// Jonathan Westhues, split Nov 2006
// Modified by Greg Jones, Jan 2009
// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
-// Modified by piwi, Oct 2018
+// Modified by piwi, Oct 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// transmission modes from tag to reader. As of Oct 2018 this code supports
// both reader modes and the high speed variant with one subcarrier from card to reader.
// As long as the card fully support ISO 15693 this is no problem, since the
-// reader chooses both data rates, but some non-standard tags do not.
+// reader chooses both data rates, but some non-standard tags do not.
// For card simulation, the code supports both high and low speed modes with one subcarrier.
//
// VCD (reader) -> VICC (tag)
// 1 out of 256:
-// data rate: 1,66 kbit/s (fc/8192)
-// used for long range
+// data rate: 1,66 kbit/s (fc/8192)
+// used for long range
// 1 out of 4:
-// data rate: 26,48 kbit/s (fc/512)
-// used for short range, high speed
+// data rate: 26,48 kbit/s (fc/512)
+// used for short range, high speed
//
// VICC (tag) -> VCD (reader)
// Modulation:
-// ASK / one subcarrier (423,75 khz)
-// FSK / two subcarriers (423,75 khz && 484,28 khz)
+// ASK / one subcarrier (423,75 khz)
+// FSK / two subcarriers (423,75 khz && 484,28 khz)
// Data Rates / Modes:
-// low ASK: 6,62 kbit/s
-// low FSK: 6.67 kbit/s
-// high ASK: 26,48 kbit/s
-// high FSK: 26,69 kbit/s
+// low ASK: 6,62 kbit/s
+// low FSK: 6.67 kbit/s
+// high ASK: 26,48 kbit/s
+// high FSK: 26,69 kbit/s
//-----------------------------------------------------------------------------
// *) add anti-collision support for inventory-commands
// *) read security status of a block
// *) sniffing and simulation do not support two subcarrier modes.
-// *) remove or refactor code under "depricated"
+// *) remove or refactor code under "deprecated"
// *) document all the functions
+#include "iso15693.h"
#include "proxmark3.h"
#include "util.h"
#include "iso15693tools.h"
#include "protocols.h"
#include "cmd.h"
+#include "BigBuf.h"
+#include "fpgaloader.h"
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
-// This section basicly contains transmission and receiving of bits
+// This section basically contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
-#define FrameSOF Iso15693FrameSOF
-#define Logic0 Iso15693Logic0
-#define Logic1 Iso15693Logic1
-#define FrameEOF Iso15693FrameEOF
-
-#define Crc(data,datalen) Iso15693Crc(data,datalen)
-#define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
-#define sprintUID(target,uid) Iso15693sprintUID(target,uid)
-
-// approximate amplitude=sqrt(ci^2+cq^2) by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
-#define AMPLITUDE(ci, cq) (MAX(ABS(ci), ABS(cq)) + MIN(ABS(ci), ABS(cq))/2)
-
// buffers
-#define ISO15693_DMA_BUFFER_SIZE 128
-#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
-#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
-
-// timing. Delays in SSP_CLK ticks.
-#define DELAY_READER_TO_ARM 8
-#define DELAY_ARM_TO_READER 1
-#define DELAY_ISO15693_VCD_TO_VICC 132 // 132/423.75kHz = 311.5us from end of EOF to start of tag response
+#define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
+#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
+#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
// ---------------------------
// Signal Processing
for(i = 0; i < 4; i++) {
ToSendStuffBit(1);
}
+
+ ToSendMax++;
}
// encode data using "1 out of 256" scheme
}
-static void CodeIso15693AsTag(uint8_t *cmd, int n)
-{
+// static uint8_t encode4Bits(const uint8_t b) {
+ // uint8_t c = b & 0xF;
+ // // OTA, the least significant bits first
+ // // The columns are
+ // // 1 - Bit value to send
+ // // 2 - Reversed (big-endian)
+ // // 3 - Manchester Encoded
+ // // 4 - Hex values
+
+ // switch(c){
+ // // 1 2 3 4
+ // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
+ // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
+ // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
+ // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
+ // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
+ // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
+ // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
+ // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
+ // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
+ // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
+ // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
+ // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
+ // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
+ // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
+ // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
+ // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
+
+ // }
+// }
+
+static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
+
+void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
+ /*
+ * SOF comprises 3 parts;
+ * * An unmodulated time of 56.64 us
+ * * 24 pulses of 423.75 kHz (fc/32)
+ * * A logic 1, which starts with an unmodulated time of 18.88us
+ * followed by 8 pulses of 423.75kHz (fc/32)
+ *
+ * EOF comprises 3 parts:
+ * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
+ * time of 18.88us.
+ * - 24 pulses of fc/32
+ * - An unmodulated time of 56.64 us
+ *
+ * A logic 0 starts with 8 pulses of fc/32
+ * followed by an unmodulated time of 256/fc (~18,88us).
+ *
+ * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
+ * 8 pulses of fc/32 (also 18.88us)
+ *
+ * A bit here becomes 8 pulses of fc/32. Therefore:
+ * The SOF can be written as 00011101 = 0x1D
+ * The EOF can be written as 10111000 = 0xb8
+ * A logic 1 is 01
+ * A logic 0 is 10
+ *
+ * */
+
ToSendReset();
// SOF
- ToSendStuffBit(0);
- ToSendStuffBit(0);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x1D; // 00011101
// data
- for(int i = 0; i < n; i++) {
- for(int j = 0; j < 8; j++) {
- if ((cmd[i] >> j) & 0x01) {
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- } else {
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- }
- }
+ for (int i = 0; i < len; i++) {
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
}
// EOF
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(0);
- ToSendStuffBit(0);
+ ToSend[++ToSendMax] = 0xB8; // 10111000
ToSendMax++;
}
// Transmit the command (to the tag) that was placed in cmd[].
-static void TransmitTo15693Tag(const uint8_t *cmd, int len)
+static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
{
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+ while (GetCountSspClk() < start_time) ;
LED_B_ON();
- for(int c = 0; c < len; ) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = ~cmd[c];
- c++;
- }
- WDT_HIT();
- }
+ for(int c = 0; c < len; c++) {
+ uint8_t data = cmd[c];
+ for (int i = 0; i < 8; i++) {
+ uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
+ while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
+ AT91C_BASE_SSC->SSC_THR = send_word;
+ while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
+ AT91C_BASE_SSC->SSC_THR = send_word;
+ data <<= 1;
+ }
+ WDT_HIT();
+ }
LED_B_OFF();
}
+
//-----------------------------------------------------------------------------
// Transmit the tag response (to the reader) that was placed in cmd[].
//-----------------------------------------------------------------------------
-static void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow)
-{
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
- uint8_t shift_delay = start_time & 0x00000007;
- uint8_t bitmask = 0x00;
- for (int i = 0; i < shift_delay; i++) {
- bitmask |= (0x01 << i);
+ uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF
+
+ while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
+ if (slot_time) {
+ modulation_start_time += slot_time; // use next available slot
+ } else {
+ modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
+ }
}
- while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
- AT91C_BASE_SSC->SSC_THR = 0x00; // clear TXRDY
+ while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
+ /* wait */ ;
+
+ uint8_t shift_delay = modulation_start_time & 0x00000007;
+
+ *start_time = modulation_start_time - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
- for(size_t c = 0; c <= len; c++) {
- uint8_t bits_to_send = bits_to_shift << (8 - shift_delay) | (c==len?0x00:cmd[c]) >> shift_delay;
- bits_to_shift = cmd[c] & bitmask;
- for (int i = 7; i >= 0; i--) {
+ uint8_t bits_to_send = 0x00;
+ for (size_t c = 0; c < len; c++) {
+ for (int i = (c==0?4:7); i >= 0; i--) {
+ uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
for (int j = 0; j < (slow?4:1); ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- if (bits_to_send >> i & 0x01) {
- AT91C_BASE_SSC->SSC_THR = 0xff;
- } else {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
+ bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
+ AT91C_BASE_SSC->SSC_THR = bits_to_send;
+ bits_to_shift = cmd_bits;
j++;
}
- WDT_HIT();
}
- }
- }
+ }
+ WDT_HIT();
+ }
+ // send the remaining bits, padded with 0:
+ bits_to_send = bits_to_shift << (8 - shift_delay);
+ for ( ; ; ) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = bits_to_send;
+ break;
+ }
+ }
LED_C_OFF();
}
//=============================================================================
// An ISO 15693 decoder for tag responses (one subcarrier only).
-// Uses cross correlation to identify the SOF, each bit, and EOF.
+// Uses cross correlation to identify each bit and EOF.
// This function is called 8 times per bit (every 2 subcarrier cycles).
// Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
// i.e. function is called every 4,72us
// false if we are still waiting for some more
//=============================================================================
-#define SUBCARRIER_DETECT_THRESHOLD 2
-#define SOF_CORRELATOR_LEN (1<<5)
+#define NOISE_THRESHOLD 160 // don't try to correlate noise
typedef struct DecodeTag {
enum {
- STATE_TAG_UNSYNCD,
- STATE_TAG_AWAIT_SOF_1,
- STATE_TAG_AWAIT_SOF_2,
+ STATE_TAG_SOF_LOW,
+ STATE_TAG_SOF_HIGH,
+ STATE_TAG_SOF_HIGH_END,
STATE_TAG_RECEIVING_DATA,
- STATE_TAG_AWAIT_EOF
+ STATE_TAG_EOF
} state;
int bitCount;
int posCount;
SOF_PART2
} lastBit;
uint16_t shiftReg;
+ uint16_t max_len;
uint8_t *output;
int len;
int sum1, sum2;
- uint8_t SOF_low;
- uint8_t SOF_high;
- uint8_t SOF_last;
- int32_t SOF_corr;
- int32_t SOF_corr_prev;
- uint8_t SOF_correlator[SOF_CORRELATOR_LEN];
} DecodeTag_t;
-static int Handle15693SamplesFromTag(int8_t ci, int8_t cq, DecodeTag_t *DecodeTag)
+
+static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag)
{
switch(DecodeTag->state) {
- case STATE_TAG_UNSYNCD:
- // initialize SOF correlator. We are looking for 12 samples low and 12 samples high.
- DecodeTag->SOF_low = 0;
- DecodeTag->SOF_high = 12;
- DecodeTag->SOF_last = 23;
- memset(DecodeTag->SOF_correlator, 0x00, DecodeTag->SOF_last + 1);
- DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
- DecodeTag->SOF_corr = DecodeTag->SOF_correlator[DecodeTag->SOF_last];
- DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
- // initialize Decoder
- DecodeTag->posCount = 0;
- DecodeTag->bitCount = 0;
- DecodeTag->len = 0;
- DecodeTag->state = STATE_TAG_AWAIT_SOF_1;
- break;
-
- case STATE_TAG_AWAIT_SOF_1:
- // calculate the correlation in real time. Look at differences only.
- DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_low++];
- DecodeTag->SOF_corr -= 2*DecodeTag->SOF_correlator[DecodeTag->SOF_high++];
- DecodeTag->SOF_last++;
- DecodeTag->SOF_low &= (SOF_CORRELATOR_LEN-1);
- DecodeTag->SOF_high &= (SOF_CORRELATOR_LEN-1);
- DecodeTag->SOF_last &= (SOF_CORRELATOR_LEN-1);
- DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
- DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_last];
-
- // if correlation increases for 10 consecutive samples, we are close to maximum correlation
- if (DecodeTag->SOF_corr > DecodeTag->SOF_corr_prev + SUBCARRIER_DETECT_THRESHOLD) {
+ case STATE_TAG_SOF_LOW:
+ // waiting for 12 times low (11 times low is accepted as well)
+ if (amplitude < NOISE_THRESHOLD) {
DecodeTag->posCount++;
} else {
- DecodeTag->posCount = 0;
+ if (DecodeTag->posCount > 10) {
+ DecodeTag->posCount = 1;
+ DecodeTag->sum1 = 0;
+ DecodeTag->state = STATE_TAG_SOF_HIGH;
+ } else {
+ DecodeTag->posCount = 0;
+ }
}
+ break;
- if (DecodeTag->posCount == 10) { // correlation increased 10 times
- DecodeTag->state = STATE_TAG_AWAIT_SOF_2;
+ case STATE_TAG_SOF_HIGH:
+ // waiting for 10 times high. Take average over the last 8
+ if (amplitude > NOISE_THRESHOLD) {
+ DecodeTag->posCount++;
+ if (DecodeTag->posCount > 2) {
+ DecodeTag->sum1 += amplitude; // keep track of average high value
+ }
+ if (DecodeTag->posCount == 10) {
+ DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
+ DecodeTag->state = STATE_TAG_SOF_HIGH_END;
+ }
+ } else { // high phase was too short
+ DecodeTag->posCount = 1;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
}
-
- DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
-
break;
- case STATE_TAG_AWAIT_SOF_2:
- // calculate the correlation in real time. Look at differences only.
- DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_low++];
- DecodeTag->SOF_corr -= 2*DecodeTag->SOF_correlator[DecodeTag->SOF_high++];
- DecodeTag->SOF_last++;
- DecodeTag->SOF_low &= (SOF_CORRELATOR_LEN-1);
- DecodeTag->SOF_high &= (SOF_CORRELATOR_LEN-1);
- DecodeTag->SOF_last &= (SOF_CORRELATOR_LEN-1);
- DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
- DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_last];
-
- if (DecodeTag->SOF_corr >= DecodeTag->SOF_corr_prev) { // we are looking for the maximum correlation
- DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
- } else {
- DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF
- DecodeTag->sum1 = DecodeTag->SOF_correlator[DecodeTag->SOF_last];
+ case STATE_TAG_SOF_HIGH_END:
+ // waiting for a falling edge
+ if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
+ DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
+ DecodeTag->shiftReg = 0;
+ DecodeTag->bitCount = 0;
+ DecodeTag->len = 0;
+ DecodeTag->sum1 = amplitude;
DecodeTag->sum2 = 0;
DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_RECEIVING_DATA;
LED_C_ON();
+ } else {
+ DecodeTag->posCount++;
+ if (DecodeTag->posCount > 13) { // high phase too long
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
}
-
break;
case STATE_TAG_RECEIVING_DATA:
DecodeTag->sum1 = 0;
DecodeTag->sum2 = 0;
}
-
if (DecodeTag->posCount <= 4) {
- DecodeTag->sum1 += AMPLITUDE(ci, cq);
+ DecodeTag->sum1 += amplitude;
} else {
- DecodeTag->sum2 += AMPLITUDE(ci, cq);
+ DecodeTag->sum2 += amplitude;
}
-
if (DecodeTag->posCount == 8) {
- int16_t corr_1 = (DecodeTag->sum2 - DecodeTag->sum1) / 4;
- int16_t corr_0 = (DecodeTag->sum1 - DecodeTag->sum2) / 4;
- int16_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 8;
+ int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
+ int32_t corr_0 = -corr_1;
+ int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
if (corr_EOF > corr_0 && corr_EOF > corr_1) {
- DecodeTag->state = STATE_TAG_AWAIT_EOF;
+ if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
+ DecodeTag->state = STATE_TAG_EOF;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
} else if (corr_1 > corr_0) {
// logic 1
if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
- DecodeTag->lastBit = SOF_PART2;
+ DecodeTag->lastBit = SOF_PART2; // SOF completed
} else {
DecodeTag->lastBit = LOGIC1;
DecodeTag->shiftReg >>= 1;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ if (DecodeTag->len > DecodeTag->max_len) {
+ // buffer overflow, give up
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
} else {
// logic 0
if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
- DecodeTag->state = STATE_TAG_UNSYNCD;
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
} else {
DecodeTag->lastBit = LOGIC0;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ if (DecodeTag->len > DecodeTag->max_len) {
+ // buffer overflow, give up
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
DecodeTag->posCount++;
break;
- case STATE_TAG_AWAIT_EOF:
- if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
- LED_C_OFF();
- return true;
+ case STATE_TAG_EOF:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
} else {
- DecodeTag->state = STATE_TAG_UNSYNCD;
- LED_C_OFF();
+ DecodeTag->sum2 += amplitude;
}
+ if (DecodeTag->posCount == 8) {
+ int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
+ int32_t corr_0 = -corr_1;
+ int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
+ if (corr_EOF > corr_0 || corr_1 > corr_0) {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ } else {
+ LED_C_OFF();
+ return true;
+ }
+ }
+ DecodeTag->posCount++;
break;
- default:
- DecodeTag->state = STATE_TAG_UNSYNCD;
- LED_C_OFF();
- break;
}
return false;
}
-static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data)
+static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
{
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
DecodeTag->output = data;
- DecodeTag->state = STATE_TAG_UNSYNCD;
+ DecodeTag->max_len = max_len;
}
+
+static void DecodeTagReset(DecodeTag_t *DecodeTag)
+{
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+}
+
+
/*
* Receive and decode the tag response, also log to tracebuffer
*/
-static int GetIso15693AnswerFromTag(uint8_t* response, int timeout)
+static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
{
- int maxBehindBy = 0;
- int lastRxCounter, samples = 0;
- int8_t ci, cq;
+ int samples = 0;
bool gotFrame = false;
- uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+ uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
// the Decoder data structure
- DecodeTag_t DecodeTag;
- DecodeTagInit(&DecodeTag, response);
+ DecodeTag_t DecodeTag = { 0 };
+ DecodeTagInit(&DecodeTag, response, max_len);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
// And put the FPGA in the appropriate mode
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
// Setup and start DMA.
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
uint16_t *upTo = dmaBuf;
- lastRxCounter = ISO15693_DMA_BUFFER_SIZE;
for(;;) {
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO15693_DMA_BUFFER_SIZE-1);
- if(behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- }
+ uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
- if (behindBy < 1) continue;
+ if (behindBy == 0) continue;
- ci = (int8_t)(*upTo >> 8);
- cq = (int8_t)(*upTo & 0xff);
+ uint16_t tagdata = *upTo++;
- upTo++;
- lastRxCounter--;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
- lastRxCounter += ISO15693_DMA_BUFFER_SIZE;
+ if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ break;
+ }
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
+
samples++;
- if (Handle15693SamplesFromTag(ci, cq, &DecodeTag)) {
+ if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
gotFrame = true;
break;
}
- if(samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
+ if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
DecodeTag.len = 0;
break;
}
}
FpgaDisableSscDma();
+ BigBuf_free();
- if (DEBUG) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- maxBehindBy, samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+ if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
- if (tracing && DecodeTag.len > 0) {
+ if (DecodeTag.len > 0) {
LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
}
typedef struct DecodeReader {
enum {
STATE_READER_UNSYNCD,
+ STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
int byteCount;
int byteCountMax;
int posCount;
- int sum1, sum2;
+ int sum1, sum2;
uint8_t *output;
} DecodeReader_t;
-static int Handle15693SampleFromReader(uint8_t bit, DecodeReader_t* DecodeReader)
+static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len)
+{
+ DecodeReader->output = data;
+ DecodeReader->byteCountMax = max_len;
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReader->byteCount = 0;
+ DecodeReader->bitCount = 0;
+ DecodeReader->posCount = 1;
+ DecodeReader->shiftReg = 0;
+}
+
+
+static void DecodeReaderReset(DecodeReader_t* DecodeReader)
{
- switch(DecodeReader->state) {
+ DecodeReader->state = STATE_READER_UNSYNCD;
+}
+
+
+static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
+{
+ switch (DecodeReader->state) {
case STATE_READER_UNSYNCD:
- if(!bit) {
+ // wait for unmodulated carrier
+ if (bit) {
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+ }
+ break;
+
+ case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
+ if (!bit) {
// we went low, so this could be the beginning of a SOF
- DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
DecodeReader->posCount = 1;
+ DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
}
break;
case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
DecodeReader->posCount++;
- if(bit) { // detected rising edge
- if(DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
- DecodeReader->state = STATE_READER_UNSYNCD;
+ if (bit) { // detected rising edge
+ if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else { // SOF
DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
}
} else {
- if(DecodeReader->posCount > 5) { // stayed low for too long
- DecodeReader->state = STATE_READER_UNSYNCD;
+ if (DecodeReader->posCount > 5) { // stayed low for too long
+ DecodeReaderReset(DecodeReader);
} else {
// do nothing, keep waiting
}
case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
DecodeReader->posCount++;
- if(!bit) { // detected a falling edge
+ if (!bit) { // detected a falling edge
if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
} else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
DecodeReader->Coding = CODING_1_OUT_OF_4;
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
} else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
- DecodeReader->state = STATE_READER_UNSYNCD;
- } else { // SOF for 1 out of 4 coding
+ DecodeReaderReset(DecodeReader);
+ } else { // SOF for 1 out of 256 coding
DecodeReader->Coding = CODING_1_OUT_OF_256;
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
}
} else {
- if(DecodeReader->posCount > 29) { // stayed high for too long
- DecodeReader->state = STATE_READER_UNSYNCD;
+ if (DecodeReader->posCount > 29) { // stayed high for too long
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else {
// do nothing, keep waiting
}
if (bit) { // detected rising edge
if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else {
DecodeReader->posCount = 1;
DecodeReader->bitCount = 0;
}
} else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else {
+ DecodeReader->posCount = 1;
DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
}
}
} else {
if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount > 34) { // signal stayed low for too long
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
} else {
// do nothing, keep waiting
}
} else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount > 26) { // signal stayed low for too long
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
} else {
// do nothing, keep waiting
}
case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
DecodeReader->posCount++;
if (bit) {
- if (DecodeReader->posCount == 33) {
+ if (DecodeReader->posCount == 9) {
DecodeReader->posCount = 1;
DecodeReader->bitCount = 0;
DecodeReader->byteCount = 0;
// do nothing, keep waiting
}
} else { // unexpected falling edge
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
}
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
+ bit = !!bit;
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
DecodeReader->sum1 = bit;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
- int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
- int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
- int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
- if (corr01 > corr11 && corr01 > corr10) { // EOF
+ if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
LED_B_OFF(); // Finished receiving
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
if (DecodeReader->byteCount != 0) {
return true;
}
}
- if (corr10 > corr11) { // detected a 2bit position
+ if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
DecodeReader->shiftReg >>= 2;
DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
}
if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
// buffer overflow, give up
LED_B_OFF();
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
}
DecodeReader->bitCount = 0;
+ DecodeReader->shiftReg = 0;
} else {
DecodeReader->bitCount++;
}
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
+ bit = !!bit;
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
DecodeReader->sum1 = bit;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
- int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
- int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
- int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
- if (corr01 > corr11 && corr01 > corr10) { // EOF
+ if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
LED_B_OFF(); // Finished receiving
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
if (DecodeReader->byteCount != 0) {
return true;
}
}
- if (corr10 > corr11) { // detected the bit position
+ if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
DecodeReader->shiftReg = DecodeReader->bitCount;
}
if (DecodeReader->bitCount == 255) { // we have a full byte
if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
// buffer overflow, give up
LED_B_OFF();
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
}
}
DecodeReader->bitCount++;
default:
LED_B_OFF();
- DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReaderReset(DecodeReader);
break;
}
}
-static void DecodeReaderInit(uint8_t *data, uint16_t max_len, DecodeReader_t* DecodeReader)
-{
- DecodeReader->output = data;
- DecodeReader->byteCountMax = max_len;
- DecodeReader->state = STATE_READER_UNSYNCD;
- DecodeReader->byteCount = 0;
- DecodeReader->bitCount = 0;
- DecodeReader->shiftReg = 0;
-}
-
-
//-----------------------------------------------------------------------------
// Receive a command (from the reader to us, where we are the simulated tag),
// and store it in the given buffer, up to the given maximum length. Keeps
// spinning, waiting for a well-framed command, until either we get one
-// (returns true) or someone presses the pushbutton on the board (false).
+// (returns len) or someone presses the pushbutton on the board (returns -1).
//
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
-static int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time)
-{
- int maxBehindBy = 0;
- int lastRxCounter, samples = 0;
+int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
+ int samples = 0;
bool gotFrame = false;
uint8_t b;
uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the decoder data structure
- DecodeReader_t DecodeReader;
- DecodeReaderInit(received, max_len, &DecodeReader);
+ DecodeReader_t DecodeReader = {0};
+ DecodeReaderInit(&DecodeReader, received, max_len);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
(void) temp;
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
- uint32_t bit_time = GetCountSspClk() & 0xfffffff8;
+ uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
// Setup and start DMA.
FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
uint8_t *upTo = dmaBuf;
- lastRxCounter = ISO15693_DMA_BUFFER_SIZE;
- for(;;) {
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO15693_DMA_BUFFER_SIZE-1);
- if(behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- }
+ for (;;) {
+ uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
- if (behindBy < 1) continue;
+ if (behindBy == 0) continue;
b = *upTo++;
- lastRxCounter--;
- if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
- lastRxCounter += ISO15693_DMA_BUFFER_SIZE;
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ break;
+ }
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
- *eof_time = bit_time + samples - DELAY_READER_TO_ARM; // end of EOF
+ *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
gotFrame = true;
break;
}
}
if (BUTTON_PRESS()) {
- DecodeReader.byteCount = 0;
+ DecodeReader.byteCount = -1;
break;
}
WDT_HIT();
}
-
FpgaDisableSscDma();
- if (DEBUG) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- maxBehindBy, samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
+ if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
- if (tracing && DecodeReader.byteCount > 0) {
- LogTrace(DecodeReader.output, DecodeReader.byteCount, 0, 0, NULL, true);
+ if (DecodeReader.byteCount > 0) {
+ uint32_t sof_time = *eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
+ - 32 // time for SOF transfer
+ - 16; // time for EOF transfer
+ LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
}
return DecodeReader.byteCount;
}
-static void BuildIdentifyRequest(void);
+// Encode (into the ToSend buffers) an identify request, which is the first
+// thing that you must send to a tag to get a response.
+static void BuildIdentifyRequest(void)
+{
+ uint8_t cmd[5];
+
+ uint16_t crc;
+ // one sub-carrier, inventory, 1 slot, fast rate
+ // AFI is at bit 5 (1<<4) when doing an INVENTORY
+ cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
+ // inventory command code
+ cmd[1] = 0x01;
+ // no mask
+ cmd[2] = 0x00;
+ //Now the CRC
+ crc = Iso15693Crc(cmd, 3);
+ cmd[3] = crc & 0xff;
+ cmd[4] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
//-----------------------------------------------------------------------------
// Start to read an ISO 15693 tag. We send an identify request, then wait
// for the response. The response is not demodulated, just left in the buffer
uint8_t *dest = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- BuildIdentifyRequest();
-
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ BuildIdentifyRequest();
+
// Give the tags time to energize
LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(100);
// Now send the command
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
-
- LED_B_ON();
- for(int c = 0; c < ToSendMax; ) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = ~ToSend[c];
- c++;
- }
- WDT_HIT();
- }
- LED_B_OFF();
+ TransmitTo15693Tag(ToSend, ToSendMax, 0);
// wait for last transfer to complete
- while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
for(int c = 0; c < 4000; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint16_t iq = AT91C_BASE_SSC->SSC_RHR;
- // The samples are correlations against I and Q versions of the
- // tone that the tag AM-modulates. We just want power,
- // so abs(I) + abs(Q) is close to what we want.
- int8_t i = (int8_t)(iq >> 8);
- int8_t q = (int8_t)(iq & 0xff);
- uint8_t r = AMPLITUDE(i, q);
- dest[c++] = r;
+ uint16_t r = AT91C_BASE_SSC->SSC_RHR;
+ dest[c++] = r >> 5;
}
}
}
-// TODO: there is no trigger condition. The 14000 samples represent a time frame of 66ms.
-// It is unlikely that we get something meaningful.
-// TODO: Currently we only record tag answers. Add tracing of reader commands.
-// TODO: would we get something at all? The carrier is switched on...
-void RecordRawAdcSamplesIso15693(void)
+void SnoopIso15693(void)
{
- LEDsoff();
LED_A_ON();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ BigBuf_free();
- uint8_t *dest = BigBuf_get_addr();
+ clear_trace();
+ set_tracing(true);
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ // The DMA buffer, used to stream samples from the FPGA
+ uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
+ uint16_t *upTo;
- // Start from off (no field generated)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ int samples = 0;
+ DecodeTag_t DecodeTag = {0};
+ uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
+ DecodeTagInit(&DecodeTag, response, sizeof(response));
+
+ DecodeReader_t DecodeReader = {0};;
+ uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+ DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd));
+
+ // Print some debug information about the buffer sizes
+ if (DEBUG) {
+ Dbprintf("Snooping buffers initialized:");
+ Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
+ Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH);
+ Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH);
+ Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
+ }
+ Dbprintf("Snoop started. Press PM3 Button to stop.");
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- SpinDelay(100);
+ // Setup for the DMA.
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+ upTo = dmaBuf;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ bool TagIsActive = false;
+ bool ReaderIsActive = false;
+ bool ExpectTagAnswer = false;
- for(int c = 0; c < 14000;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint16_t iq = AT91C_BASE_SSC->SSC_RHR;
- // The samples are correlations against I and Q versions of the
- // tone that the tag AM-modulates. We just want power,
- // so abs(I) + abs(Q) is close to what we want.
- int8_t i = (int8_t)(iq >> 8);
- int8_t q = (int8_t)(iq & 0xff);
- uint8_t r = AMPLITUDE(i, q);
- dest[c++] = r;
+ // And now we loop, receiving samples.
+ for(;;) {
+ uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+
+ if (behindBy == 0) continue;
+
+ uint16_t snoopdata = *upTo++;
+
+ if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
+ break;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
+ WDT_HIT();
+ if(BUTTON_PRESS()) {
+ DbpString("Snoop stopped.");
+ break;
+ }
+ }
}
+ samples++;
+
+ if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
+ if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
+ FpgaDisableSscDma();
+ ExpectTagAnswer = true;
+ LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ /* And ready to receive another command. */
+ DecodeReaderReset(&DecodeReader);
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DecodeTagReset(&DecodeTag);
+ upTo = dmaBuf;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ }
+ if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
+ FpgaDisableSscDma();
+ ExpectTagAnswer = true;
+ LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ /* And ready to receive another command. */
+ DecodeReaderReset(&DecodeReader);
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DecodeTagReset(&DecodeTag);
+ upTo = dmaBuf;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ }
+ ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF);
+ }
+
+ if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
+ if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
+ FpgaDisableSscDma();
+ //Use samples as a time measurement
+ LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
+ // And ready to receive another response.
+ DecodeTagReset(&DecodeTag);
+ DecodeReaderReset(&DecodeReader);
+ ExpectTagAnswer = false;
+ upTo = dmaBuf;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ }
+ TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
+ }
+
}
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- Dbprintf("finished recording");
- LED_A_OFF();
+ FpgaDisableSscDma();
+ BigBuf_free();
+
+ LEDsoff();
+
+ DbpString("Snoop statistics:");
+ Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer);
+ Dbprintf(" DecodeTag State: %d", DecodeTag.state);
+ Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len);
+ Dbprintf(" DecodeReader State: %d", DecodeReader.state);
+ Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount);
+ Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
}
// Initialize the proxmark as iso15k reader
-// (this might produces glitches that confuse some tags
static void Iso15693InitReader() {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Setup SSC
SpinDelay(10);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// Give the tags time to energize
LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
SpinDelay(250);
}
// This section basically contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
-// Encode (into the ToSend buffers) an identify request, which is the first
-// thing that you must send to a tag to get a response.
-static void BuildIdentifyRequest(void)
-{
- uint8_t cmd[5];
-
- uint16_t crc;
- // one sub-carrier, inventory, 1 slot, fast rate
- // AFI is at bit 5 (1<<4) when doing an INVENTORY
- cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
- // inventory command code
- cmd[1] = 0x01;
- // no mask
- cmd[2] = 0x00;
- //Now the CRC
- crc = Crc(cmd, 3);
- cmd[3] = crc & 0xff;
- cmd[4] = crc >> 8;
-
- CodeIso15693AsReader(cmd, sizeof(cmd));
-}
// uid is in transmission order (which is reverse of display order)
static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
uint8_t cmd[13];
uint16_t crc;
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
- // followed by teh block data
- // one sub-carrier, inventory, 1 slot, fast rate
- cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
+ cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
// READ BLOCK command code
- cmd[1] = 0x20;
+ cmd[1] = ISO15693_READBLOCK;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = uid[0];
cmd[8] = uid[6];
cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
// Block number to read
- cmd[10] = blockNumber;//0x00;
+ cmd[10] = blockNumber;
//Now the CRC
- crc = Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
+ crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
cmd[8] = uid[1]; //0x05;
cmd[9] = uid[0]; //0xe0;
//Now the CRC
- crc = Crc(cmd, 10);
+ crc = Iso15693Crc(cmd, 10);
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
}
// Universal Method for sending to and recv bytes from a tag
-// init ... should we initialize the reader?
-// speed ... 0 low speed, 1 hi speed
-// **recv will return you a pointer to the received data
-// If you do not need the answer use NULL for *recv[]
-// return: lenght of received data
-int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t **recv) {
+// init ... should we initialize the reader?
+// speed ... 0 low speed, 1 hi speed
+// *recv will contain the tag's answer
+// return: lenght of received data
+int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
LED_A_ON();
LED_B_OFF();
if (init) Iso15693InitReader();
int answerLen=0;
- uint8_t *answer = BigBuf_get_addr() + 4000;
- if (recv != NULL) memset(answer, 0, 100);
if (!speed) {
// low speed (1 out of 256)
CodeIso15693AsReader(send, sendlen);
}
- TransmitTo15693Tag(ToSend,ToSendMax);
+ TransmitTo15693Tag(ToSend, ToSendMax, start_time);
+
// Now wait for a response
- if (recv!=NULL) {
- answerLen = GetIso15693AnswerFromTag(answer, 100);
- *recv=answer;
+ if (recv != NULL) {
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
}
LED_A_OFF();
char status[DBD15STATLEN+1]={0};
uint16_t crc;
- if (len>3) {
- if (d[0]&(1<<3))
- strncat(status,"ProtExt ",DBD15STATLEN);
- if (d[0]&1) {
+ if (len > 3) {
+ if (d[0] & ISO15693_RES_EXT)
+ strncat(status,"ProtExt ", DBD15STATLEN);
+ if (d[0] & ISO15693_RES_ERROR) {
// error
- strncat(status,"Error ",DBD15STATLEN);
+ strncat(status,"Error ", DBD15STATLEN);
switch (d[1]) {
case 0x01:
- strncat(status,"01:notSupp",DBD15STATLEN);
+ strncat(status,"01:notSupp", DBD15STATLEN);
break;
case 0x02:
- strncat(status,"02:notRecog",DBD15STATLEN);
+ strncat(status,"02:notRecog", DBD15STATLEN);
break;
case 0x03:
- strncat(status,"03:optNotSupp",DBD15STATLEN);
+ strncat(status,"03:optNotSupp", DBD15STATLEN);
break;
case 0x0f:
- strncat(status,"0f:noInfo",DBD15STATLEN);
+ strncat(status,"0f:noInfo", DBD15STATLEN);
break;
case 0x10:
- strncat(status,"10:dontExist",DBD15STATLEN);
+ strncat(status,"10:doesn'tExist", DBD15STATLEN);
break;
case 0x11:
- strncat(status,"11:lockAgain",DBD15STATLEN);
+ strncat(status,"11:lockAgain", DBD15STATLEN);
break;
case 0x12:
- strncat(status,"12:locked",DBD15STATLEN);
+ strncat(status,"12:locked", DBD15STATLEN);
break;
case 0x13:
- strncat(status,"13:progErr",DBD15STATLEN);
+ strncat(status,"13:progErr", DBD15STATLEN);
break;
case 0x14:
- strncat(status,"14:lockErr",DBD15STATLEN);
+ strncat(status,"14:lockErr", DBD15STATLEN);
break;
default:
- strncat(status,"unknownErr",DBD15STATLEN);
+ strncat(status,"unknownErr", DBD15STATLEN);
}
- strncat(status," ",DBD15STATLEN);
+ strncat(status," ", DBD15STATLEN);
} else {
- strncat(status,"NoErr ",DBD15STATLEN);
+ strncat(status,"NoErr ", DBD15STATLEN);
}
- crc=Crc(d,len-2);
+ crc=Iso15693Crc(d,len-2);
if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
strncat(status,"CrcOK",DBD15STATLEN);
else
return;
}
-//-----------------------------------------------------------------------------
-// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
+
+//---------------------------------------------------------------------------------------
+// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
// all demodulation performed in arm rather than host. - greg
-//-----------------------------------------------------------------------------
+//---------------------------------------------------------------------------------------
void ReaderIso15693(uint32_t parameter)
{
LEDsoff();
LED_A_ON();
- int answerLen1 = 0;
+ set_tracing(true);
+
+ int answerLen = 0;
uint8_t TagUID[8] = {0x00};
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- uint8_t *answer1 = BigBuf_get_addr() + 4000;
- memset(answer1, 0x00, 200);
+ uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// Start from off (no field generated)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
// Give the tags time to energize
LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
SpinDelay(200);
+ StartCountSspClk();
+
// FIRST WE RUN AN INVENTORY TO GET THE TAG UID
// THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
// Now send the IDENTIFY command
BuildIdentifyRequest();
-
- TransmitTo15693Tag(ToSend,ToSendMax);
+ TransmitTo15693Tag(ToSend, ToSendMax, 0);
// Now wait for a response
- answerLen1 = GetIso15693AnswerFromTag(answer1, 100) ;
+ answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
+ uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
- if (answerLen1 >=12) // we should do a better check than this
+ if (answerLen >=12) // we should do a better check than this
{
- TagUID[0] = answer1[2];
- TagUID[1] = answer1[3];
- TagUID[2] = answer1[4];
- TagUID[3] = answer1[5];
- TagUID[4] = answer1[6];
- TagUID[5] = answer1[7];
- TagUID[6] = answer1[8]; // IC Manufacturer code
- TagUID[7] = answer1[9]; // always E0
+ TagUID[0] = answer[2];
+ TagUID[1] = answer[3];
+ TagUID[2] = answer[4];
+ TagUID[3] = answer[5];
+ TagUID[4] = answer[6];
+ TagUID[5] = answer[7];
+ TagUID[6] = answer[8]; // IC Manufacturer code
+ TagUID[7] = answer[9]; // always E0
}
- Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
- DbdecodeIso15693Answer(answerLen1, answer1);
- Dbhexdump(answerLen1, answer1, false);
+ Dbprintf("%d octets read from IDENTIFY request:", answerLen);
+ DbdecodeIso15693Answer(answerLen, answer);
+ Dbhexdump(answerLen, answer, false);
// UID is reverse
- if (answerLen1 >= 12)
+ if (answerLen >= 12)
Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
TagUID[7],TagUID[6],TagUID[5],TagUID[4],
TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
// Dbhexdump(answerLen3,answer3,true);
// read all pages
- if (answerLen1 >= 12 && DEBUG) {
- uint8_t *answer2 = BigBuf_get_addr() + 4100;
- int i = 0;
- while (i < 32) { // sanity check, assume max 32 pages
+ if (answerLen >= 12 && DEBUG) {
+ for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
BuildReadBlockRequest(TagUID, i);
- TransmitTo15693Tag(ToSend, ToSendMax);
- int answerLen2 = GetIso15693AnswerFromTag(answer2, 100);
- if (answerLen2 > 0) {
- Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen2);
- DbdecodeIso15693Answer(answerLen2, answer2);
- Dbhexdump(answerLen2, answer2, false);
- if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
+ TransmitTo15693Tag(ToSend, ToSendMax, start_time);
+ int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
+ start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ if (answerLen > 0) {
+ Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
+ DbdecodeIso15693Answer(answerLen, answer);
+ Dbhexdump(answerLen, answer, false);
+ if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr
}
- i++;
}
}
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
LED_A_OFF();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
StartCountSspClk();
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
- start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC - DELAY_ARM_TO_READER;
- TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
+ start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
+ TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
Dbprintf("%d bytes read from reader:", cmd_len);
Dbhexdump(cmd_len, cmd, false);
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LEDsoff();
LED_A_ON();
- uint8_t data[20];
- uint8_t *recv=data;
+ uint8_t data[6];
+ uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
+
int datalen=0, recvlen=0;
Iso15693InitReader();
+ StartCountSspClk();
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
- datalen = AddCrc(data,3);
- recvlen = SendDataTag(data, datalen, false, speed, &recv);
+ datalen = Iso15693AddCrc(data,3);
+ recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
+ uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen>=12) {
- Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
+ Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
}
// now with AFI
data[2] = 0; // AFI
data[3] = 0; // mask length
- for (int i=0;i<256;i++) {
- data[2]=i & 0xFF;
- datalen=AddCrc(data,4);
- recvlen=SendDataTag(data, datalen, false, speed, &recv);
+ for (int i = 0; i < 256; i++) {
+ data[2] = i & 0xFF;
+ datalen = Iso15693AddCrc(data,4);
+ recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
+ start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
- if (recvlen>=12) {
- Dbprintf("AFI=%i UID=%s", i, sprintUID(NULL,&recv[2]));
+ if (recvlen >= 12) {
+ Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
}
}
Dbprintf("AFI Bruteforcing done.");
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// Allows to directly send commands to the tag via the client
void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
- int recvlen=0;
- uint8_t *recvbuf = BigBuf_get_addr();
+ int recvlen = 0;
+ uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
LED_A_ON();
if (DEBUG) {
- Dbprintf("SEND");
+ Dbprintf("SEND:");
Dbhexdump(datalen, data, false);
}
- recvlen = SendDataTag(data, datalen, true, speed, (recv?&recvbuf:NULL));
+ recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
if (recv) {
- cmd_send(CMD_ACK, recvlen>48?48:recvlen, 0, 0, recvbuf, 48);
-
if (DEBUG) {
- Dbprintf("RECV");
- DbdecodeIso15693Answer(recvlen,recvbuf);
+ Dbprintf("RECV:");
Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
}
+
+ cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+
}
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
LED_A_OFF();
}
+//-----------------------------------------------------------------------------
+// Work with "magic Chinese" card.
+//
+//-----------------------------------------------------------------------------
+
+// Set the UID to the tag (based on Iceman work).
+void SetTag15693Uid(uint8_t *uid)
+{
+ uint8_t cmd[4][9] = {0x00};
+
+ uint16_t crc;
+
+ int recvlen = 0;
+ uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
+
+ LED_A_ON();
+
+ // Command 1 : 02213E00000000
+ cmd[0][0] = 0x02;
+ cmd[0][1] = 0x21;
+ cmd[0][2] = 0x3e;
+ cmd[0][3] = 0x00;
+ cmd[0][4] = 0x00;
+ cmd[0][5] = 0x00;
+ cmd[0][6] = 0x00;
+
+ // Command 2 : 02213F69960000
+ cmd[1][0] = 0x02;
+ cmd[1][1] = 0x21;
+ cmd[1][2] = 0x3f;
+ cmd[1][3] = 0x69;
+ cmd[1][4] = 0x96;
+ cmd[1][5] = 0x00;
+ cmd[1][6] = 0x00;
+
+ // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
+ cmd[2][0] = 0x02;
+ cmd[2][1] = 0x21;
+ cmd[2][2] = 0x38;
+ cmd[2][3] = uid[7];
+ cmd[2][4] = uid[6];
+ cmd[2][5] = uid[5];
+ cmd[2][6] = uid[4];
+
+ // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
+ cmd[3][0] = 0x02;
+ cmd[3][1] = 0x21;
+ cmd[3][2] = 0x39;
+ cmd[3][3] = uid[3];
+ cmd[3][4] = uid[2];
+ cmd[3][5] = uid[1];
+ cmd[3][6] = uid[0];
+
+ for (int i=0; i<4; i++) {
+ // Add the CRC
+ crc = Iso15693Crc(cmd[i], 7);
+ cmd[i][7] = crc & 0xff;
+ cmd[i][8] = crc >> 8;
+
+ if (DEBUG) {
+ Dbprintf("SEND:");
+ Dbhexdump(sizeof(cmd[i]), cmd[i], false);
+ }
+
+ recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
+
+ if (DEBUG) {
+ Dbprintf("RECV:");
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
+
+ cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+ }
+
+ LED_D_OFF();
+
+ LED_A_OFF();
+}
uint8_t cmd[12];
uint16_t crc;
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
- // followed by teh block data
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// System Information command code
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
//Now the CRC
- crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
+ crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
uint8_t cmd[14];
uint16_t crc;
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
- // followed by teh block data
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ Multi BLOCK command code
// Number of Blocks to read
cmd[11] = 0x2f; // read quite a few
//Now the CRC
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
uint8_t cmd[14];
uint16_t crc;
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
- // followed by teh block data
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[10] = 0x00;
cmd[11] = 0x0a;
-// cmd[12] = 0x00;
-// cmd[13] = 0x00; //Now the CRC
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
uint8_t cmd[14];
uint16_t crc;
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
- // followed by teh block data
+ // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+ // followed by the block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
- cmd[10] = 0x05; // for custom codes this must be manufcturer code
+ cmd[10] = 0x05; // for custom codes this must be manufacturer code
cmd[11] = 0x00;
-// cmd[12] = 0x00;
-// cmd[13] = 0x00; //Now the CRC
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;