//-----------------------------------------------------------------------------
// Copyright (C) 2015 piwi
-//
+// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
-#include <stdio.h>
#include <stdlib.h>
+#include <stdio.h>
#include <string.h>
#include <pthread.h>
+#include <locale.h>
#include <math.h>
#include "proxmark3.h"
#include "cmdmain.h"
#include "ui.h"
#include "util.h"
#include "nonce2key/crapto1.h"
-
-// uint32_t test_state_odd = 0;
-// uint32_t test_state_even = 0;
-
-#define CONFIDENCE_THRESHOLD 0.99 // Collect nonces until we are certain enough that the following brute force is successfull
-#define GOOD_BYTES_REQUIRED 25
-
+#include "nonce2key/crypto1_bs.h"
+#include "parity.h"
+#ifdef __WIN32
+ #include <windows.h>
+#endif
+// don't include for APPLE/mac which has malloc stuff elsewhere.
+#ifndef __APPLE__
+ #include <malloc.h>
+#endif
+#include <assert.h>
+
+#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
+#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
+
+#define END_OF_LIST_MARKER 0xFFFFFFFF
static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0290 };
-
typedef struct noncelistentry {
uint32_t nonce_enc;
float Sum8_prob;
bool updated;
noncelistentry_t *first;
+ float score1, score2;
} noncelist_t;
-
-static uint32_t cuid;
+static size_t nonces_to_bruteforce = 0;
+static noncelistentry_t *brute_force_nonces[256];
+static uint32_t cuid = 0;
static noncelist_t nonces[256];
+static uint8_t best_first_bytes[256];
static uint16_t first_byte_Sum = 0;
static uint16_t first_byte_num = 0;
static uint16_t num_good_first_bytes = 0;
-
-#define MAX_BEST_BYTES 40
-static uint8_t best_first_bytes[MAX_BEST_BYTES];
+static uint64_t maximum_states = 0;
+static uint64_t known_target_key;
+static bool write_stats = false;
+static FILE *fstats = NULL;
typedef enum {
} statelist_t;
-partial_indexed_statelist_t partial_statelist[17];
-partial_indexed_statelist_t statelist_bitflip;
-
-statelist_t *candidates = NULL;
-
+static partial_indexed_statelist_t partial_statelist[17];
+static partial_indexed_statelist_t statelist_bitflip;
+static statelist_t *candidates = NULL;
static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
{
if (p1 == NULL) { // first nonce with this 1st byte
first_byte_num++;
- first_byte_Sum += parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01); // 1st byte sum property. Note: added XOR 1
+ first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
// printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
// nonce_enc,
// par_enc,
// (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
- // parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01));
+ // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
}
while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
p2->nonce_enc = nonce_enc;
p2->par_enc = par_enc;
+ if(nonces_to_bruteforce < 256){
+ brute_force_nonces[nonces_to_bruteforce] = p2;
+ nonces_to_bruteforce++;
+ }
+
nonces[first_byte].num++;
- nonces[first_byte].Sum += parity((nonce_enc & 0x00ff0000) | (par_enc & 0x04) | 0x01); // 2nd byte sum property. Note: added XOR 1
+ nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
return (1); // new nonce added
}
+static void init_nonce_memory(void)
+{
+ for (uint16_t i = 0; i < 256; i++) {
+ nonces[i].num = 0;
+ nonces[i].Sum = 0;
+ nonces[i].Sum8_guess = 0;
+ nonces[i].Sum8_prob = 0.0;
+ nonces[i].updated = true;
+ nonces[i].first = NULL;
+ }
+ first_byte_num = 0;
+ first_byte_Sum = 0;
+ num_good_first_bytes = 0;
+}
+
+static void free_nonce_list(noncelistentry_t *p)
+{
+ if (p == NULL) {
+ return;
+ } else {
+ free_nonce_list(p->next);
+ free(p);
+ }
+}
+
+static void free_nonces_memory(void)
+{
+ for (uint16_t i = 0; i < 256; i++) {
+ free_nonce_list(nonces[i].first);
+ }
+}
static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
{
part_sum ^= filter(st);
st = (st << 1) | ((j >> (3-i)) & 0x01) ;
}
+ part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
} else {
for (uint16_t i = 0; i < 4; i++) {
st = (st << 1) | ((j >> (3-i)) & 0x01) ;
return sum;
}
-
-static uint16_t SumProperty(struct Crypto1State *s)
-{
- uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
- uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
- return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
-}
-
+// static uint16_t SumProperty(struct Crypto1State *s)
+// {
+ // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
+ // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
+ // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
+// }
static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
{
}
}
}
-
-
+
static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
{
const uint16_t N = 256;
-
-
- if (k > K || p_K[K] == 0.0) return 0.0;
+ if (k > K || p_K[K] == 0.0) return 0.0;
- double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
- double p_S_is_K = p_K[K];
- double p_T_is_k = 0;
- for (uint16_t i = 0; i <= 256; i++) {
- if (p_K[i] != 0.0) {
- p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
- }
+ double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+ double p_S_is_K = p_K[K];
+ double p_T_is_k = 0;
+ for (uint16_t i = 0; i <= 256; i++) {
+ if (p_K[i] != 0.0) {
+ p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
}
- return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
+ }
+ return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
+}
+
+
+static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
+{
+ static const uint_fast8_t common_bits_LUT[256] = {
+ 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+ };
+
+ return common_bits_LUT[bytes_diff];
}
-
static void Tests()
{
- printf("Tests: Partial Statelist sizes\n");
- for (uint16_t i = 0; i <= 16; i+=2) {
- printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
- }
- for (uint16_t i = 0; i <= 16; i+=2) {
- printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
- }
+ // printf("Tests: Partial Statelist sizes\n");
+ // for (uint16_t i = 0; i <= 16; i+=2) {
+ // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
+ // }
+ // for (uint16_t i = 0; i <= 16; i+=2) {
+ // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
+ // }
// #define NUM_STATISTICS 100000
- // uint64_t statistics[257];
// uint32_t statistics_odd[17];
+ // uint64_t statistics[257];
// uint32_t statistics_even[17];
// struct Crypto1State cs;
// time_t time1 = clock();
// printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
// printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
- struct Crypto1State *pcs;
- pcs = crypto1_create(0xffffffffffff);
- printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
- SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
- crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
- printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
- best_first_bytes[0],
- SumProperty(pcs),
- pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // struct Crypto1State *pcs;
+ // pcs = crypto1_create(0xffffffffffff);
+ // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+ // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ // best_first_bytes[0],
+ // SumProperty(pcs),
+ // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // //test_state_odd = pcs->odd & 0x00ffffff;
+ // //test_state_even = pcs->even & 0x00ffffff;
+ // crypto1_destroy(pcs);
+ // pcs = crypto1_create(0xa0a1a2a3a4a5);
+ // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+ // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ // best_first_bytes[0],
+ // SumProperty(pcs),
+ // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // //test_state_odd = pcs->odd & 0x00ffffff;
+ // //test_state_even = pcs->even & 0x00ffffff;
+ // crypto1_destroy(pcs);
+ // pcs = crypto1_create(0xa6b9aa97b955);
+ // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+ // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ // best_first_bytes[0],
+ // SumProperty(pcs),
+ // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
//test_state_odd = pcs->odd & 0x00ffffff;
//test_state_even = pcs->even & 0x00ffffff;
- crypto1_destroy(pcs);
- pcs = crypto1_create(0xa0a1a2a3a4a5);
- printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
- SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
- crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
- printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
- best_first_bytes[0],
- SumProperty(pcs),
- pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
- // test_state_odd = pcs->odd & 0x00ffffff;
- // test_state_even = pcs->even & 0x00ffffff;
- crypto1_destroy(pcs);
+ // crypto1_destroy(pcs);
- printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
+ // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
- printf("\nTests: Actual BitFlipProperties odd/even:\n");
- for (uint16_t i = 0; i < 256; i++) {
- printf("[%3d]:%c%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':' ', nonces[i].BitFlip[EVEN_STATE]?'e':' ');
- if (i % 8 == 7) {
- printf("\n");
- }
- }
+ // printf("\nTests: Actual BitFlipProperties odd/even:\n");
+ // for (uint16_t i = 0; i < 256; i++) {
+ // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
+ // if (i % 8 == 7) {
+ // printf("\n");
+ // }
+ // }
- printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES);
- for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
- uint8_t best_byte = best_first_bytes[i];
- uint16_t best_num = nonces[best_byte].num;
- uint16_t best_sum = nonces[best_byte].Sum;
- uint16_t best_sum8 = nonces[best_byte].Sum8_guess;
- float confidence = nonces[best_byte].Sum8_prob;
- printf("Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%\n", best_byte, best_num, best_sum, best_sum8, confidence*100);
- }
-}
+ // printf("\nTests: Sorted First Bytes:\n");
+ // for (uint16_t i = 0; i < 256; i++) {
+ // uint8_t best_byte = best_first_bytes[i];
+ // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
+ // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
+ // i, best_byte,
+ // nonces[best_byte].num,
+ // nonces[best_byte].Sum,
+ // nonces[best_byte].Sum8_guess,
+ // nonces[best_byte].Sum8_prob * 100,
+ // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
+ // //nonces[best_byte].score1,
+ // //nonces[best_byte].score2
+ // );
+ // }
+
+ // printf("\nTests: parity performance\n");
+ // time_t time1p = clock();
+ // uint32_t par_sum = 0;
+ // for (uint32_t i = 0; i < 100000000; i++) {
+ // par_sum += parity(i);
+ // }
+ // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
+
+ // time1p = clock();
+ // par_sum = 0;
+ // for (uint32_t i = 0; i < 100000000; i++) {
+ // par_sum += evenparity32(i);
+ // }
+ // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
+
+}
static void sort_best_first_bytes(void)
{
- // find the best choice for the very first byte (b)
- float min_p_K = 1.0;
- float max_prob_min_p_K = 0.0;
- uint8_t best_byte = 0;
- for (uint16_t i = 0; i < 256; i++ ) {
- float prob1 = nonces[i].Sum8_prob;
- uint16_t sum8 = nonces[i].Sum8_guess;
- if (p_K[sum8] <= min_p_K && prob1 > CONFIDENCE_THRESHOLD) {
- if (p_K[sum8] < min_p_K) {
- min_p_K = p_K[sum8];
- best_byte = i;
- max_prob_min_p_K = prob1;
- } else if (prob1 > max_prob_min_p_K) {
- max_prob_min_p_K = prob1;
- best_byte = i;
- }
- }
- }
- best_first_bytes[0] = best_byte;
- // printf("Best Byte = 0x%02x, Sum8=%d, prob=%1.3f\n", best_byte, nonces[best_byte].Sum8_guess, nonces[best_byte].Sum8_prob);
-
- // sort the most probable guesses as following bytes (b')
+ // sort based on probability for correct guess
for (uint16_t i = 0; i < 256; i++ ) {
- if (i == best_first_bytes[0]) {
- continue;
- }
- uint16_t j = 1;
+ uint16_t j = 0;
float prob1 = nonces[i].Sum8_prob;
- float prob2 = nonces[best_first_bytes[1]].Sum8_prob;
- while (prob1 < prob2 && j < MAX_BEST_BYTES-1) {
+ float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
+ while (prob1 < prob2 && j < i) {
prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
}
- if (prob1 >= prob2) {
- for (uint16_t k = MAX_BEST_BYTES-1; k > j; k--) {
+ if (j < i) {
+ for (uint16_t k = i; k > j; k--) {
best_first_bytes[k] = best_first_bytes[k-1];
}
+ }
best_first_bytes[j] = i;
}
+
+ // determine how many are above the CONFIDENCE_THRESHOLD
+ uint16_t num_good_nonces = 0;
+ for (uint16_t i = 0; i < 256; i++) {
+ if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
+ ++num_good_nonces;
+ }
+ }
+
+ uint16_t best_first_byte = 0;
+
+ // select the best possible first byte based on number of common bits with all {b'}
+ // uint16_t max_common_bits = 0;
+ // for (uint16_t i = 0; i < num_good_nonces; i++) {
+ // uint16_t sum_common_bits = 0;
+ // for (uint16_t j = 0; j < num_good_nonces; j++) {
+ // if (i != j) {
+ // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
+ // }
+ // }
+ // if (sum_common_bits > max_common_bits) {
+ // max_common_bits = sum_common_bits;
+ // best_first_byte = i;
+ // }
+ // }
+
+ // select best possible first byte {b} based on least likely sum/bitflip property
+ float min_p_K = 1.0;
+ for (uint16_t i = 0; i < num_good_nonces; i++ ) {
+ uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
+ float bitflip_prob = 1.0;
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+ bitflip_prob = 0.09375;
+ }
+ nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
+ if (p_K[sum8] * bitflip_prob <= min_p_K) {
+ min_p_K = p_K[sum8] * bitflip_prob;
+ }
}
-}
+ // use number of commmon bits as a tie breaker
+ uint16_t max_common_bits = 0;
+ for (uint16_t i = 0; i < num_good_nonces; i++) {
+ float bitflip_prob = 1.0;
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+ bitflip_prob = 0.09375;
+ }
+ if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
+ uint16_t sum_common_bits = 0;
+ for (uint16_t j = 0; j < num_good_nonces; j++) {
+ sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
+ }
+ nonces[best_first_bytes[i]].score2 = sum_common_bits;
+ if (sum_common_bits > max_common_bits) {
+ max_common_bits = sum_common_bits;
+ best_first_byte = i;
+ }
+ }
+ }
+
+ // swap best possible first byte to the pole position
+ uint16_t temp = best_first_bytes[0];
+ best_first_bytes[0] = best_first_bytes[best_first_byte];
+ best_first_bytes[best_first_byte] = temp;
+
+}
+
static uint16_t estimate_second_byte_sum(void)
{
- for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
- best_first_bytes[i] = 0;
- }
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
float Sum8_prob = 0.0;
sort_best_first_bytes();
uint16_t num_good_nonces = 0;
- for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
- if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) {
+ for (uint16_t i = 0; i < 256; i++) {
+ if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
++num_good_nonces;
}
}
return num_good_nonces;
}
-
static int read_nonce_file(void)
{
FILE *fnonces = NULL;
- uint8_t trgBlockNo;
- uint8_t trgKeyType;
+ uint8_t trgBlockNo = 0;
+ uint8_t trgKeyType = 0;
uint8_t read_buf[9];
- uint32_t nt_enc1, nt_enc2;
- uint8_t par_enc;
+ uint32_t nt_enc1 = 0, nt_enc2 = 0;
+ uint8_t par_enc = 0;
int total_num_nonces = 0;
if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
}
PrintAndLog("Reading nonces from file nonces.bin...");
- if (fread(read_buf, 1, 6, fnonces) == 0) {
+ size_t bytes_read = fread(read_buf, 1, 6, fnonces);
+ if ( bytes_read == 0) {
PrintAndLog("File reading error.");
fclose(fnonces);
return 1;
}
fclose(fnonces);
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
-
return 0;
}
+static void Check_for_FilterFlipProperties(void)
+{
+ printf("Checking for Filter Flip Properties...\n");
+
+ uint16_t num_bitflips = 0;
+
+ for (uint16_t i = 0; i < 256; i++) {
+ nonces[i].BitFlip[ODD_STATE] = false;
+ nonces[i].BitFlip[EVEN_STATE] = false;
+ }
+
+ for (uint16_t i = 0; i < 256; i++) {
+ uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
+ uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
+ uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
+
+ if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
+ nonces[i].BitFlip[ODD_STATE] = true;
+ num_bitflips++;
+ } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
+ nonces[i].BitFlip[EVEN_STATE] = true;
+ num_bitflips++;
+ }
+ }
+
+ if (write_stats) {
+ fprintf(fstats, "%d;", num_bitflips);
+ }
+}
+
+static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
+{
+ struct Crypto1State sim_cs = {0, 0};
+ // init cryptostate with key:
+ for(int8_t i = 47; i > 0; i -= 2) {
+ sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
+ sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
+ }
-int static acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
+ *par_enc = 0;
+ uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+ for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
+ uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
+ uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
+ *nt_enc = (*nt_enc << 8) | nt_byte_enc;
+ uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
+ uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
+ *par_enc = (*par_enc << 1) | nt_byte_par_enc;
+ }
+
+}
+
+static void simulate_acquire_nonces()
+{
+ clock_t time1 = clock();
+ bool filter_flip_checked = false;
+ uint32_t total_num_nonces = 0;
+ uint32_t next_fivehundred = 500;
+ uint32_t total_added_nonces = 0;
+
+ cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+ known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
+
+ printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
+ fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
+
+ do {
+ uint32_t nt_enc = 0;
+ uint8_t par_enc = 0;
+
+ simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
+ //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
+ total_added_nonces += add_nonce(nt_enc, par_enc);
+ total_num_nonces++;
+
+ if (first_byte_num == 256 ) {
+ // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+ if (!filter_flip_checked) {
+ Check_for_FilterFlipProperties();
+ filter_flip_checked = true;
+ }
+ num_good_first_bytes = estimate_second_byte_sum();
+ if (total_num_nonces > next_fivehundred) {
+ next_fivehundred = (total_num_nonces/500+1) * 500;
+ printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
+ total_added_nonces,
+ CONFIDENCE_THRESHOLD * 100.0,
+ num_good_first_bytes);
+ }
+ }
+
+ } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
+
+ time1 = clock() - time1;
+ if ( time1 > 0 ) {
+ PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
+ total_num_nonces,
+ ((float)time1)/CLOCKS_PER_SEC,
+ total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
+ }
+ fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
+
+}
+
+static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
{
clock_t time1 = clock();
bool initialize = true;
bool field_off = false;
bool finished = false;
+ bool filter_flip_checked = false;
uint32_t flags = 0;
uint8_t write_buf[9];
uint32_t total_num_nonces = 0;
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
-
if (nonce_file_write) {
fwrite(bufp, 1, 9, fnonces);
}
if (first_byte_num == 256 ) {
// printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+ if (!filter_flip_checked) {
+ Check_for_FilterFlipProperties();
+ filter_flip_checked = true;
+ }
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
}
if (!initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
- if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
+ fclose(fnonces);
+ return 1;
+ }
+ if (resp.arg[0]) {
+ fclose(fnonces);
+ return resp.arg[0]; // error during nested_hard
+ }
}
initialize = false;
fclose(fnonces);
}
- PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%d nonces/minute)",
- total_num_nonces,
- ((float)clock()-time1)/CLOCKS_PER_SEC,
- total_num_nonces*60*CLOCKS_PER_SEC/(clock()-time1));
-
+ time1 = clock() - time1;
+ if ( time1 > 0 ) {
+ PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
+ total_num_nonces,
+ ((float)time1)/CLOCKS_PER_SEC,
+ total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
+ );
+ }
return 0;
}
-
static int init_partial_statelists(void)
{
- const uint32_t sizes_odd[17] = { 125601, 0, 17607, 0, 73421, 0, 182033, 0, 248801, 0, 181737, 0, 74241, 0, 18387, 0, 126757 };
+ const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
printf("Allocating memory for partial statelists...\n");
for (uint16_t i = 0; i <= 16; i += 2) {
uint32_t *p = partial_statelist[i].states[odd_even];
p += partial_statelist[i].len[odd_even];
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
}
return 0;
}
-
static void init_BitFlip_statelist(void)
{
}
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
}
-
-static void add_state(statelist_t *sl, uint32_t state, odd_even_t odd_even)
-{
- uint32_t *p;
-
- p = sl->states[odd_even];
- p += sl->len[odd_even];
- *p = state;
- sl->len[odd_even]++;
-}
-
-
-uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
+static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
{
uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
if (p == NULL) return NULL;
- while ((*p & mask) < (state & mask)) p++;
- if (*p == 0xffffffff) return NULL; // reached end of list, no match
+ while (*p < (state & mask)) p++;
+ if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
if ((*p & mask) == (state & mask)) return p; // found a match.
return NULL; // no match
}
+static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
+{
+ uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
+ uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
+ uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
+ uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
+ uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
+ uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
+ return !all_diff;
+}
-static bool remaining_bits_match(uint8_t num_common_bits, uint8_t byte1, uint8_t byte2, uint32_t state1, uint32_t state2, odd_even_t odd_even)
+static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
{
- uint8_t j = num_common_bits;
- if (odd_even == ODD_STATE) {
- j |= 0x01; // consider the next odd bit
- } else {
- j = (j+1) & 0xfe; // consider the next even bit
- }
-
- while (j <= 7) {
- if (j != num_common_bits) { // this is not the first differing bit, we need first to check if the invariant still holds
- uint32_t bit_diff = ((byte1 ^ byte2) << (17-j)) & 0x00010000; // difference of (j-1)th bit -> bit 16
- uint32_t filter_diff = filter(state1 >> (4-j/2)) ^ filter(state2 >> (4-j/2)); // difference in filter function -> bit 0
- uint32_t mask_y12_y13 = 0x000000c0 >> (j/2);
- uint32_t state_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 -> bits 6/7 ... 4/5
- uint32_t all_diff = parity(bit_diff | state_diff | filter_diff); // use parity function to XOR all 4 bits
- if (all_diff) { // invariant doesn't hold any more. Accept this state.
- // if ((odd_even == ODD_STATE && state1 == test_state_odd)
- // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
- // printf("remaining_bits_match(): %s test state: Invariant doesn't hold. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
- // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
- // }
- return true;
- }
+ uint_fast8_t j_bit_mask = 0x01 << bit;
+ uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
+ uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
+ uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
+ uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
+ return all_diff;
+}
+
+static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
+{
+ if (odd_even) {
+ // odd bits
+ switch (num_common_bits) {
+ case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
+ case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
+ case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
+ case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
+ case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
+ case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
+ case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
+ case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
}
- // check for validity of state candidate
- uint32_t bit_diff = ((byte1 ^ byte2) << (16-j)) & 0x00010000; // difference of jth bit -> bit 16
- uint32_t mask_y13_y16 = 0x00000048 >> (j/2);
- uint32_t state_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 -> bits 3/6 ... 0/3
- uint32_t all_diff = parity(bit_diff | state_diff); // use parity function to XOR all 3 bits
- if (all_diff) { // not a valid state
- // if ((odd_even == ODD_STATE && state1 == test_state_odd)
- // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
- // printf("remaining_bits_match(): %s test state: Invalid state. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
- // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
- // printf(" byte1^byte2: 0x%02x, bit_diff: 0x%08x, state_diff: 0x%08x, all_diff: 0x%08x\n",
- // byte1^byte2, bit_diff, state_diff, all_diff);
- // }
- return false;
+ } else {
+ // even bits
+ switch (num_common_bits) {
+ case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
+ case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
+ case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
+ case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
+ case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
+ case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
+ case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
}
- // continue checking for the next bit
- j += 2;
}
return true; // valid state
}
-
static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
{
for (uint16_t i = 1; i < num_good_first_bytes; i++) {
uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
- uint8_t j = 0; // number of common bits
- uint8_t common_bits = best_first_bytes[0] ^ best_first_bytes[i];
+ uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
+ uint_fast8_t j = common_bits(bytes_diff);
uint32_t mask = 0xfffffff0;
if (odd_even == ODD_STATE) {
- while ((common_bits & 0x01) == 0 && j < 8) {
- j++;
- common_bits >>= 1;
- if (j % 2 == 0) { // the odd bits
- mask >>= 1;
- }
- }
+ mask >>= j/2;
} else {
- while ((common_bits & 0x01) == 0 && j < 8) {
- j++;
- common_bits >>= 1;
- if (j % 2 == 1) { // the even bits
- mask >>= 1;
- }
- }
+ mask >>= (j+1)/2;
}
mask &= 0x000fffff;
//printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
if (p != NULL) {
- while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
- if (remaining_bits_match(j, best_first_bytes[0], best_first_bytes[i], state, (state&0x00fffff0) | *p, odd_even)) {
+ while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
+ if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
return true;
}
+static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
+{
+ for (uint16_t i = 0; i < 256; i++) {
+ if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
+ uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
+ uint_fast8_t j = common_bits(bytes_diff);
+ uint32_t mask = 0xfffffff0;
+ if (odd_even == ODD_STATE) {
+ mask >>= j/2;
+ } else {
+ mask >>= (j+1)/2;
+ }
+ mask &= 0x000fffff;
+ //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
+ bool found_match = false;
+ uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
+ if (p != NULL) {
+ while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
+ if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
+ found_match = true;
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
+ // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
+ // }
+ break;
+ } else {
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
+ // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
+ // }
+ }
+ p++;
+ }
+ } else {
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
+ // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
+ // }
+ }
+ if (!found_match) {
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
+ // }
+ return false;
+ }
+ }
+
+ }
+
+ return true;
+}
+
+static struct sl_cache_entry {
+ uint32_t *sl;
+ uint32_t len;
+ } sl_cache[17][17][2];
+
+static void init_statelist_cache(void)
+{
+ for (uint16_t i = 0; i < 17; i+=2) {
+ for (uint16_t j = 0; j < 17; j+=2) {
+ for (uint16_t k = 0; k < 2; k++) {
+ sl_cache[i][j][k].sl = NULL;
+ sl_cache[i][j][k].len = 0;
+ }
+ }
+ }
+}
static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
{
uint32_t worstcase_size = 1<<20;
+ // check cache for existing results
+ if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
+ candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
+ candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
+ return 0;
+ }
+
candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
if (candidates->states[odd_even] == NULL) {
PrintAndLog("Out of memory error.\n");
return 4;
}
- for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) {
+ uint32_t *add_p = candidates->states[odd_even];
+ for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
uint32_t search_mask = 0x000ffff0;
uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
if (p2 != NULL) {
- while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) {
+ while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
+ if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
+ || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
- add_state(candidates, (*p1 << 4) | *p2, odd_even);
+ if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
+ *add_p++ = (*p1 << 4) | *p2;
+ }
+ }
}
p2++;
}
}
- p2 = candidates->states[odd_even];
- p2 += candidates->len[odd_even];
- *p2 = 0xffffffff;
}
+
+ // set end of list marker and len
+ *add_p = END_OF_LIST_MARKER;
+ candidates->len[odd_even] = add_p - candidates->states[odd_even];
+
candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
+ sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
+ sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
+
return 0;
}
-
static statelist_t *add_more_candidates(statelist_t *current_candidates)
{
statelist_t *new_candidates = NULL;
return new_candidates;
}
-
static void TestIfKeyExists(uint64_t key)
{
struct Crypto1State *pcs;
uint32_t state_odd = pcs->odd & 0x00ffffff;
uint32_t state_even = pcs->even & 0x00ffffff;
- printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
+ //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
+ uint64_t count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ bool found_odd = false;
+ bool found_even = false;
uint32_t *p_odd = p->states[ODD_STATE];
uint32_t *p_even = p->states[EVEN_STATE];
- while (*p_odd != 0xffffffff) {
- if (*p_odd == state_odd) printf("o");
+ while (*p_odd != END_OF_LIST_MARKER) {
+ if ((*p_odd & 0x00ffffff) == state_odd) {
+ found_odd = true;
+ break;
+ }
p_odd++;
}
- while (*p_even != 0xffffffff) {
- if (*p_even == state_even) printf("e");
+ while (*p_even != END_OF_LIST_MARKER) {
+ if ((*p_even & 0x00ffffff) == state_even) {
+ found_even = true;
+ }
p_even++;
}
- printf("|");
+ count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
+ if (found_odd && found_even) {
+ PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
+ count,
+ log(count)/log(2),
+ maximum_states,
+ log(maximum_states)/log(2)
+ );
+ if (write_stats) {
+ fprintf(fstats, "1\n");
+ }
+ crypto1_destroy(pcs);
+ return;
+ }
+ }
+
+ printf("Key NOT found!\n");
+ if (write_stats) {
+ fprintf(fstats, "0\n");
}
- printf("\n");
crypto1_destroy(pcs);
}
-
static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
{
printf("Generating crypto1 state candidates... \n");
statelist_t *current_candidates = NULL;
// estimate maximum candidate states
- uint64_t maximum_states = 0;
+ maximum_states = 0;
for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
}
}
}
- printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+ printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+
+ init_statelist_cache();
for (uint16_t p = 0; p <= 16; p += 2) {
for (uint16_t q = 0; q <= 16; q += 2) {
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
current_candidates = add_more_candidates(current_candidates);
+ // check for the smallest partial statelist. Try this first - it might give 0 candidates
+ // and eliminate the need to calculate the other part
+ if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
+ < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
add_matching_states(current_candidates, p, r, ODD_STATE);
- printf("Odd state candidates: %d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
+ if(current_candidates->len[ODD_STATE]) {
add_matching_states(current_candidates, q, s, EVEN_STATE);
- printf("Even state candidates: %d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
+ } else {
+ current_candidates->len[EVEN_STATE] = 0;
+ uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
+ *p = END_OF_LIST_MARKER;
+ }
+ } else {
+ add_matching_states(current_candidates, q, s, EVEN_STATE);
+ if(current_candidates->len[EVEN_STATE]) {
+ add_matching_states(current_candidates, p, r, ODD_STATE);
+ } else {
+ current_candidates->len[ODD_STATE] = 0;
+ uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
+ *p = END_OF_LIST_MARKER;
+ }
+ }
+ //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
+ //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
}
}
}
for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
- printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
-
- TestIfKeyExists(0xffffffffffff);
- TestIfKeyExists(0xa0a1a2a3a4a5);
-
+ printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+ if (write_stats) {
+ if (maximum_states != 0) {
+ fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
+ } else {
+ fprintf(fstats, "%1.1f;", 0.0);
+ }
+ }
}
+static void free_candidates_memory(statelist_t *sl)
+{
+ if (sl == NULL) {
+ return;
+ } else {
+ free_candidates_memory(sl->next);
+ free(sl);
+ }
+}
-static void Check_for_FilterFlipProperties(void)
+static void free_statelist_cache(void)
{
- printf("Checking for Filter Flip Properties...\n");
+ for (uint16_t i = 0; i < 17; i+=2) {
+ for (uint16_t j = 0; j < 17; j+=2) {
+ for (uint16_t k = 0; k < 2; k++) {
+ free(sl_cache[i][j][k].sl);
+ }
+ }
+ }
+}
- for (uint16_t i = 0; i < 256; i++) {
- nonces[i].BitFlip[ODD_STATE] = false;
- nonces[i].BitFlip[EVEN_STATE] = false;
- }
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[128];
+size_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
+
+static const uint64_t crack_states_bitsliced(statelist_t *p){
+ // the idea to roll back the half-states before combining them was suggested/explained to me by bla
+ // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
+ uint64_t key = -1;
+ uint8_t bSize = sizeof(bitslice_t);
+
+#ifdef EXACT_COUNT
+ size_t bucket_states_tested = 0;
+ size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
+#else
+ const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
+#endif
+
+ bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
+ size_t bitsliced_blocks = 0;
+ uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
- for (uint16_t i = 0; i < 256; i++) {
- uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
- uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
- uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
+ // bitslice all the even states
+ for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
+
+#ifdef __WIN32
+ #ifdef __MINGW32__
+ bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
+ #else
+ bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
+ #endif
+#else
+ #ifdef __APPLE__
+ bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
+ #else
+ bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
+ #endif
+#endif
+
+ if ( !lstate_p ) {
+ __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
+ return key;
+ }
+
+ memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
- if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
- nonces[i].BitFlip[ODD_STATE] = true;
- } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
- nonces[i].BitFlip[EVEN_STATE] = true;
+ // bitslice even half-states
+ const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
+#ifdef EXACT_COUNT
+ bucket_size[bitsliced_blocks] = max_slices;
+#endif
+ for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
+ uint32_t e = *(p_even+slice_idx);
+ for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
+ // set even bits
+ if(e&1){
+ lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
+ }
+ }
+ }
+ // compute the rollback bits
+ for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
+ // inlined crypto1_bs_lfsr_rollback
+ const bitslice_value_t feedout = lstate_p[0].value;
+ ++lstate_p;
+ const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
+ const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
+ lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
+ lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
+ lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
+ lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
+ lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
+ lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
+ }
+ bitsliced_even_states[bitsliced_blocks++] = lstate_p;
+ }
+
+ // bitslice every odd state to every block of even half-states with half-finished rollback
+ for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
+ // early abort
+ if(keys_found){
+ goto out;
+ }
+
+ // set the odd bits and compute rollback
+ uint64_t o = (uint64_t) *p_odd;
+ lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
+ // pre-compute part of the odd feedback bits (minus rollback)
+ bool odd_feedback_bit = parity(o&0x9ce5c);
+
+ crypto1_bs_rewind_a0();
+ // set odd bits
+ for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
+ if(o & 1){
+ state_p[state_idx] = bs_ones;
+ } else {
+ state_p[state_idx] = bs_zeroes;
+ }
+ }
+ const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
+
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
+ const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
+ size_t state_idx;
+ // set even bits
+ for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
+ }
+ // set rollback bits
+ uint64_t lo = o;
+ for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
+ // set the odd bits and take in the odd rollback bits from the even states
+ if(lo & 1){
+ state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
+ } else {
+ state_p[state_idx] = bitsliced_even_state[state_idx];
+ }
+
+ // set the even bits and take in the even rollback bits from the odd states
+ if((lo >> 32) & 1){
+ state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
+ } else {
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
+ }
+ }
+
+#ifdef EXACT_COUNT
+ bucket_states_tested += bucket_size[block_idx];
+#endif
+ // pre-compute first keystream and feedback bit vectors
+ const bitslice_value_t ksb = crypto1_bs_f20(state_p);
+ const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
+ state_p[47-24].value ^ state_p[47-42].value);
+
+ // vector to contain test results (1 = passed, 0 = failed)
+ bitslice_t results = bs_ones;
+
+ for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
+ size_t parity_bit_idx = 0;
+ bitslice_value_t fb_bits = fbb;
+ bitslice_value_t ks_bits = ksb;
+ state_p = &states[KEYSTREAM_SIZE-1];
+ bitslice_value_t parity_bit_vector = bs_zeroes.value;
+
+ // highest bit is transmitted/received first
+ for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
+ // decrypt nonce bits
+ const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
+ const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
+
+ // compute real parity bits on the fly
+ parity_bit_vector ^= decrypted_nonce_bit_vector;
+
+ // update state
+ state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
+
+ // compute next keystream bit
+ ks_bits = crypto1_bs_f20(state_p);
+
+ // for each byte:
+ if((ks_idx&7) == 0){
+ // get encrypted parity bits
+ const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
+
+ // decrypt parity bits
+ const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
+
+ // compare actual parity bits with decrypted parity bits and take count in results vector
+ results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
+
+ // make sure we still have a match in our set
+ // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
+
+ // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
+ // the short-circuiting also helps
+ if(results.bytes64[0] == 0
+#if MAX_BITSLICES > 64
+ && results.bytes64[1] == 0
+#endif
+#if MAX_BITSLICES > 128
+ && results.bytes64[2] == 0
+ && results.bytes64[3] == 0
+#endif
+ ){
+ goto stop_tests;
+ }
+ // this is about as fast but less portable (requires -std=gnu99)
+ // asm goto ("ptest %1, %0\n\t"
+ // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
+ parity_bit_vector = bs_zeroes.value;
+ }
+ // compute next feedback bit vector
+ fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
+ state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
+ state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
+ state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
+ state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
+ }
+ }
+ // all nonce tests were successful: we've found the key in this block!
+ state_t keys[MAX_BITSLICES];
+ crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
+ for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
+ if(get_vector_bit(results_idx, results)){
+ key = keys[results_idx].value;
+ goto out;
+ }
+ }
+stop_tests:
+ // prepare to set new states
+ crypto1_bs_rewind_a0();
+ continue;
+ }
+ }
+
+out:
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
+
+#ifdef __WIN32
+ #ifdef __MINGW32__
+ __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+ #else
+ _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+ #endif
+#else
+ free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+#endif
+
+ }
+ __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
+ return key;
+}
+
+static void* crack_states_thread(void* x){
+ const size_t thread_id = (size_t)x;
+ size_t current_bucket = thread_id;
+ while(current_bucket < bucket_count){
+ statelist_t * bucket = buckets[current_bucket];
+ if(bucket){
+ const uint64_t key = crack_states_bitsliced(bucket);
+ if(key != -1){
+ __sync_fetch_and_add(&keys_found, 1);
+ __sync_fetch_and_add(&foundkey, key);
+ break;
+ } else if(keys_found){
+ break;
+ } else {
+ printf(".");
+ fflush(stdout);
+ }
+ }
+ current_bucket += thread_count;
+ }
+ return NULL;
+}
+
+static void brute_force(void)
+{
+ if (known_target_key != -1) {
+ PrintAndLog("Looking for known target key in remaining key space...");
+ TestIfKeyExists(known_target_key);
+ } else {
+ PrintAndLog("Brute force phase starting.");
+ time_t start, end;
+ time(&start);
+ keys_found = 0;
+ foundkey = 0;
+
+ crypto1_bs_init();
+
+ PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
+ // convert to 32 bit little-endian
+ crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
+
+ PrintAndLog("Bitslicing nonces...");
+ for(size_t tests = 0; tests < NONCE_TESTS; tests++){
+ uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
+ uint8_t test_parity = brute_force_nonces[tests]->par_enc;
+ // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
+ crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
+ // convert to 32 bit little-endian
+ crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
+ }
+ total_states_tested = 0;
+
+ // count number of states to go
+ bucket_count = 0;
+ for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ buckets[bucket_count] = p;
+ bucket_count++;
+ }
+
+#ifndef __WIN32
+ thread_count = sysconf(_SC_NPROCESSORS_CONF);
+ if ( thread_count < 1)
+ thread_count = 1;
+#endif /* _WIN32 */
+
+ pthread_t threads[thread_count];
+
+ // enumerate states using all hardware threads, each thread handles one bucket
+ PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
+
+ for(size_t i = 0; i < thread_count; i++){
+ pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
+ }
+ for(size_t i = 0; i < thread_count; i++){
+ pthread_join(threads[i], 0);
+ }
+
+ time(&end);
+ double elapsed_time = difftime(end, start);
+ PrintAndLog("");
+ if(keys_found){
+ PrintAndLog("Success! Tested %"PRIu64" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
+ PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
+ } else {
+ PrintAndLog("Fail! Tested %"PRIu64" states, in %.f seconds", total_states_tested, elapsed_time);
}
+ // reset this counter for the next call
+ nonces_to_bruteforce = 0;
}
}
-
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_read, bool nonce_file_write, bool slow)
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
{
+ // initialize Random number generator
+ time_t t;
+ srand((unsigned) time(&t));
- // initialize the list of nonces
- for (uint16_t i = 0; i < 256; i++) {
- nonces[i].num = 0;
- nonces[i].Sum = 0;
- nonces[i].Sum8_guess = 0;
- nonces[i].Sum8_prob = 0.0;
- nonces[i].updated = true;
- nonces[i].first = NULL;
+ if (trgkey != NULL) {
+ known_target_key = bytes_to_num(trgkey, 6);
+ } else {
+ known_target_key = -1;
}
- first_byte_num = 0;
- first_byte_Sum = 0;
- num_good_first_bytes = 0;
-
+
init_partial_statelists();
init_BitFlip_statelist();
+ write_stats = false;
- if (nonce_file_read) { // use pre-acquired data from file nonces.bin
- if (read_nonce_file() != 0) {
+ if (tests) {
+ // set the correct locale for the stats printing
+ setlocale(LC_ALL, "");
+ write_stats = true;
+ if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
+ PrintAndLog("Could not create/open file hardnested_stats.txt");
return 3;
}
- num_good_first_bytes = estimate_second_byte_sum();
- } else { // acquire nonces.
- uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
- if (is_OK != 0) {
- return is_OK;
+ for (uint32_t i = 0; i < tests; i++) {
+ init_nonce_memory();
+ simulate_acquire_nonces();
+ Tests();
+ printf("Sum(a0) = %d\n", first_byte_Sum);
+ fprintf(fstats, "%d;", first_byte_Sum);
+ generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ brute_force();
+ free_nonces_memory();
+ free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
+ }
+ fclose(fstats);
+ } else {
+ init_nonce_memory();
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (read_nonce_file() != 0) {
+ return 3;
+ }
+ Check_for_FilterFlipProperties();
+ num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
+ } else { // acquire nonces.
+ uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
+ if (is_OK != 0) {
+ return is_OK;
+ }
}
- }
-
- Check_for_FilterFlipProperties();
-
- Tests();
- PrintAndLog("");
- PrintAndLog("Sum(a0) = %d", first_byte_Sum);
- // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
- // best_first_bytes[0],
- // best_first_bytes[1],
- // best_first_bytes[2],
- // best_first_bytes[3],
- // best_first_bytes[4],
- // best_first_bytes[5],
- // best_first_bytes[6],
- // best_first_bytes[7],
- // best_first_bytes[8],
- // best_first_bytes[9] );
- PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
- generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-
- PrintAndLog("Brute force phase not yet implemented");
+ //Tests();
+
+ //PrintAndLog("");
+ //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
+ // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
+ // best_first_bytes[0],
+ // best_first_bytes[1],
+ // best_first_bytes[2],
+ // best_first_bytes[3],
+ // best_first_bytes[4],
+ // best_first_bytes[5],
+ // best_first_bytes[6],
+ // best_first_bytes[7],
+ // best_first_bytes[8],
+ // best_first_bytes[9] );
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ clock_t time1 = clock();
+ generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if ( time1 > 0 )
+ PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
+ brute_force();
+
+ free_nonces_memory();
+ free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
+ }
return 0;
}