ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
- xcorr_is_848, snoop, xcorr_quarter_freq
+ xcorr_is_848, snoop
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
- input xcorr_is_848, snoop, xcorr_quarter_freq;
+ input xcorr_is_848, snoop;
// Carrier is steady on through this, unless we're snooping.
assign pwr_hi = ck_1356megb & (~snoop);
assign pwr_oe1 = 1'b0;
-assign pwr_oe2 = 1'b0;
assign pwr_oe3 = 1'b0;
assign pwr_oe4 = 1'b0;
-reg ssp_clk;
-reg ssp_frame;
-
-reg fc_div_2;
-always @(posedge ck_1356meg)
- fc_div_2 = ~fc_div_2;
-
-reg fc_div_4;
-always @(posedge fc_div_2)
- fc_div_4 = ~fc_div_4;
-
-reg fc_div_8;
-always @(posedge fc_div_4)
- fc_div_8 = ~fc_div_8;
+// Clock divider
+reg [0:0] fc_divider;
+always @(negedge ck_1356megb)
+ fc_divider <= fc_divider + 1;
+wire fc_div2 = fc_divider[0];
reg adc_clk;
-
-always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg)
- if(~xcorr_quarter_freq)
- begin
- if(xcorr_is_848)
- // The subcarrier frequency is fc/16; we will sample at fc, so that
- // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...
- adc_clk <= ck_1356meg;
- else
- // The subcarrier frequency is fc/32; we will sample at fc/2, and
- // the subcarrier will look identical.
- adc_clk <= fc_div_2;
- end
- else
- begin
- if(xcorr_is_848)
- // The subcarrier frequency is fc/64
- adc_clk <= fc_div_4;
- else
- // The subcarrier frequency is fc/128
- adc_clk <= fc_div_8;
- end
+always @(ck_1356megb)
+ if (xcorr_is_848)
+ adc_clk <= ck_1356megb;
+ else
+ adc_clk <= fc_div2;
// When we're a reader, we just need to do the BPSK demod; but when we're an
// eavesdropper, we also need to pick out the commands sent by the reader,
// using AM. Do this the same way that we do it for the simulated tag.
-reg after_hysteresis, after_hysteresis_prev;
+reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
reg [11:0] has_been_low_for;
always @(negedge adc_clk)
begin
// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
// so we need a 6-bit counter.
reg [5:0] corr_i_cnt;
-reg [5:0] corr_q_cnt;
// And a couple of registers in which to accumulate the correlations.
-reg signed [15:0] corr_i_accum;
-reg signed [15:0] corr_q_accum;
+// we would add at most 32 times adc_d, the result can be held in 13 bits.
+// Need one additional bit because it can be negative as well
+reg signed [13:0] corr_i_accum;
+reg signed [13:0] corr_q_accum;
reg signed [7:0] corr_i_out;
reg signed [7:0] corr_q_out;
+// clock and frame signal for communication to ARM
+reg ssp_clk;
+reg ssp_frame;
+
+
+always @(negedge adc_clk)
+begin
+ corr_i_cnt <= corr_i_cnt + 1;
+end
+
// ADC data appears on the rising edge, so sample it on the falling edge
always @(negedge adc_clk)
// These are the correlators: we correlate against in-phase and quadrature
// versions of our reference signal, and keep the (signed) result to
// send out later over the SSP.
- if(corr_i_cnt == 7'd63)
+ if(corr_i_cnt == 6'd0)
begin
if(snoop)
begin
- corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev};
- corr_q_out <= {corr_q_accum[12:6], after_hysteresis};
+ // Send only 7 most significant bits of tag signal (signed), LSB is reader signal:
+ corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev_prev};
+ corr_q_out <= {corr_q_accum[13:7], after_hysteresis_prev};
+ after_hysteresis_prev_prev <= after_hysteresis;
end
else
begin
- // Only correlations need to be delivered.
+ // 8 most significant bits of tag signal
corr_i_out <= corr_i_accum[13:6];
corr_q_out <= corr_q_accum[13:6];
end
corr_i_accum <= adc_d;
corr_q_accum <= adc_d;
- corr_q_cnt <= 4;
- corr_i_cnt <= 0;
end
else
begin
else
corr_i_accum <= corr_i_accum + adc_d;
- if(corr_q_cnt[3])
- corr_q_accum <= corr_q_accum - adc_d;
- else
+ if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2
corr_q_accum <= corr_q_accum + adc_d;
+ else
+ corr_q_accum <= corr_q_accum - adc_d;
- corr_i_cnt <= corr_i_cnt + 1;
- corr_q_cnt <= corr_q_cnt + 1;
end
// The logic in hi_simulate.v reports 4 samples per bit. We report two
// (I, Q) pairs per bit, so we should do 2 samples per pair.
- if(corr_i_cnt == 6'd31)
+ if(corr_i_cnt == 6'd32)
after_hysteresis_prev <= after_hysteresis;
// Then the result from last time is serialized and send out to the ARM.
begin
ssp_clk <= 1'b1;
// Don't shift if we just loaded new data, obviously.
- if(corr_i_cnt != 7'd0)
+ if(corr_i_cnt != 6'd0)
begin
corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
corr_q_out[7:1] <= corr_q_out[6:0];
end
end
- if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000)
+ // set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35
+ // (send two frames with 8 Bits each)
+ if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000)
ssp_frame = 1'b1;
else
ssp_frame = 1'b0;
// Unused.
assign pwr_lo = 1'b0;
+assign pwr_oe2 = 1'b0;
endmodule