#include "cmd.h"
#include "iso14443crc.h"
#include "iso14443a.h"
+#include "iso14443b.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "BigBuf.h"
// the block number for the ISO14443-4 PCB
static uint8_t iso14_pcb_blocknum = 0;
+static uint8_t* free_buffer_pointer;
+
//
// ISO14443 timing:
//
}
void iso14a_set_ATS_timeout(uint8_t *ats) {
-
uint8_t tb1;
uint8_t fwi;
uint32_t fwt;
tb1 = ats[2];
fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
- //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
- fwt = 4096 * (1 << fwi);
+ fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ //fwt = 4096 * (1 << fwi);
- //iso14a_set_timeout(fwt/(8*16));
- iso14a_set_timeout(fwt/128);
+ iso14a_set_timeout(fwt/(8*16));
+ //iso14a_set_timeout(fwt/128);
}
}
}
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
-{
+void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) {
uint16_t paritybit_cnt = 0;
uint16_t paritybyte_cnt = 0;
uint8_t parityBits = 0;
}
// save remaining parity bits
- par[paritybyte_cnt] = parityBits;
-
+ par[paritybyte_cnt] = parityBits;
}
-void AppendCrc14443a(uint8_t* data, int len)
-{
+void AppendCrc14443a(uint8_t* data, int len) {
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
-void AppendCrc14443b(uint8_t* data, int len)
-{
- ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
-}
-
-
//=============================================================================
// ISO 14443 Type A - Miller decoder
//=============================================================================
#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
-void UartReset()
-{
+void UartReset() {
Uart.state = STATE_UNSYNCD;
Uart.bitCount = 0;
Uart.len = 0; // number of decoded data bytes
Uart.syncBit = 9999;
}
-void UartInit(uint8_t *data, uint8_t *parity)
-{
+void UartInit(uint8_t *data, uint8_t *parity) {
Uart.output = data;
Uart.parity = parity;
Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
}
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
-static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
-{
-
+static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
Uart.fourBits = (Uart.fourBits << 8) | bit;
if (Uart.state == STATE_UNSYNCD) { // not yet synced
-
- Uart.syncBit = 9999; // not set
+ Uart.syncBit = 9999; // not set
// 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
// 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
if (Uart.syncBit != 9999) { // found a sync bit
- Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
- Uart.startTime -= Uart.syncBit;
- Uart.endTime = Uart.startTime;
- Uart.state = STATE_START_OF_COMMUNICATION;
- }
-
+ Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
+ Uart.startTime -= Uart.syncBit;
+ Uart.endTime = Uart.startTime;
+ Uart.state = STATE_START_OF_COMMUNICATION;
+ }
} else {
if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
}
}
}
-
}
-
return FALSE; // not finished yet, need more data
}
-
-
//=============================================================================
// ISO 14443 Type A - Manchester decoder
//=============================================================================
#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
-
-void DemodReset()
-{
+void DemodReset() {
Demod.state = DEMOD_UNSYNCD;
Demod.len = 0; // number of decoded data bytes
Demod.parityLen = 0;
Demod.twoBits = 0xffff; // buffer for 2 Bits
Demod.highCnt = 0;
Demod.startTime = 0;
- Demod.endTime = 0;
-
- //
+ Demod.endTime = 0;
Demod.bitCount = 0;
Demod.syncBit = 0xFFFF;
Demod.samples = 0;
}
-void DemodInit(uint8_t *data, uint8_t *parity)
-{
+void DemodInit(uint8_t *data, uint8_t *parity) {
Demod.output = data;
Demod.parity = parity;
DemodReset();
}
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
-static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
-{
-
+static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
Demod.twoBits = (Demod.twoBits << 8) | bit;
if (Demod.state == DEMOD_UNSYNCD) {
Demod.state = DEMOD_MANCHESTER_DATA;
}
}
-
} else {
if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free(); BigBuf_Clear_ext(false);
-
- // init trace buffer
clear_trace();
set_tracing(TRUE);
DemodReset();
// And reset the Miller decoder including itS (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
-
LED_C_OFF();
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(FALSE);
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
-static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
-{
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
ToSendReset();
// Correction bit, might be removed when not needed
ToSend[++ToSendMax] = SEC_F;
// Convert from last byte pos to length
- ToSendMax++;
+ ++ToSendMax;
}
-static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
-{
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) {
uint8_t par[MAX_PARITY_SIZE] = {0};
-
GetParity(cmd, len, par);
CodeIso14443aAsTagPar(cmd, len, par);
}
-
-static void Code4bitAnswerAsTag(uint8_t cmd)
-{
- int i;
+static void Code4bitAnswerAsTag(uint8_t cmd) {
+ uint8_t b = cmd;
ToSendReset();
// Send startbit
ToSend[++ToSendMax] = SEC_D;
- uint8_t b = cmd;
- for(i = 0; i < 4; i++) {
+ for(uint8_t i = 0; i < 4; i++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
-static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
-{
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- // Now run a `software UART' on the stream of incoming samples.
+ // Now run a `software UART` on the stream of incoming samples.
UartInit(received, parity);
// clear RXRDY:
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
-int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, uint16_t respLen);
-int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
-
-static uint8_t* free_buffer_pointer;
-
-typedef struct {
- uint8_t* response;
- size_t response_n;
- uint8_t* modulation;
- size_t modulation_n;
- uint32_t ProxToAirDuration;
-} tag_response_info_t;
-
bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
// This will need the following byte array for a modulation sequence
// ----------- +
// 166 bytes, since every bit that needs to be send costs us a byte
//
-
-
- // Prepare the tag modulation bits from the message
- CodeIso14443aAsTag(response_info->response,response_info->response_n);
-
- // Make sure we do not exceed the free buffer space
- if (ToSendMax > max_buffer_size) {
- Dbprintf("Out of memory, when modulating bits for tag answer:");
- Dbhexdump(response_info->response_n,response_info->response,false);
- return false;
- }
-
- // Copy the byte array, used for this modulation to the buffer position
- memcpy(response_info->modulation,ToSend,ToSendMax);
-
- // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
- response_info->modulation_n = ToSendMax;
- response_info->ProxToAirDuration = LastProxToAirDuration;
-
- return true;
-}
+ // Prepare the tag modulation bits from the message
+ CodeIso14443aAsTag(response_info->response,response_info->response_n);
+
+ // Make sure we do not exceed the free buffer space
+ if (ToSendMax > max_buffer_size) {
+ Dbprintf("Out of memory, when modulating bits for tag answer:");
+ Dbhexdump(response_info->response_n,response_info->response,false);
+ return FALSE;
+ }
+
+ // Copy the byte array, used for this modulation to the buffer position
+ memcpy(response_info->modulation,ToSend,ToSendMax);
+ // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
+ response_info->modulation_n = ToSendMax;
+ response_info->ProxToAirDuration = LastProxToAirDuration;
+ return TRUE;
+}
// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
- // Retrieve and store the current buffer index
- response_info->modulation = free_buffer_pointer;
-
- // Determine the maximum size we can use from our buffer
- size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
-
- // Forward the prepare tag modulation function to the inner function
- if (prepare_tag_modulation(response_info, max_buffer_size)) {
- // Update the free buffer offset
- free_buffer_pointer += ToSendMax;
- return true;
- } else {
- return false;
- }
+ // Retrieve and store the current buffer index
+ response_info->modulation = free_buffer_pointer;
+
+ // Determine the maximum size we can use from our buffer
+ size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
+
+ // Forward the prepare tag modulation function to the inner function
+ if (prepare_tag_modulation(response_info, max_buffer_size)) {
+ // Update the free buffer offset
+ free_buffer_pointer += ToSendMax;
+ return true;
+ } else {
+ return false;
+ }
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
-{
- uint32_t counters[] = {0,0,0};
- //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
+
+ //Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2
// This can be used in a reader-only attack.
- // (it can also be retrieved via 'hf 14a list', but hey...
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
-
- uint8_t sak;
+ uint8_t sak = 0;
// PACK response to PWD AUTH for EV1/NTAG
- uint8_t response8[4] = {0,0,0,0};
+ uint8_t response8[4] = {0,0,0,0};
+ // Counter for EV1/NTAG
+ uint32_t counters[] = {0,0,0};
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
- uint8_t response1[2] = {0,0};
+ uint8_t response1[] = {0,0};
switch (tagType) {
- case 1: { // MIFARE Classic
- // Says: I am Mifare 1k - original line
+ case 1: { // MIFARE Classic 1k
response1[0] = 0x04;
- response1[1] = 0x00;
sak = 0x08;
} break;
case 2: { // MIFARE Ultralight
- // Says: I am a stupid memory tag, no crypto
response1[0] = 0x44;
- response1[1] = 0x00;
sak = 0x00;
} break;
case 3: { // MIFARE DESFire
- // Says: I am a DESFire tag, ph33r me
response1[0] = 0x04;
response1[1] = 0x03;
sak = 0x20;
} break;
- case 4: { // ISO/IEC 14443-4
- // Says: I am a javacard (JCOP)
+ case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
response1[0] = 0x04;
- response1[1] = 0x00;
sak = 0x28;
} break;
case 5: { // MIFARE TNP3XXX
- // Says: I am a toy
response1[0] = 0x01;
response1[1] = 0x0f;
sak = 0x01;
} break;
- case 6: { // MIFARE Mini
- // Says: I am a Mifare Mini, 320b
+ case 6: { // MIFARE Mini 320b
response1[0] = 0x44;
- response1[1] = 0x00;
sak = 0x09;
} break;
- case 7: { // NTAG?
- // Says: I am a NTAG,
+ case 7: { // NTAG
response1[0] = 0x44;
- response1[1] = 0x00;
sak = 0x00;
// PACK
response8[0] = 0x80;
// The second response contains the (mandatory) first 24 bits of the UID
uint8_t response2[5] = {0x00};
- // Check if the uid uses the (optional) part
+ // For UID size 7,
uint8_t response2a[5] = {0x00};
if (flags & FLAG_7B_UID_IN_DATA) {
- response2[0] = 0x88;
+ response2[0] = 0x88; // Cascade Tag marker
response2[1] = data[0];
response2[2] = data[1];
response2[3] = data[2];
sak |= 0x04;
} else {
memcpy(response2, data, 4);
- //num_to_bytes(uid_1st,4,response2);
// Configure the ATQA and SAK accordingly
response1[0] &= 0xBF;
sak &= 0xFB;
response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
- uint8_t response3[3] = {0x00};
- response3[0] = sak;
+ uint8_t response3[3] = {sak, 0x00, 0x00};
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
response3a[0] = sak & 0xFB;
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
- uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
- uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
+ uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
+ uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
// Prepare GET_VERSION (different for UL EV-1 / NTAG)
//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
- //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
-
+ //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
// Prepare CHK_TEARING
//uint8_t response9[] = {0xBD,0x90,0x3f};
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
BigBuf_free_keep_EM();
+ clear_trace();
+ set_tracing(TRUE);
// allocate buffers:
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
- // clear trace
- clear_trace();
- set_tracing(TRUE);
-
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
int happened = 0;
int happened2 = 0;
int cmdsRecvd = 0;
-
- cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
- for(;;) {
-
+ for(;;) {
WDT_HIT();
// Clean receive command buffer
// Okay, look at the command now.
lastorder = order;
- if(receivedCmd[0] == 0x26) { // Received a REQUEST
+ if(receivedCmd[0] == ISO14443A_CMD_REQA) { // Received a REQUEST
p_response = &responses[0]; order = 1;
- } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
+ } else if(receivedCmd[0] == ISO14443A_CMD_WUPA) { // Received a WAKEUP
p_response = &responses[0]; order = 6;
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received request for UID (cascade 1)
p_response = &responses[1]; order = 2;
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received request for UID (cascade 2)
p_response = &responses[2]; order = 20;
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received a SELECT (cascade 1)
p_response = &responses[3]; order = 3;
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
- p_response = &responses[4]; order = 30;
- } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received a SELECT (cascade 2)
+ p_response = &responses[4]; order = 30;
+ } else if(receivedCmd[0] == ISO14443A_CMD_READBLOCK) { // Received a (plain) READ
uint8_t block = receivedCmd[1];
// if Ultralight or NTAG (4 byte blocks)
if ( tagType == 7 || tagType == 2 ) {
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
}
- } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
-
- uint8_t emdata[MAX_FRAME_SIZE];
- //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
- int start = (receivedCmd[1]+12) * 4;
- int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
- emlGetMemBt( emdata, start, len);
- AppendCrc14443a(emdata, len);
- EmSendCmdEx(emdata, len+2, false);
- p_response = NULL;
-
- } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
- //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
- uint16_t start = 4 * 4;
- uint8_t emdata[34];
- emlGetMemBt( emdata, start, 32);
- AppendCrc14443a(emdata, 32);
- EmSendCmdEx(emdata, sizeof(emdata), false);
- p_response = NULL;
- } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
+ } else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) { // Received a FAST READ (ranged read)
+ uint8_t emdata[MAX_FRAME_SIZE];
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ int start = (receivedCmd[1]+12) * 4;
+ int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+ emlGetMemBt( emdata, start, len);
+ AppendCrc14443a(emdata, len);
+ EmSendCmdEx(emdata, len+2, false);
+ p_response = NULL;
+ } else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) { // Received a READ SIGNATURE --
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * 4;
+ uint8_t emdata[34];
+ emlGetMemBt( emdata, start, 32);
+ AppendCrc14443a(emdata, 32);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && tagType == 7) { // Received a READ COUNTER --
uint8_t index = receivedCmd[1];
uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
if ( counters[index] > 0) {
}
EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
- } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
+ } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) { // Received a INC COUNTER --
// number of counter
uint8_t counter = receivedCmd[1];
uint32_t val = bytes_to_num(receivedCmd+2,4);
// send ACK
uint8_t ack[] = {0x0a};
EmSendCmdEx(ack,sizeof(ack),false);
- p_response = NULL;
-
- } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
+ p_response = NULL;
+ } else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT --
//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
uint8_t emdata[3];
uint8_t counter=0;
AppendCrc14443a(emdata, sizeof(emdata)-2);
EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
- } else if(receivedCmd[0] == 0x50) { // Received a HALT
+ } else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
- } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
+ } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request
if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
uint8_t emdata[10];
} else {
p_response = &responses[5]; order = 7;
}
- } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
+ } else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request
if (tagType == 1 || tagType == 2) { // RATS not supported
EmSend4bit(CARD_NACK_NA);
p_response = NULL;
uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
- //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
- if(flags & FLAG_NR_AR_ATTACK )
- {
+ if(flags & FLAG_NR_AR_ATTACK ) {
if(ar_nr_collected < 2){
// Avoid duplicates... probably not necessary, nr should vary.
//if(ar_nr_responses[3] != nr){
- ar_nr_responses[ar_nr_collected*5] = 0;
- ar_nr_responses[ar_nr_collected*5+1] = 0;
- ar_nr_responses[ar_nr_collected*5+2] = nonce;
- ar_nr_responses[ar_nr_collected*5+3] = nr;
- ar_nr_responses[ar_nr_collected*5+4] = ar;
+ ar_nr_responses[ar_nr_collected*4] = 0;
+ ar_nr_responses[ar_nr_collected*4+1] = nonce;
+ ar_nr_responses[ar_nr_collected*4+2] = nr;
+ ar_nr_responses[ar_nr_collected*4+3] = ar;
ar_nr_collected++;
//}
}
- if(ar_nr_collected > 1 ) {
-
+ if(ar_nr_collected > 1 ) {
if (MF_DBGLEVEL >= 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID1
- ar_nr_responses[1], // UID2
- ar_nr_responses[2], // NT
- ar_nr_responses[3], // AR1
- ar_nr_responses[4], // NR1
- ar_nr_responses[8], // AR2
- ar_nr_responses[9] // NR2
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // CUID
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3], // NR1
+ ar_nr_responses[6], // AR2
+ ar_nr_responses[7] // NR2
);
- Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID1
- ar_nr_responses[1], // UID2
- ar_nr_responses[2], // NT1
- ar_nr_responses[3], // AR1
- ar_nr_responses[4], // NR1
- ar_nr_responses[7], // NT2
- ar_nr_responses[8], // AR2
- ar_nr_responses[9] // NR2
- );
}
uint8_t len = ar_nr_collected*5*4;
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
memset(ar_nr_responses, 0x00, len);
}
}
- } else if (receivedCmd[0] == 0x1a ) // ULC authentication
- {
-
- }
- else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
- {
+ } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
+ } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
if ( tagType == 7 ) {
uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
uint8_t emdata[4];
p_response = NULL;
uint32_t pwd = bytes_to_num(receivedCmd+1,4);
- if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
+ if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
}
} else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
// Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; }
+ // comment this limit if you want to simulation longer
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par);
}
-
+
+ // comment this limit if you want to simulation longer
if (!tracing) {
Dbprintf("Trace Full. Simulation stopped.");
break;
}
}
-
// prepare a delayed transfer. This simply shifts ToSend[] by a number
// of bits specified in the delay parameter.
-void PrepareDelayedTransfer(uint16_t delay)
-{
+void PrepareDelayedTransfer(uint16_t delay) {
delay &= 0x07;
if (!delay) return;
for (i = 0; i < delay; ++i)
bitmask |= (0x01 << i);
- ToSend[++ToSendMax] = 0x00;
+ ToSend[++ToSendMax] = 0x00;
for (i = 0; i < ToSendMax; ++i) {
bits_to_shift = ToSend[i] & bitmask;
// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
//-------------------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
-{
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
uint32_t ThisTransferTime = 0;
if (timing) {
-
- if (*timing != 0)
- // Delay transfer (fine tuning - up to 7 MF clock ticks)
- PrepareDelayedTransfer(*timing & 0x00000007);
- else
- // Measure time
+ if(*timing == 0) { // Measure time
*timing = (GetCountSspClk() + 8) & 0xfffffff8;
-
-
- if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8))
- Dbprintf("TransmitFor14443a: Missed timing");
-
- // Delay transfer (multiple of 8 MF clock ticks)
- while (GetCountSspClk() < (*timing & 0xfffffff8));
-
+ } else {
+ PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
+ }
+ if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+ while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
LastTimeProxToAirStart = *timing;
} else {
ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
}
-
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Prepare reader command to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
-{
- //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
- CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity);
+void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) {
+ CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
}
-
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed (return 1) or field was gone (return 2)
// Or return 0 when command is captured
//-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
-{
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
*len = 0;
uint32_t timer = 0, vtime = 0;
return 0;
}
}
-
}
}
-
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
-{
+int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) {
uint8_t b;
uint16_t i = 0;
uint32_t ThisTransferTime;
if (Uart.parityBits & 0x01) {
correctionNeeded = TRUE;
}
- if(correctionNeeded) {
- // 1236, so correction bit needed
- i = 0;
- } else {
- i = 1;
- }
+ // 1236, so correction bit needed
+ i = (correctionNeeded) ? 0 : 1;
// clear receiving shift register and holding register
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
i++;
}
}
-
LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
-
return 0;
}
// If a response is captured return TRUE
// If it takes too long return FALSE
//-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
-{
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
uint32_t c = 0x00;
// Set FPGA mode to "reader listen mode", no modulation (listen
}
}
-void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
-{
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
CodeIso14443aBitsAsReaderPar(frame, bits, par);
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
- if(trigger)
- LED_A_ON();
+ if(trigger) LED_A_ON();
// Log reader command in trace buffer
//LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
-void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
-{
- //ReaderTransmitBitsPar(frame, len*8, par, timing);
- ReaderTransmitBitsPar(frame, len<<3, par, timing);
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
-{
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE] = {0x00};
- //GetParity(frame, len/8, par);
- GetParity(frame, len >> 3, par);
+ GetParity(frame, len/8, par);
ReaderTransmitBitsPar(frame, len, par, timing);
}
-void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
-{
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len, par);
- //ReaderTransmitBitsPar(frame, len*8, par, timing);
- ReaderTransmitBitsPar(frame, len<<3, par, timing);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
-{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
return FALSE;
-
- //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
-int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
-{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
return FALSE;
-
- //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
+
+ LED_D_OFF();
// Signal field is on with the appropriate LED
- if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
- || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
+ if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
+ fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
LED_D_ON();
- } else {
- LED_D_OFF();
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
- // Start the timer
- StartCountSspClk();
-
+ // Prepare the demodulation functions
DemodReset();
UartReset();
- NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
+
iso14a_set_timeout(10*106); // 10ms default
+
+ //NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
+ NextTransferTime = DELAY_ARM2AIR_AS_READER << 1;
+
+ // Start the timer
+ StartCountSspClk();
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
ReaderTransmit(real_cmd, cmd_len+4, NULL);
size_t len = ReaderReceive(data, parity);
+ //DATA LINK ERROR
+ if (!len) return 0;
+
uint8_t *data_bytes = (uint8_t *) data;
- if (!len)
- return 0; //DATA LINK ERROR
+
// if we received an I- or R(ACK)-Block with a block number equal to the
// current block number, toggle the current block number
- else if (len >= 4 // PCB+CID+CRC = 4 bytes
+ if (len >= 4 // PCB+CID+CRC = 4 bytes
&& ((data_bytes[0] & 0xC0) == 0 // I-Block
|| (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
&& (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
-void ReaderIso14443a(UsbCommand *c)
-{
+void ReaderIso14443a(UsbCommand *c) {
iso14a_command_t param = c->arg[0];
- uint8_t *cmd = c->d.asBytes;
size_t len = c->arg[1] & 0xffff;
size_t lenbits = c->arg[1] >> 16;
uint32_t timeout = c->arg[2];
+ uint8_t *cmd = c->d.asBytes;
uint32_t arg0 = 0;
byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
uint8_t par[MAX_PARITY_SIZE] = {0x00};
if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(TRUE);
-
if (param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
- cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+ cmd_send(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t));
+ // if it fails, the cmdhf14a.c client quites.. however this one still executes.
+ if ( arg0 == 0 ) return;
}
}
if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(FALSE);
-
if (param & ISO14A_NO_DISCONNECT)
return;
LEDsoff();
}
-
// Determine the distance between two nonces.
// Assume that the difference is small, but we don't know which is first.
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
if (nt1 == nt2) return 0;
-
+
uint16_t i;
uint32_t nttmp1 = nt1;
uint32_t nttmp2 = nt2;
-
- for (i = 1; i < 0xFFFF; i += 8) {
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+1;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-1;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+2;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-2;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+3;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-3;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+4;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-4;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+5;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-5;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+6;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-6;
-
- nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+7;
- nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-7;
-/*
- if ( prng_successor(nttmp1, i) == nt2) return i;
- if ( prng_successor(nttmp2, i) == nt1) return -i;
-
- if ( prng_successor(nttmp1, i+2) == nt2) return i+2;
- if ( prng_successor(nttmp2, i+2) == nt1) return -(i+2);
-
- if ( prng_successor(nttmp1, i+3) == nt2) return i+3;
- if ( prng_successor(nttmp2, i+3) == nt1) return -(i+3);
-
- if ( prng_successor(nttmp1, i+4) == nt2) return i+4;
- if ( prng_successor(nttmp2, i+4) == nt1) return -(i+4);
-
- if ( prng_successor(nttmp1, i+5) == nt2) return i+5;
- if ( prng_successor(nttmp2, i+5) == nt1) return -(i+5);
-
- if ( prng_successor(nttmp1, i+6) == nt2) return i+6;
- if ( prng_successor(nttmp2, i+6) == nt1) return -(i+6);
- if ( prng_successor(nttmp1, i+7) == nt2) return i+7;
- if ( prng_successor(nttmp2, i+7) == nt1) return -(i+7);
-*/
- }
-
- return(-99999); // either nt1 or nt2 are invalid nonces
+ for (i = 1; i < (32768/8); ++i) {
+ nttmp1 = prng_successor(nttmp1, 1);
+ if (nttmp1 == nt2) return i;
+ nttmp2 = prng_successor(nttmp2, 1);
+ if (nttmp2 == nt1) return -i;
+
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2);
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3);
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4);
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5);
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6);
+ nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7;
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7);
+ }
+ // either nt1 or nt2 are invalid nonces
+ return(-99999);
}
-
//-----------------------------------------------------------------------------
// Recover several bits of the cypher stream. This implements (first stages of)
// the algorithm described in "The Dark Side of Security by Obscurity and
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try, uint8_t block )
-{
- // Mifare AUTH
- //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c };
- uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 };
+void ReaderMifare(bool first_try, uint8_t block ) {
+ //uint8_t mf_auth[] = { MIFARE_AUTH_KEYA,0x00,0xf5,0x7b };
+ uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
-
- mf_auth[1] = block;
- AppendCrc14443a(mf_auth, 2);
-
byte_t nt_diff = 0;
-
uint32_t nt = 0;
uint32_t previous_nt = 0;
- uint32_t halt_time = 0;
uint32_t cuid = 0;
- int catch_up_cycles = 0;
- int last_catch_up = 0;
- int isOK = 0;
+ int32_t catch_up_cycles = 0;
+ int32_t last_catch_up = 0;
+ int32_t isOK = 0;
+ int32_t nt_distance = 0;
uint16_t elapsed_prng_sequences = 1;
uint16_t consecutive_resyncs = 0;
uint16_t unexpected_random = 0;
uint16_t sync_tries = 0;
- uint16_t strategy = 0;
+ // static variables here, is re-used in the next call?
static uint32_t nt_attacked = 0;
static uint32_t sync_time = 0;
- static int32_t sync_cycles = 0;
+ static uint32_t sync_cycles = 0;
static uint8_t par_low = 0;
static uint8_t mf_nr_ar3 = 0;
-
+
#define PRNG_SEQUENCE_LENGTH (1 << 16)
#define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
#define MAX_SYNC_TRIES 32
#define MAX_STRATEGY 3
- // free eventually allocated BigBuf memory
- BigBuf_free(); BigBuf_Clear_ext(false);
-
+ BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
- set_tracing(TRUE);
-
- LED_A_ON();
-
- if (first_try)
- iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ set_tracing(TRUE);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ AppendCrc14443a(mf_auth, 2);
+
if (first_try) {
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = PRNG_SEQUENCE_LENGTH + 1100; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH + 1130; //65536; //0x10000 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
mf_nr_ar3 = 0;
nt_attacked = 0;
+ par_low = 0;
+ Dbprintf("FIRST: sync_time - %08X", sync_time);
} else {
// we were unsuccessful on a previous call.
// Try another READER nonce (first 3 parity bits remain the same)
mf_nr_ar[3] = mf_nr_ar3;
par[0] = par_low;
}
-
- LED_A_ON();
+
+ bool have_uid = FALSE;
+ uint8_t cascade_levels = 0;
+
LED_C_ON();
- for(uint16_t i = 0; TRUE; ++i) {
+ uint16_t i;
+ for(i = 0; TRUE; ++i) {
WDT_HIT();
break;
}
- if (strategy == 2) {
- // test with additional halt command
- halt_time = 0;
- int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
-
- if (len && MF_DBGLEVEL >= 3)
- Dbprintf("Unexpected response of %d bytes to halt command.", len);
- }
-
- if (strategy == 3) {
- // test with FPGA power off/on
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
- iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(100);
- sync_time = GetCountSspClk() & 0xfffffff8;
- WDT_HIT();
- }
-
- if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
- if (MF_DBGLEVEL >= 2) Dbprintf("Mifare: Can't select card\n");
- continue;
+ // this part is from Piwi's faster nonce collecting part in Hardnested.
+ if (!have_uid) { // need a full select cycle to get the uid first
+ iso14a_card_select_t card_info;
+ if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0)) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (ALL)");
+ break;
+ }
+ switch (card_info.uidlen) {
+ case 4 : cascade_levels = 1; break;
+ case 7 : cascade_levels = 2; break;
+ case 10: cascade_levels = 3; break;
+ default: break;
+ }
+ have_uid = TRUE;
+ } else { // no need for anticollision. We can directly select the card
+ if(!iso14443a_select_card(uid, NULL, &cuid, false, cascade_levels)) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (UID)");
+ continue;
+ }
}
-
- // Sending timeslot of ISO14443a frame
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ // Sending timeslot of ISO14443a frame
+ sync_time = (sync_time & 0xfffffff8 ) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
-
- //catch_up_cycles = 0;
// if we missed the sync time already, advance to the next nonce repeat
- while(GetCountSspClk() > sync_time) {
+ while( GetCountSspClk() > sync_time) {
++elapsed_prng_sequences;
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
- }
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ sync_time = (sync_time & 0xfffffff8 ) + sync_cycles;
+ }
+
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- // Receive the (4 Byte) "random" nonce
+ // Receive the (4 Byte) "random" nonce from TAG
if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
continue;
- // Transmit reader nonce with fake par
- ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
-
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
+ // Transmit reader nonce with fake par
+ ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+
+ WDT_HIT();
+ LED_B_ON();
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
- int nt_distance = dist_nt(previous_nt, nt);
+
+ nt_distance = dist_nt(previous_nt, nt);
+
+ // if no distance between, then we are in sync.
if (nt_distance == 0) {
nt_attacked = nt;
} else {
if (nt_distance == -99999) { // invalid nonce received
- unexpected_random++;
+ ++unexpected_random;
if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
isOK = -3; // Card has an unpredictable PRNG. Give up
break;
- } else {
+ } else {
+ if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH;
+ LED_B_OFF();
continue; // continue trying...
}
}
if (++sync_tries > MAX_SYNC_TRIES) {
- if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
- isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
- break;
- } else {
- continue;
- }
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ break;
}
sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
+
if (sync_cycles <= 0)
sync_cycles += PRNG_SEQUENCE_LENGTH;
- if (MF_DBGLEVEL >= 3)
+ if (MF_DBGLEVEL >= 4)
Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+ LED_B_OFF();
continue;
}
}
+ LED_B_OFF();
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
- catch_up_cycles = -dist_nt(nt_attacked, nt);
+ catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
- }
-
+ }
// average?
catch_up_cycles /= elapsed_prng_sequences;
}
if (consecutive_resyncs < 3) {
- if (MF_DBGLEVEL >= 3)
- Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+ if (MF_DBGLEVEL >= 4)
+ Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
} else {
sync_cycles += catch_up_cycles;
- if (MF_DBGLEVEL >= 3)
- Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ if (MF_DBGLEVEL >= 4)
+ Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
last_catch_up = 0;
catch_up_cycles = 0;
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
par_list[nt_diff] = SwapBits(par[0], 8);
- ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
+ ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // xor with NACK value to get keystream
// Test if the information is complete
if (nt_diff == 0x07) {
}
}
+ // reset the resyncs since we got a complete transaction on right time.
consecutive_resyncs = 0;
- }
+ } // end for loop
mf_nr_ar[3] &= 0x1F;
- WDT_HIT();
-
- // reset sync_time.
- if ( isOK == 1) {
- sync_time = 0;
- sync_cycles = 0;
- mf_nr_ar3 = 0;
- nt_attacked = 0;
- par[0] = 0;
- }
+ if (MF_DBGLEVEL >= 1) Dbprintf("\nNumber of sent auth requestes: %u", i);
uint8_t buf[28] = {0x00};
+ memset(buf, 0x00, sizeof(buf));
num_to_bytes(cuid, 4, buf);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
memcpy(buf + 16, ks_list, 8);
memcpy(buf + 24, mf_nr_ar, 4);
- cmd_send(CMD_ACK,isOK,0,0,buf,28);
+ cmd_send(CMD_ACK, isOK, 0, 0, buf, sizeof(buf) );
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
*MIFARE 1K simulate.
*
*@param flags :
- * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
- * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
- * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
- * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
+ * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
+ * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section
+ * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section
+ * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section
+ * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory
+ * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
*/
-void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
-{
+void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) {
int cardSTATE = MFEMUL_NOFIELD;
- int _7BUID = 0;
+ int _UID_LEN = 0; // 4, 7, 10
int vHf = 0; // in mV
- int res;
+ int res = 0;
uint32_t selTimer = 0;
uint32_t authTimer = 0;
uint16_t len = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
-// uint32_t cardRr = 0;
uint32_t cuid = 0;
- //uint32_t rn_enc = 0;
uint32_t ans = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
- uint32_t numReads = 0;//Counts numer of times reader read a block
+ uint32_t numReads = 0; //Counts numer of times reader read a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
- uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
- uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
- uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
- uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
- //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
- uint8_t rSAK1[] = {0x04, 0xda, 0x17};
-
- //uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
- uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};
+ uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k (4b UID)
+ uint8_t sak_4[] = {0x08, 0x00, 0x00}; // Mifare Classic
+ uint8_t sak_7[] = {0x08, 0x00, 0x00}; // CL2 - 7b uid
+ uint8_t sak_10[] = {0x08, 0x00, 0x00}; // CL3 - 10b uid
+ //uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
+
+ uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+ uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+ uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+
+ uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; // very random nonce
+ //uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
- //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
+ // Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2
// This can be used in a reader-only attack.
- // (it can also be retrieved via 'hf 14a list', but hey...
- uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+ uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
// Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
//-- Determine the UID
- // Can be set from emulator memory, incoming data
- // and can be 7 or 4 bytes long
- if (flags & FLAG_4B_UID_IN_DATA)
- {
- // 4B uid comes from data-portion of packet
- memcpy(rUIDBCC1,datain,4);
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
+ // Can be set from emulator memory or incoming data
+ // Length: 4,7,or 10 bytes
+ if ( flags & FLAG_UID_IN_EMUL ) {
+ emlGetMemBt(rUIDBCC1, 0, 4);
+ _UID_LEN = 4;
+ } else if (flags & FLAG_4B_UID_IN_DATA) {
+ memcpy(rUIDBCC1, datain, 4);
+ _UID_LEN = 4;
} else if (flags & FLAG_7B_UID_IN_DATA) {
- // 7B uid comes from data-portion of packet
- memcpy(&rUIDBCC1[1],datain,3);
- memcpy(rUIDBCC2, datain+3, 4);
- _7BUID = true;
- } else {
- // get UID from emul memory
- emlGetMemBt(receivedCmd, 7, 1);
- _7BUID = !(receivedCmd[0] == 0x00);
- if (!_7BUID) { // ---------- 4BUID
- emlGetMemBt(rUIDBCC1, 0, 4);
- } else { // ---------- 7BUID
- emlGetMemBt(&rUIDBCC1[1], 0, 3);
- emlGetMemBt(rUIDBCC2, 3, 4);
- }
+ memcpy(&rUIDBCC1[1], datain, 3);
+ memcpy( rUIDBCC2, datain+3, 4);
+ _UID_LEN = 7;
+ } else if (flags & FLAG_10B_UID_IN_DATA) {
+ memcpy(&rUIDBCC1[1], datain, 3);
+ memcpy(&rUIDBCC2[1], datain+3, 4);
+ memcpy( rUIDBCC3, datain+7, 4);
+ _UID_LEN = 10;
}
- // save uid.
- ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
- if ( _7BUID )
- ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
-
/*
- * Regardless of what method was used to set the UID, set fifth byte and modify
- * the ATQA for 4 or 7-byte UID
- */
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- if (_7BUID) {
- rATQA[0] = 0x44;
- rUIDBCC1[0] = 0x88;
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
- }
-
- if (MF_DBGLEVEL >= 1) {
- if (!_7BUID) {
- Dbprintf("4B UID: %02x%02x%02x%02x",
- rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
- } else {
- Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
- rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
- rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
- }
+ * Save cuid to collected response array.
+ * Set XOR BCC (fifth byte) and modify the ATQA for 4,7 or 10-byte UID
+ atqa[] = 0x04, 0x00;
+ sak = 0x08;
+ if (flags & FLAG_7B_UID_IN_DATA) {
+ atqa[0] |= 0x40;
+ sak |= 0x04;
+ } else {
+ atqa[0] &= 0xBF;
+ sak &= 0xFB;
+
+ // Prepare the mandatory SAK (for 4 and 7 byte UID)
+ uint8_t response3[3] = {sak, 0x00, 0x00};
+ ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+ */
+ switch (_UID_LEN) {
+ case 4:
+ atqa[0] &= 0xBF;
+ sak_4[0] &= 0xFB;
+ ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
+
+ // save CUID
+ ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4);
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ if (MF_DBGLEVEL >= 1) {
+ Dbprintf("4B UID: %02x%02x%02x%02x",
+ rUIDBCC1[0],
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3]
+ );
+ }
+ break;
+ case 7:
+ atqa[0] |= 0x40;
+ sak_7[0] |= 0x04;
+ ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
+
+ // save CUID
+ ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);
+
+ rUIDBCC1[0] = 0x88; // CascadeTag, CT
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ if (MF_DBGLEVEL >= 1) {
+ Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
+ //rUIDBCC1[0],
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3],
+ rUIDBCC2[0],
+ rUIDBCC2[1],
+ rUIDBCC2[2],
+ rUIDBCC2[3]
+ );
+ }
+ break;
+ case 10:
+ atqa[0] |= 0x40;
+ sak_10[0] |= 0x04;
+ ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
+
+ // save CUID
+ ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4);
+ rUIDBCC1[0] = 0x88; // CascadeTag, CT
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+
+ rUIDBCC2[0] = 0x88; // CascadeTag, CT
+ // BCC
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
+ if (MF_DBGLEVEL >= 1) {
+ Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ //rUIDBCC1[0],
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3],
+ //rUIDBCC2[0],
+ rUIDBCC2[1],
+ rUIDBCC2[2],
+ rUIDBCC2[3],
+ rUIDBCC3[0],
+ rUIDBCC3[1],
+ rUIDBCC3[2],
+ rUIDBCC3[3]
+ );
+ }
+ break;
+ default:
+ break;
}
// We need to listen to the high-frequency, peak-detected path.
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
-
- // clear trace
clear_trace();
set_tracing(TRUE);
-
bool finished = FALSE;
while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
WDT_HIT();
LED_A_ON();
}
}
- if(cardSTATE == MFEMUL_NOFIELD) continue;
+ if (cardSTATE == MFEMUL_NOFIELD) continue;
//Now, get data
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
}
// REQ or WUP request in ANY state and WUP in HALTED state
- if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+ if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
selTimer = GetTickCount();
- EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+ EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
cardSTATE = MFEMUL_SELECT1;
-
- // init crypto block
- LED_B_OFF();
- LED_C_OFF();
crypto1_destroy(pcs);
cardAUTHKEY = 0xff;
+ LEDsoff();
continue;
}
break;
}
case MFEMUL_SELECT1:{
- // select all
- if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
break;
}
-
- if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
- {
- Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
- }
// select card
if (len == 9 &&
- (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
- EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
- cuid = bytes_to_num(rUIDBCC1, 4);
- if (!_7BUID) {
- cardSTATE = MFEMUL_WORK;
- LED_B_ON();
- if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
- break;
- } else {
- cardSTATE = MFEMUL_SELECT2;
+ ( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+
+ // SAK 4b
+ EmSendCmd(sak_4, sizeof(sak_4));
+ switch(_UID_LEN){
+ case 4:
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+ continue;
+ case 7:
+ case 10:
+ cardSTATE = MFEMUL_SELECT2;
+ continue;
+ default:break;
}
+ } else {
+ cardSTATE_TO_IDLE();
+ }
+ break;
+ }
+ case MFEMUL_SELECT2:{
+ if (!len) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+ break;
+ }
+ if (len == 9 &&
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
+
+ EmSendCmd(sak_7, sizeof(sak_7));
+ switch(_UID_LEN){
+ case 7:
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+ continue;
+ case 10:
+ cardSTATE = MFEMUL_SELECT3;
+ continue;
+ default:break;
+ }
+ } else {
+ cardSTATE_TO_IDLE();
+ }
+ break;
+ }
+ case MFEMUL_SELECT3:{
+ if (!len) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
+ break;
+ }
+ if (len == 9 &&
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
+
+ EmSendCmd(sak_10, sizeof(sak_10));
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
+ break;
+ } else {
+ cardSTATE_TO_IDLE();
}
break;
}
ar_nr_collected++;
}
// Interactive mode flag, means we need to send ACK
- if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
- finished = true;
+ finished = (flags & FLAG_INTERACTIVE && ar_nr_collected == 2);
}
-
- // --- crypto
- //crypto1_word(pcs, ar , 1);
- //cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
- //test if auth OK
- //if (cardRr != prng_successor(nonce, 64)){
+ /*
+ crypto1_word(pcs, ar , 1);
+ cardRr = nr ^ crypto1_word(pcs, 0, 0);
+
+ test if auth OK
+ if (cardRr != prng_successor(nonce, 64)){
- //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
- // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
- // cardRr, prng_successor(nonce, 64));
- // Shouldn't we respond anything here?
- // Right now, we don't nack or anything, which causes the
- // reader to do a WUPA after a while. /Martin
- // -- which is the correct response. /piwi
- //cardSTATE_TO_IDLE();
- //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- //break;
- //}
-
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+ cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ cardRr, prng_successor(nonce, 64));
+ Shouldn't we respond anything here?
+ Right now, we don't nack or anything, which causes the
+ reader to do a WUPA after a while. /Martin
+ -- which is the correct response. /piwi
+ cardSTATE_TO_IDLE();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ break;
+ }
+ */
+
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
-
num_to_bytes(ans, 4, rAUTH_AT);
- // --- crypto
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
- cardSTATE = MFEMUL_WORK;
+
if (MF_DBGLEVEL >= 4) {
Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
cardAUTHSC,
GetTickCount() - authTimer
);
}
- break;
- }
- case MFEMUL_SELECT2:{
- if (!len) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
- if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
- EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
- break;
- }
-
- // select 2 card
- if (len == 9 &&
- (receivedCmd[0] == 0x95 &&
- receivedCmd[1] == 0x70 &&
- memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
- EmSendCmd(rSAK, sizeof(rSAK));
- cuid = bytes_to_num(rUIDBCC2, 4);
- cardSTATE = MFEMUL_WORK;
- LED_B_ON();
- if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
- break;
- }
-
- // i guess there is a command). go into the work state.
- if (len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
cardSTATE = MFEMUL_WORK;
- //goto lbWORK;
- //intentional fall-through to the next case-stmt
+ break;
}
-
case MFEMUL_WORK:{
if (len == 0) {
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
- }
-
+ }
bool encrypted_data = (cardAUTHKEY != 0xFF) ;
- // decrypt seqence
if(encrypted_data)
mf_crypto1_decrypt(pcs, receivedCmd, len);
- if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+ if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA ||
+ receivedCmd[0] == MIFARE_AUTH_KEYB) ) {
+
authTimer = GetTickCount();
cardAUTHSC = receivedCmd[1] / 4; // received block num
- cardAUTHKEY = receivedCmd[0] - 0x60;
- crypto1_destroy(pcs);//Added by martin
+ cardAUTHKEY = receivedCmd[0] - 0x60; // & 1
+ crypto1_destroy(pcs);
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
- if (!encrypted_data) { // first authentication
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
-
+ if (!encrypted_data) {
+ // first authentication
crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
- } else { // nested authentication
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+
+ } else {
+ // nested authentication
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
}
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
- //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
cardSTATE = MFEMUL_AUTH1;
break;
}
break;
}
- if(receivedCmd[0] == 0x30 // read block
- || receivedCmd[0] == 0xA0 // write block
- || receivedCmd[0] == 0xC0 // inc
- || receivedCmd[0] == 0xC1 // dec
- || receivedCmd[0] == 0xC2 // restore
- || receivedCmd[0] == 0xB0) { // transfer
+ if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK ||
+ receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK ||
+ receivedCmd[0] == MIFARE_CMD_INC ||
+ receivedCmd[0] == MIFARE_CMD_DEC ||
+ receivedCmd[0] == MIFARE_CMD_RESTORE ||
+ receivedCmd[0] == MIFARE_CMD_TRANSFER ) {
+
if (receivedCmd[1] >= 16 * 4) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
}
}
// read block
- if (receivedCmd[0] == 0x30) {
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
+ if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]);
emlGetMem(response, receivedCmd[1], 1);
AppendCrc14443a(response, 16);
break;
}
// write block
- if (receivedCmd[0] == 0xA0) {
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
+ if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardSTATE = MFEMUL_WRITEBL2;
cardWRBL = receivedCmd[1];
break;
}
// increment, decrement, restore
- if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if ( receivedCmd[0] == MIFARE_CMD_INC ||
+ receivedCmd[0] == MIFARE_CMD_DEC ||
+ receivedCmd[0] == MIFARE_CMD_RESTORE) {
+
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]);
+
if (emlCheckValBl(receivedCmd[1])) {
if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- if (receivedCmd[0] == 0xC1)
- cardSTATE = MFEMUL_INTREG_INC;
- if (receivedCmd[0] == 0xC0)
- cardSTATE = MFEMUL_INTREG_DEC;
- if (receivedCmd[0] == 0xC2)
- cardSTATE = MFEMUL_INTREG_REST;
+ if (receivedCmd[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC;
+ if (receivedCmd[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC;
+ if (receivedCmd[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST;
cardWRBL = receivedCmd[1];
break;
}
// transfer
- if (receivedCmd[0] == 0xB0) {
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (receivedCmd[0] == MIFARE_CMD_TRANSFER) {
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
break;
}
// halt
- if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
+ if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) {
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
break;
}
// RATS
- if (receivedCmd[0] == 0xe0) {//RATS
+ if (receivedCmd[0] == ISO14443A_CMD_RATS) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
}
break;
}
-
case MFEMUL_INTREG_INC:{
mf_crypto1_decrypt(pcs, receivedCmd, len);
memcpy(&ans, receivedCmd, 4);
}
}
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
-
// Interactive mode flag, means we need to send ACK
if(flags & FLAG_INTERACTIVE) {
//May just aswell send the collected ar_nr in the response aswell
if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID1
- ar_nr_responses[1], // UID2
- ar_nr_responses[2], // NT
- ar_nr_responses[3], // AR1
- ar_nr_responses[4], // NR1
- ar_nr_responses[8], // AR2
- ar_nr_responses[9] // NR2
- );
- Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID1
- ar_nr_responses[1], // UID2
- ar_nr_responses[2], // NT1
- ar_nr_responses[3], // AR1
- ar_nr_responses[4], // NR1
- ar_nr_responses[7], // NT2
- ar_nr_responses[8], // AR2
- ar_nr_responses[9] // NR2
- );
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // CUID
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3], // NR1
+ ar_nr_responses[4], // AR2
+ ar_nr_responses[5] // NR2
+ );
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) {
- Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
- ar_nr_responses[0], // UID1
- ar_nr_responses[1], // UID2
- ar_nr_responses[2], // NT
- ar_nr_responses[3], // AR1
- ar_nr_responses[4] // NR1
- );
+ Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+ ar_nr_responses[0], // CUID
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3] // NR1
+ );
}
}
}
- if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+ if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
set_tracing(FALSE);
}
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
+// if no activity for 2sec, it sends the collected data to the client.
//-----------------------------------------------------------------------------
void RAMFUNC SniffMifare(uint8_t param) {
// param:
// free eventually allocated BigBuf memory
BigBuf_free(); BigBuf_Clear_ext(false);
-
- // init trace buffer
clear_trace();
set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
- // The length of a received command will in most cases be no more than 18 bytes.
- // So 32 should be enough!
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// allocate the DMA buffer, used to stream samples from the FPGA
+ // [iceman] is this sniffed data unsigned?
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
- // Setup for the DMA.
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
+ // set transfer address and number of bytes. Start transfer.
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
LED_D_OFF();
-
- // init sniffer
+
MfSniffInit();
// And now we loop, receiving samples.
- for(uint32_t sniffCounter = 0; TRUE; ) {
+ for(uint32_t sniffCounter = 0;; ) {
+
+ LED_A_ON();
+ WDT_HIT();
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
break;
}
-
- LED_A_ON();
- WDT_HIT();
-
+
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
- Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+ Dbprintf("RxEmpty ERROR, data length:%d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
- /* And ready to receive another command. */
UartInit(receivedCmd, receivedCmdPar);
-
- /* And also reset the demod code */
DemodReset();
}
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
- // And ready to receive another response.
DemodReset();
-
- // And reset the Miller decoder including its (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
FpgaDisableSscDma();
MfSniffEnd();
+ if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
set_tracing(FALSE);
}