j--; // overwrite parity with next data
// if parity fails then return 0
switch (pType) {
- case 3: if (BitStream[j]==1) return 0; break; //should be 0 spacer bit
- case 2: if (BitStream[j]==0) return 0; break; //should be 1 spacer bit
- default: //test parity
- if (parityTest(parityWd, pLen, pType) == 0) return 0; break;
+ case 3: if (BitStream[j]==1) {return 0;} break; //should be 0 spacer bit
+ case 2: if (BitStream[j]==0) {return 0;} break; //should be 1 spacer bit
+ default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity
}
bitCnt+=(pLen-1);
parityWd = 0;
//by marshmellow
void askAmp(uint8_t *BitStream, size_t size)
{
+ uint8_t Last = 128;
for(size_t i = 1; i<size; i++){
if (BitStream[i]-BitStream[i-1]>=30) //large jump up
- BitStream[i]=127;
- else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
- BitStream[i]=-127;
+ Last = 255;
+ else if(BitStream[i-1]-BitStream[i]>=20) //large jump down
+ Last = 0;
+
+ BitStream[i-1] = Last;
}
return;
}
//return start position
return (int) startIdx;
}
- return -5;
+ return -5; //spacer bits not found - not a valid gproxII
}
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
+//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
size_t last_transition = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ // (could also be fc/5 && fc/7 for fsk1 = 4-9)
for(idx = 161; idx < size-20; idx++) {
// threshold current value
else dest[idx] = 1;
// Check for 0->1 transition
- if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+ if (dest[idx-1] < dest[idx]) {
preLastSample = LastSample;
LastSample = currSample;
currSample = idx-last_transition;
- if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
+ if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3)
//do nothing with extra garbage
- } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
+ } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
+ //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
- dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
+ dest[numBits-1]=1;
}
dest[numBits++]=1;
- } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
+ } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
//do nothing with beginning garbage
- } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
+ } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
dest[numBits++]=1;
- } else { //9+ = 10 sample waves
+ } else { //9+ = 10 sample waves (or 6+ = 7)
dest[numBits++]=0;
}
last_transition = idx;
}
//translate 11111100000 to 10
+//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
uint32_t n=1;
for( idx=1; idx < size; idx++) {
n++;
- if (dest[idx]==lastval) continue;
+ if (dest[idx]==lastval) continue; //skip until we hit a transition
+ //find out how many bits (n) we collected
//if lastval was 1, we have a 1->0 crossing
if (dest[idx-1]==1) {
n = (n * fclow + rfLen/2) / rfLen;
}
if (n == 0) n = 1;
+ //add to our destination the bits we collected
memset(dest+numBits, dest[idx-1]^invert , n);
numBits += n;
n=0;
return (int) startIdx;
}
+// find presco preamble 0x10D in already demoded data
+int PrescoDemod(uint8_t *dest, size_t *size) {
+ //make sure buffer has data
+ if (*size < 64*2) return -2;
+
+ size_t startIdx = 0;
+ uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ //return start position
+ return (int) startIdx;
+}
+
// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
// BitStream must contain previously askrawdemod and biphasedemoded data
int FDXBdemodBI(uint8_t *dest, size_t *size)
numBits += (firstFullWave / *clock);
//set start of wave as clock align
lastClkBit = firstFullWave;
- //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
- //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+ if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
+ if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
waveStart = 0;
dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
i=0;
// warning - overwriting buffer given with raw wave data with ST removed...
while ( dataloc < bufsize-(clk/2) ) {
- //compensate for long high at end of ST not being high... (we cut out the high part)
+ //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
for(i=0; i < clk/2-tol; ++i) {
buffer[dataloc+i] = high+5;
}
}
newloc += i;
- //skip next ST
+ //skip next ST - we just assume it will be there from now on...
dataloc += clk*4;
}
*size = newloc;