#include "util.h"
#include "string.h"
#include "cmd.h"
-
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
+void AppendCrc14443b(uint8_t* data, int len)
+{
+ ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
+}
+
+
//=============================================================================
// ISO 14443 Type A - Miller decoder
//=============================================================================
static tUart Uart;
// Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001 - a 3 tick wide pause
+// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111 - a 2 tick wide pause shifted left
+// 1001 - a 2 tick wide pause shifted right
const bool Mod_Miller_LUT[] = {
- TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
- TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
+ FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
+ FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
};
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
void UartReset()
{
Uart.parityLen = 0; // number of decoded parity bytes
Uart.shiftReg = 0; // shiftreg to hold decoded data bits
Uart.parityBits = 0; // holds 8 parity bits
- Uart.twoBits = 0x0000; // buffer for 2 Bits
- Uart.highCnt = 0;
Uart.startTime = 0;
Uart.endTime = 0;
+
+ Uart.byteCntMax = 0;
+ Uart.posCnt = 0;
+ Uart.syncBit = 9999;
}
void UartInit(uint8_t *data, uint8_t *parity)
{
Uart.output = data;
Uart.parity = parity;
+ Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
UartReset();
}
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
{
- Uart.twoBits = (Uart.twoBits << 8) | bit;
+ Uart.fourBits = (Uart.fourBits << 8) | bit;
if (Uart.state == STATE_UNSYNCD) { // not yet synced
- if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
- if (Uart.twoBits == 0xffff) {
- Uart.highCnt++;
- } else {
- Uart.highCnt = 0;
- }
- } else {
- Uart.syncBit = 0xFFFF; // not set
- // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
- if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
- // check for 00x11111 xxxxxxxx
- else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
- else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
- else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
- else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
- else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
- else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
- else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
- if (Uart.syncBit != 0xFFFF) { // found a sync bit
+ Uart.syncBit = 9999; // not set
+
+ // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
+ // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
+ // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
+
+ // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+ // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
+ // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
+ // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+ //
+#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
+
+ if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+ if (Uart.syncBit != 9999) { // found a sync bit
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Uart.startTime -= Uart.syncBit;
Uart.endTime = Uart.startTime;
Uart.state = STATE_START_OF_COMMUNICATION;
}
- }
} else {
- if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
- if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
+ if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
UartReset();
} else { // Modulation in first half = Sequence Z = logic "0"
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
}
}
} else {
- if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
Uart.state = STATE_MILLER_X;
return TRUE; // we are finished with decoding the raw data sequence
} else {
UartReset(); // Nothing received - start over
- Uart.highCnt = 1;
}
}
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
UartReset();
- Uart.highCnt = 1;
} else { // a logic "0"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Demod.highCnt = 0;
Demod.startTime = 0;
Demod.endTime = 0;
+
+ //
+ Demod.bitCount = 0;
+ Demod.syncBit = 0xFFFF;
+ Demod.samples = 0;
}
void DemodInit(uint8_t *data, uint8_t *parity)
}
}
}
-
}
-
return FALSE; // not finished yet, need more data
}
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// And ready to receive another response.
DemodReset();
+ // And reset the Miller decoder including itS (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
+
LED_C_OFF();
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
{
+
+ //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+ // This can be used in a reader-only attack.
+ // (it can also be retrieved via 'hf 14a list', but hey...
+ uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t ar_nr_collected = 0;
+
uint8_t sak;
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
response1[0] = 0x01;
response1[1] = 0x0f;
sak = 0x01;
- } break;
+ } break;
+ case 6: { // MIFARE Mini
+ // Says: I am a Mifare Mini, 320b
+ response1[0] = 0x44;
+ response1[1] = 0x00;
+ sak = 0x09;
+ } break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
return;
// Check if the uid uses the (optional) part
uint8_t response2a[5] = {0x00};
- if (uid_2nd) {
+ if (flags & FLAG_7B_UID_IN_DATA) {
response2[0] = 0x88;
- num_to_bytes(uid_1st,3,response2+1);
- num_to_bytes(uid_2nd,4,response2a);
+ response2[1] = data[0];
+ response2[2] = data[1];
+ response2[3] = data[2];
+
+ response2a[0] = data[3];
+ response2a[1] = data[4];
+ response2a[2] = data[5];
+ response2a[3] = data[7];
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
// Configure the ATQA and SAK accordingly
response1[0] |= 0x40;
sak |= 0x04;
} else {
- num_to_bytes(uid_1st,4,response2);
+ memcpy(response2, data, 4);
+ //num_to_bytes(uid_1st,4,response2);
// Configure the ATQA and SAK accordingly
response1[0] &= 0xBF;
sak &= 0xFB;
if (tracing) {
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
+ uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
- Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+ //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
+
+ if(flags & FLAG_NR_AR_ATTACK )
+ {
+ if(ar_nr_collected < 2){
+ // Avoid duplicates... probably not necessary, nr should vary.
+ //if(ar_nr_responses[3] != nr){
+ ar_nr_responses[ar_nr_collected*5] = 0;
+ ar_nr_responses[ar_nr_collected*5+1] = 0;
+ ar_nr_responses[ar_nr_collected*5+2] = nonce;
+ ar_nr_responses[ar_nr_collected*5+3] = nr;
+ ar_nr_responses[ar_nr_collected*5+4] = ar;
+ ar_nr_collected++;
+ //}
+ }
+
+ if(ar_nr_collected > 1 ) {
+
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
+ Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
+ }
+ uint8_t len = ar_nr_collected*5*4;
+ cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+ ar_nr_collected = 0;
+ memset(ar_nr_responses, 0x00, len);
+ Dbprintf("ICE");
+ }
+ }
} else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
}
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
BigBuf_free_keep_EM();
}
// Only transmit parity bit if we transmitted a complete byte
- if (j == 8) {
+ if (j == 8 && parity != NULL) {
// Get the parity bit
if (parity[i>>3] & (0x80 >> (i&0x0007))) {
// Sequence X
//-----------------------------------------------------------------------------
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
- uint32_t c;
+ uint32_t c = 0x00;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- c = 0;
for(;;) {
WDT_HIT();
}
}
+
void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
{
CodeIso14443aBitsAsReaderPar(frame, bits, par);
}
}
+
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
+
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
ReaderTransmitBitsPar(frame, len, par, timing);
}
+
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
memset(uid_ptr,0,10);
}
+ // check for proprietary anticollision:
+ if ((resp[0] & 0x1F) == 0) {
+ return 3;
+ }
+
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
DemodReset();
UartReset();
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
- iso14a_set_timeout(1050); // 10ms default
+ iso14a_set_timeout(10*106); // 10ms default
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
if(param & ISO14A_RAW) {
if(param & ISO14A_APPEND_CRC) {
- AppendCrc14443a(cmd,len);
+ if(param & ISO14A_TOPAZMODE) {
+ AppendCrc14443b(cmd,len);
+ } else {
+ AppendCrc14443a(cmd,len);
+ }
len += 2;
if (lenbits) lenbits += 16;
}
- if(lenbits>0) {
+ if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
+ if(param & ISO14A_TOPAZMODE) {
+ int bits_to_send = lenbits;
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
+ bits_to_send -= 7;
+ while (bits_to_send > 0) {
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
+ bits_to_send -= 8;
+ }
+ } else {
GetParity(cmd, lenbits/8, par);
- ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
+ ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
+ }
+ } else { // want to send complete bytes only
+ if(param & ISO14A_TOPAZMODE) {
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
+ while (i < len) {
+ ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
+ }
} else {
- ReaderTransmit(cmd,len, NULL);
+ ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
+ }
}
arg0 = ReaderReceive(buf, par);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
- uint16_t i;
- uint32_t nttmp1, nttmp2;
-
if (nt1 == nt2) return 0;
- nttmp1 = nt1;
- nttmp2 = nt2;
+ uint16_t i;
+ uint32_t nttmp1 = nt1;
+ uint32_t nttmp2 = nt2;
for (i = 1; i < 32768; i++) {
nttmp1 = prng_successor(nttmp1, 1);
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
-{
- // Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- static uint8_t mf_nr_ar3;
-
- uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
-
+void ReaderMifare(bool first_try) {
// free eventually allocated BigBuf memory. We want all for tracing.
BigBuf_free();
clear_trace();
set_tracing(TRUE);
+ // Mifare AUTH
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
+ static uint8_t mf_nr_ar3 = 0;
+
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
+
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
- uint8_t uid[10] ={0};
- uint32_t cuid;
+ uint8_t uid[10] = {0x00};
+ //uint32_t cuid = 0x00;
uint32_t nt = 0;
uint32_t previous_nt = 0;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
- static uint32_t sync_time;
- static uint32_t sync_cycles;
+ static uint32_t sync_time = 0;
+ static uint32_t sync_cycles = 0;
int catch_up_cycles = 0;
int last_catch_up = 0;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
+ int numWrongDistance = 0;
+
if (first_try) {
mf_nr_ar3 = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
-
+ LED_C_ON();
for(uint16_t i = 0; TRUE; i++) {
WDT_HIT();
// Test if the action was cancelled
- if(BUTTON_PRESS()) {
+ if(BUTTON_PRESS()) break;
+
+ if (numWrongDistance > 1000) {
+ isOK = 0;
break;
}
- LED_C_ON();
-
- if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ //if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ if(!iso14443a_select_card(uid, NULL, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
nt_attacked = nt;
}
else {
- if (nt_distance == -99999) { // invalid nonce received, try again
+
+ // invalid nonce received, try again
+ if (nt_distance == -99999) {
+ numWrongDistance++;
+ if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
continue;
}
+
sync_cycles = (sync_cycles - nt_distance);
if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
continue;
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
catch_up_cycles = -dist_nt(nt_attacked, nt);
- if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
+ if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
}
}
-
mf_nr_ar[3] &= 0x1F;
- byte_t buf[28];
+ byte_t buf[28] = {0x00};
+
memcpy(buf + 0, uid, 4);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
- // Thats it...
+ set_tracing(FALSE);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
-
- set_tracing(FALSE);
}
-/**
+
+ /*
*MIFARE 1K simulate.
*
*@param flags :
if (_7BUID) {
rATQA[0] = 0x44;
rUIDBCC1[0] = 0x88;
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
}
}
if(cardSTATE == MFEMUL_NOFIELD) continue;
+ //Now, get data
+
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
{
finished = true;
- }
+ }
}
// --- crypto
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3], //NR1
- ar_nr_responses[6], //AR2
- ar_nr_responses[7] //NR2
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3], // NR1
+ ar_nr_responses[6], // AR2
+ ar_nr_responses[7] // NR2
);
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) {
Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3] //NR1
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3] // NR1
);
}
}
}
-
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
+ // free eventually allocated BigBuf memory
+ BigBuf_free();
+
// C(red) A(yellow) B(green)
LEDsoff();
// init trace buffer
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
-
- // free eventually allocated BigBuf memory
- BigBuf_free();
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
/* And ready to receive another command. */
- UartReset();
+ UartInit(receivedCmd, receivedCmdPar);
/* And also reset the demod code */
DemodReset();
// And ready to receive another response.
DemodReset();
+
+ // And reset the Miller decoder including its (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
LEDsoff();
-}
+}
\ No newline at end of file