INC ||
+ receivedCmd[0] == MIFARE_CMD_DEC ||
+ receivedCmd[0] == MIFARE_CMD_RESTORE) {
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]);
+
+ if (emlCheckValBl(receivedCmd[1])) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ if (receivedCmd[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC;
+ if (receivedCmd[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC;
+ if (receivedCmd[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST;
+ cardWRBL = receivedCmd[1];
+ break;
+ }
+ // transfer
+ if (receivedCmd[0] == MIFARE_CMD_TRANSFER) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]);
+ if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ else
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ break;
+ }
+ // halt
+ if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) {
+ LED_B_OFF();
+ LED_C_OFF();
+ cardSTATE = MFEMUL_HALTED;
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ // RATS
+ if (receivedCmd[0] == ISO14443A_CMD_RATS) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ // command not allowed
+ if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ case MFEMUL_WRITEBL2:{
+ if (len == 18) {
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ emlSetMem(receivedCmd, cardWRBL, 1);
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ cardSTATE = MFEMUL_WORK;
+ } else {
+ cardSTATE_TO_IDLE();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ }
+ break;
+ }
+ case MFEMUL_INTREG_INC:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ cardINTREG = cardINTREG + ans;
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_INTREG_DEC:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ cardINTREG = cardINTREG - ans;
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_INTREG_REST:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ }
+ }
+
+ if (MF_DBGLEVEL >= 1)
+ Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+
+ cmd_send(CMD_ACK,1,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ set_tracing(FALSE);
+}
+
+
+//-----------------------------------------------------------------------------
+// MIFARE sniffer.
+//
+// if no activity for 2sec, it sends the collected data to the client.
+//-----------------------------------------------------------------------------
+// "hf mf sniff"
+void RAMFUNC SniffMifare(uint8_t param) {
+
+ LEDsoff();
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(TRUE);
+
+ // The command (reader -> tag) that we're receiving.
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
+ // The response (tag -> reader) that we're receiving.
+ uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+ // allocate the DMA buffer, used to stream samples from the FPGA
+ // [iceman] is this sniffed data unsigned?
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+ uint8_t *data = dmaBuf;
+ uint8_t previous_data = 0;
+ int maxDataLen = 0;
+ int dataLen = 0;
+ bool ReaderIsActive = FALSE;
+ bool TagIsActive = FALSE;
+
+ // Set up the demodulator for tag -> reader responses.
+ DemodInit(receivedResponse, receivedResponsePar);
+
+ // Set up the demodulator for the reader -> tag commands
+ UartInit(receivedCmd, receivedCmdPar);
+
+ // Setup and start DMA.
+ // set transfer address and number of bytes. Start transfer.
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
+
+ LED_D_OFF();
+
+ MfSniffInit();
+
+ // And now we loop, receiving samples.
+ for(uint32_t sniffCounter = 0;; ) {
+
+ LED_A_ON();
+ WDT_HIT();
+
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled by button");
+ break;
+ }
+
+ if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
+ // check if a transaction is completed (timeout after 2000ms).
+ // if yes, stop the DMA transfer and send what we have so far to the client
+ if (MfSniffSend(2000)) {
+ // Reset everything - we missed some sniffed data anyway while the DMA was stopped
+ sniffCounter = 0;
+ data = dmaBuf;
+ maxDataLen = 0;
+ ReaderIsActive = FALSE;
+ TagIsActive = FALSE;
+ // Setup and start DMA. set transfer address and number of bytes. Start transfer.
+ if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+ if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
+ return;
+ }
+ }
+ }
+
+ int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
+
+ if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
+ dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
+ else
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
+
+ // test for length of buffer
+ if(dataLen > maxDataLen) { // we are more behind than ever...
+ maxDataLen = dataLen;
+ if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
+ Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+ break;
+ }
+ }
+ if(dataLen < 1) continue;
+
+ // primary buffer was stopped ( <-- we lost data!
+ if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+ AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ Dbprintf("RxEmpty ERROR, data length:%d", dataLen); // temporary
+ }
+ // secondary buffer sets as primary, secondary buffer was stopped
+ if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ LED_A_OFF();
+
+ if (sniffCounter & 0x01) {
+
+ // no need to try decoding tag data if the reader is sending
+ if(!TagIsActive) {
+ uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
+ if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
+ LED_C_INV();
+
+ if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
+
+ UartInit(receivedCmd, receivedCmdPar);
+ DemodReset();
+ }
+ ReaderIsActive = (Uart.state != STATE_UNSYNCD);
+ }
+
+ // no need to try decoding tag data if the reader is sending
+ if(!ReaderIsActive) {
+ uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
+ if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
+ LED_C_INV();
+
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
+
+ DemodReset();
+ UartInit(receivedCmd, receivedCmdPar);
+ }
+ TagIsActive = (Demod.state != DEMOD_UNSYNCD);
+ }
+ }
+
+ previous_data = *data;
+ sniffCounter++;
+ data++;
+
+ if(data == dmaBuf + DMA_BUFFER_SIZE)
+ data = dmaBuf;
+
+ } // main cycle
+
+ if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+
+ FpgaDisableSscDma();
+ MfSniffEnd();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ set_tracing(FALSE);
+}