// UI utilities
//-----------------------------------------------------------------------------
-#include <stdarg.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <time.h>
-#include <readline/readline.h>
-#include <pthread.h>
-#include "loclass/cipherutils.h"
#include "ui.h"
-#include "cmdmain.h"
-#include "cmddata.h"
-#include "graph.h"
-//#include <liquid/liquid.h>
-#define M_PI 3.14159265358979323846264338327
-
double CursorScaleFactor;
int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
int offline;
va_list argptr, argptr2;
static FILE *logfile = NULL;
static int logging = 1;
-
+ // time_t current_time;
+ // struct tm* tm_info;
+ // char buffer[26] = {0};
+
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
}
if (logging && logfile) {
+
+ /*
+ // Obtain current time.
+ current_time = time(NULL);
+ // Convert to local time format.
+ tm_info = localtime(¤t_time);
+ strftime(buffer, 26, "%Y-%m-%d %H:%M:%S", tm_info);
+ fprintf(logfile, "%s ", buffer);
+ */
+
vfprintf(logfile, fmt, argptr2);
fprintf(logfile,"\n");
fflush(logfile);
pthread_mutex_unlock(&print_lock);
}
-void SetLogFilename(char *fn)
-{
- logfilename = fn;
+void SetLogFilename(char *fn) {
+ logfilename = fn;
}
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){
-
- int bitlength = 0;
- int clock, high, low, startindex;
- low = startindex = 0;
- high = 1;
- uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);
- memset(bitStream, 0x00, dataoutlen);
-
- /* Detect high and lows */
- DetectHighLowInGraph(&high, &low, TRUE);
-
- /* get clock */
- clock = GetClock("",0, 0);
-
- startindex = DetectFirstTransition(data, len, high);
-
- if (high != 1)
- // decode "raw"
- bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
- else
- // decode manchester
- bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
-
- memcpy(dataout, bitStream, bitlength);
- free(bitStream);
- return bitlength;
-}
-
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
- int i = 0;
- /* now look for the first threshold */
- for (; i < len; ++i) {
- if (data[i] == threshold) {
- break;
- }
- }
- return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
-
- int i, j, z, hithigh, hitlow, bitIndex, startType;
- i = 0;
- bitIndex = 0;
-
- int isDamp = 0;
- int damplimit = (int)((high / 2) * 0.3);
- int dampHi = (high/2)+damplimit;
- int dampLow = (high/2)-damplimit;
- int firstST = 0;
-
- // i = clock frame of data
- for (; i < (int)(len/clock); i++)
- {
- hithigh = 0;
- hitlow = 0;
- startType = -1;
- z = startIndex + (i*clock);
- isDamp = 0;
-
- /* Find out if we hit both high and low peaks */
- for (j = 0; j < clock; j++)
- {
- if (data[z+j] == high){
- hithigh = 1;
- if ( startType == -1)
- startType = 1;
- }
-
- if (data[z+j] == low ){
- hitlow = 1;
- if ( startType == -1)
- startType = 0;
- }
-
- if (hithigh && hitlow)
- break;
- }
-
- // No high value found, are we in a dampening field?
- if ( !hithigh ) {
- //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
- for (j = 0; j < clock; j++) {
- if (
- (data[z+j] <= dampHi && data[z+j] >= dampLow)
- ){
- isDamp++;
- }
- }
- }
-
- /* Manchester Switching..
- 0: High -> Low
- 1: Low -> High
- */
- if (startType == 0)
- dataout[bitIndex++] = 1;
- else if (startType == 1)
- dataout[bitIndex++] = 0;
- else
- dataout[bitIndex++] = 2;
-
- if ( isDamp > clock/2 ) {
- firstST++;
- }
-
- if ( firstST == 4)
- break;
- if ( bitIndex >= dataoutlen-1 )
- break;
- }
- return bitIndex;
- }
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
-
- PrintAndLog(" Path B");
-
- int i,j, bitindex, lc, tolerance, warnings;
- warnings = 0;
- int upperlimit = len*2/clock+8;
- i = startIndex;
- j = 0;
- tolerance = clock/4;
- uint8_t decodedArr[len];
-
- /* Detect duration between 2 successive transitions */
- for (bitindex = 1; i < len; i++) {
-
- if (data[i-1] != data[i]) {
- lc = i - startIndex;
- startIndex = i;
-
- // Error check: if bitindex becomes too large, we do not
- // have a Manchester encoded bitstream or the clock is really wrong!
- if (bitindex > upperlimit ) {
- PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
- return 0;
- }
- // Then switch depending on lc length:
- // Tolerance is 1/4 of clock rate (arbitrary)
- if (abs((lc-clock)/2) < tolerance) {
- // Short pulse : either "1" or "0"
- decodedArr[bitindex++] = data[i-1];
- } else if (abs(lc-clock) < tolerance) {
- // Long pulse: either "11" or "00"
- decodedArr[bitindex++] = data[i-1];
- decodedArr[bitindex++] = data[i-1];
- } else {
- ++warnings;
- PrintAndLog("Warning: Manchester decode error for pulse width detection.");
- if (warnings > 10) {
- PrintAndLog("Error: too many detection errors, aborting.");
- return 0;
- }
- }
- }
- }
-
- /*
- * We have a decodedArr of "01" ("1") or "10" ("0")
- * parse it into final decoded dataout
- */
- for (i = 0; i < bitindex; i += 2) {
-
- if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
- dataout[j++] = 1;
- } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
- dataout[j++] = 0;
- } else {
- i++;
- warnings++;
- PrintAndLog("Unsynchronized, resync...");
- PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
-
- if (warnings > 10) {
- PrintAndLog("Error: too many decode errors, aborting.");
- return 0;
- }
- }
- }
-
- PrintAndLog("%s", sprint_hex(dataout, j));
- return j;
- }
-
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
- /*
- * We have a bitstream of "01" ("1") or "10" ("0")
- * parse it into final decoded bitstream
- */
- int i, j, warnings;
- uint8_t decodedArr[(len/2)+1];
-
- j = warnings = 0;
-
- uint8_t lastbit = 0;
-
- for (i = 0; i < len; i += 2) {
-
- uint8_t first = bitstream[i];
- uint8_t second = bitstream[i+1];
-
- if ( first == second ) {
- ++i;
- ++warnings;
- if (warnings > 10) {
- PrintAndLog("Error: too many decode errors, aborting.");
- return;
- }
- }
- else if ( lastbit != first ) {
- decodedArr[j++] = 0 ^ invert;
- }
- else {
- decodedArr[j++] = 1 ^ invert;
- }
- lastbit = second;
- }
-
- PrintAndLog("%s", sprint_hex(decodedArr, j));
-}
-
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
-
- PrintAndLog(" Manchester decoded : %d bits", len);
-
- uint8_t mod = len % blocksize;
- uint8_t div = len / blocksize;
- int i;
-
- // Now output the bitstream to the scrollback by line of 16 bits
- for (i = 0; i < div*blocksize; i+=blocksize) {
- PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
- }
-
- if ( mod > 0 )
- PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-}
-
-/* Sliding DFT
- Smooths out
-*/
-void iceFsk2(int * data, const size_t len){
-
- int i, j;
- int * output = (int* ) malloc(sizeof(int) * len);
- memset(output, 0x00, len);
-
- // for (i=0; i<len-5; ++i){
- // for ( j=1; j <=5; ++j) {
- // output[i] += data[i*j];
- // }
- // output[i] /= 5;
- // }
- int rest = 127;
- int tmp =0;
- for (i=0; i<len; ++i){
- if ( data[i] < 127)
- output[i] = 0;
- else {
- tmp = (100 * (data[i]-rest)) / rest;
- output[i] = (tmp > 60)? 100:0;
- }
- }
-
- for (j=0; j<len; ++j)
- data[j] = output[j];
-
- free(output);
-}
-
-void iceFsk3(int * data, const size_t len){
+void iceIIR_Butterworth(int *data, const size_t len){
int i,j;
int * output = (int* ) malloc(sizeof(int) * len);
+ if ( !output ) return;
+
+ // clear mem
memset(output, 0x00, len);
- float fc = 0.1125f; // center frequency
- size_t adjustedLen = len;
+ size_t adjustedLen = len;
+ float fc = 0.1125f; // center frequency
+
// create very simple low-pass filter to remove images (2nd-order Butterworth)
float complex iir_buf[3] = {0,0,0};
float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
- float sample = 0; // input sample read from file
+ float sample = 0; // input sample read from array
float complex x_prime = 1.0f; // save sample for estimating frequency
float complex x;
- for (i=0; i<adjustedLen; ++i) {
+ for (i = 0; i < adjustedLen; ++i) {
- sample = data[i]+128;
+ sample = data[i];
// remove DC offset and mix to complex baseband
x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
float freq = cargf(x*conjf(x_prime));
x_prime = x; // retain this sample for next iteration
- output[i] =(freq > 0)? 10 : -10;
+ output[i] =(freq > 0) ? 127 : -127;
}
// show data
+ //memcpy(data, output, adjustedLen);
for (j=0; j<adjustedLen; ++j)
data[j] = output[j];
-
- CmdLtrim("30");
- adjustedLen -= 30;
-
- // zero crossings.
- for (j=0; j<adjustedLen; ++j){
- if ( data[j] == 10) break;
- }
- int startOne =j;
-
- for (;j<adjustedLen; ++j){
- if ( data[j] == -10 ) break;
- }
- int stopOne = j-1;
-
- int fieldlen = stopOne-startOne;
-
- fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
- fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
- if ( fieldlen != 40 && fieldlen != 50){
- printf("Detected field Length: %d \n", fieldlen);
- printf("Can only handle 40 or 50. Aborting...\n");
- return;
- }
-
- // FSK sequence start == 000111
- int startPos = 0;
- for (i =0; i<adjustedLen; ++i){
- int dec = 0;
- for ( j = 0; j < 6*fieldlen; ++j){
- dec += data[i + j];
- }
- if (dec == 0) {
- startPos = i;
- break;
- }
- }
- printf("000111 position: %d \n", startPos);
+ free(output);
+}
- startPos += 6*fieldlen+5;
-
- int bit =0;
- printf("BINARY\n");
- printf("R/40 : ");
- for (i =startPos ; i < adjustedLen; i += 40){
- bit = data[i]>0 ? 1:0;
- printf("%d", bit );
+void iceSimple_Filter(int *data, const size_t len, uint8_t k){
+// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications
+// parameter K
+#define FILTER_SHIFT 4
+
+ int32_t filter_reg = 0;
+ int16_t input, output;
+ int8_t shift = (k <=8 ) ? k : FILTER_SHIFT;
+
+ for (int i = 0; i < len; ++i){
+
+ input = data[i];
+ // Update filter with current sample
+ filter_reg = filter_reg - (filter_reg >> shift) + input;
+
+ // Scale output for unity gain
+ output = filter_reg >> shift;
+ data[i] = output;
}
- printf("\n");
-
- printf("R/50 : ");
- for (i =startPos ; i < adjustedLen; i += 50){
- bit = data[i]>0 ? 1:0;
- printf("%d", bit ); }
- printf("\n");
-
- free(output);
}
float complex cexpf (float complex Z)