// PA14 -> SPI_SPCK Serial Clock\r
\r
// Disable PIO control of the following pins, allows use by the SPI peripheral\r
- PIO_DISABLE = (1 << GPIO_NCS0) |\r
- (1 << GPIO_NCS2) |\r
- (1 << GPIO_MISO) |\r
- (1 << GPIO_MOSI) |\r
- (1 << GPIO_SPCK);\r
+ AT91C_BASE_PIOA->PIO_PDR =\r
+ GPIO_NCS0 |\r
+ GPIO_NCS2 |\r
+ GPIO_MISO |\r
+ GPIO_MOSI |\r
+ GPIO_SPCK;\r
\r
- PIO_PERIPHERAL_A_SEL = (1 << GPIO_NCS0) |\r
- (1 << GPIO_MISO) |\r
- (1 << GPIO_MOSI) |\r
- (1 << GPIO_SPCK);\r
+ AT91C_BASE_PIOA->PIO_ASR =\r
+ GPIO_NCS0 |\r
+ GPIO_MISO |\r
+ GPIO_MOSI |\r
+ GPIO_SPCK;\r
\r
- PIO_PERIPHERAL_B_SEL = (1 << GPIO_NCS2);\r
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_NCS2;\r
\r
//enable the SPI Peripheral clock\r
- PMC_PERIPHERAL_CLK_ENABLE = (1<<PERIPH_SPI);\r
+ AT91C_BASE_PMC->PMC_PCER = (1<<AT91C_ID_SPI);\r
// Enable SPI\r
- SPI_CONTROL = SPI_CONTROL_ENABLE;\r
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;\r
\r
switch (mode) {\r
case SPI_FPGA_MODE:\r
- SPI_MODE =\r
+ AT91C_BASE_SPI->SPI_MR =\r
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)\r
(14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)\r
( 0 << 7) | // Local Loopback Disabled\r
( 0 << 2) | // Chip selects connected directly to peripheral\r
( 0 << 1) | // Fixed Peripheral Select\r
( 1 << 0); // Master Mode\r
- SPI_FOR_CHIPSEL_0 =\r
+ AT91C_BASE_SPI->SPI_CSR[0] =\r
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)\r
( 1 << 16) | // Delay Before SPCK (1 MCK period)\r
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud\r
( 0 << 0); // Clock Polarity inactive state is logic 0\r
break;\r
case SPI_LCD_MODE:\r
- SPI_MODE =\r
+ AT91C_BASE_SPI->SPI_MR =\r
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)\r
(11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)\r
( 0 << 7) | // Local Loopback Disabled\r
( 0 << 2) | // Chip selects connected directly to peripheral\r
( 0 << 1) | // Fixed Peripheral Select\r
( 1 << 0); // Master Mode\r
- SPI_FOR_CHIPSEL_2 =\r
+ AT91C_BASE_SPI->SPI_CSR[2] =\r
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)\r
( 1 << 16) | // Delay Before SPCK (1 MCK period)\r
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud\r
( 0 << 0); // Clock Polarity inactive state is logic 0\r
break;\r
default: // Disable SPI\r
- SPI_CONTROL = SPI_CONTROL_DISABLE;\r
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;\r
break;\r
}\r
}\r
void FpgaSetupSsc(void)\r
{\r
// First configure the GPIOs, and get ourselves a clock.\r
- PIO_PERIPHERAL_A_SEL = (1 << GPIO_SSC_FRAME) |\r
- (1 << GPIO_SSC_DIN) |\r
- (1 << GPIO_SSC_DOUT) |\r
- (1 << GPIO_SSC_CLK);\r
- PIO_DISABLE = (1 << GPIO_SSC_DOUT);\r
+ AT91C_BASE_PIOA->PIO_ASR =\r
+ GPIO_SSC_FRAME |\r
+ GPIO_SSC_DIN |\r
+ GPIO_SSC_DOUT |\r
+ GPIO_SSC_CLK;\r
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;\r
\r
- PMC_PERIPHERAL_CLK_ENABLE = (1 << PERIPH_SSC);\r
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC);\r
\r
// Now set up the SSC proper, starting from a known state.\r
- SSC_CONTROL = SSC_CONTROL_RESET;\r
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;\r
\r
// RX clock comes from TX clock, RX starts when TX starts, data changes\r
// on RX clock rising edge, sampled on falling edge\r
- SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);\r
+ AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);\r
\r
// 8 bits per transfer, no loopback, MSB first, 1 transfer per sync\r
// pulse, no output sync, start on positive-going edge of sync\r
- SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(8) |\r
- SSC_FRAME_MODE_MSB_FIRST | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);\r
+ AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) |\r
+ AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);\r
\r
// clock comes from TK pin, no clock output, outputs change on falling\r
// edge of TK, start on rising edge of TF\r
- SSC_TRANSMIT_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(2) |\r
+ AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) |\r
SSC_CLOCK_MODE_START(5);\r
\r
// tx framing is the same as the rx framing\r
- SSC_TRANSMIT_FRAME_MODE = SSC_RECEIVE_FRAME_MODE;\r
+ AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR;\r
\r
- SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;\r
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;\r
}\r
\r
//-----------------------------------------------------------------------------\r
//-----------------------------------------------------------------------------\r
void FpgaSetupSscDma(BYTE *buf, int len)\r
{\r
- PDC_RX_POINTER(SSC_BASE) = (DWORD)buf;\r
- PDC_RX_COUNTER(SSC_BASE) = len;\r
- PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)buf;\r
- PDC_RX_NEXT_COUNTER(SSC_BASE) = len;\r
- PDC_CONTROL(SSC_BASE) = PDC_RX_ENABLE;\r
+ AT91C_BASE_PDC_SSC->PDC_RPR = (DWORD)buf;\r
+ AT91C_BASE_PDC_SSC->PDC_RCR = len;\r
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)buf;\r
+ AT91C_BASE_PDC_SSC->PDC_RNCR = len;\r
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN;\r
}\r
\r
-// Download the fpga image starting at FpgaImage and with length FpgaImageLen DWORDs (e.g. 4 bytes)\r
+static void DownloadFPGA_byte(unsigned char w)\r
+{\r
+#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }\r
+ SEND_BIT(7);\r
+ SEND_BIT(6);\r
+ SEND_BIT(5);\r
+ SEND_BIT(4);\r
+ SEND_BIT(3);\r
+ SEND_BIT(2);\r
+ SEND_BIT(1);\r
+ SEND_BIT(0);\r
+}\r
+\r
+// Download the fpga image starting at FpgaImage and with length FpgaImageLen bytes\r
// If bytereversal is set: reverse the byte order in each 4-byte word\r
-static void DownloadFPGA(const DWORD *FpgaImage, DWORD FpgaImageLen, int bytereversal)\r
+static void DownloadFPGA(const char *FpgaImage, int FpgaImageLen, int bytereversal)\r
{\r
- int i, j;\r
+ int i=0;\r
\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_ON);\r
- PIO_ENABLE = (1 << GPIO_FPGA_ON);\r
- PIO_OUTPUT_DATA_SET = (1 << GPIO_FPGA_ON);\r
+ AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_ON;\r
+ AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON;\r
+ HIGH(GPIO_FPGA_ON); // ensure everything is powered on\r
\r
SpinDelay(50);\r
\r
LED_D_ON();\r
\r
+ // These pins are inputs\r
+ AT91C_BASE_PIOA->PIO_ODR =\r
+ GPIO_FPGA_NINIT |\r
+ GPIO_FPGA_DONE;\r
+ // PIO controls the following pins\r
+ AT91C_BASE_PIOA->PIO_PER =\r
+ GPIO_FPGA_NINIT |\r
+ GPIO_FPGA_DONE;\r
+ // Enable pull-ups\r
+ AT91C_BASE_PIOA->PIO_PPUER =\r
+ GPIO_FPGA_NINIT |\r
+ GPIO_FPGA_DONE;\r
+\r
+ // setup initial logic state\r
HIGH(GPIO_FPGA_NPROGRAM);\r
LOW(GPIO_FPGA_CCLK);\r
LOW(GPIO_FPGA_DIN);\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_NPROGRAM) |\r
- (1 << GPIO_FPGA_CCLK) |\r
- (1 << GPIO_FPGA_DIN);\r
- SpinDelay(1);\r
+ // These pins are outputs\r
+ AT91C_BASE_PIOA->PIO_OER =\r
+ GPIO_FPGA_NPROGRAM |\r
+ GPIO_FPGA_CCLK |\r
+ GPIO_FPGA_DIN;\r
\r
+ // enter FPGA configuration mode\r
LOW(GPIO_FPGA_NPROGRAM);\r
SpinDelay(50);\r
HIGH(GPIO_FPGA_NPROGRAM);\r
\r
- for(i = 0; i < FpgaImageLen; i++) {\r
- DWORD v = FpgaImage[i];\r
- unsigned char w;\r
- for(j = 0; j < 4; j++) {\r
- if(!bytereversal) \r
- w = v >>(j*8);\r
- else\r
- w = v >>((3-j)*8);\r
-#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }\r
- SEND_BIT(7);\r
- SEND_BIT(6);\r
- SEND_BIT(5);\r
- SEND_BIT(4);\r
- SEND_BIT(3);\r
- SEND_BIT(2);\r
- SEND_BIT(1);\r
- SEND_BIT(0);\r
+ i=100000;\r
+ // wait for FPGA ready to accept data signal\r
+ while ((i) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT ) ) ) {\r
+ i--;\r
+ }\r
+\r
+ // crude error indicator, leave both red LEDs on and return\r
+ if (i==0){\r
+ LED_C_ON();\r
+ LED_D_ON();\r
+ return;\r
+ }\r
+\r
+ if(bytereversal) {\r
+ /* This is only supported for DWORD aligned images */\r
+ if( ((int)FpgaImage % sizeof(DWORD)) == 0 ) {\r
+ i=0;\r
+ while(FpgaImageLen-->0)\r
+ DownloadFPGA_byte(FpgaImage[(i++)^0x3]);\r
+ /* Explanation of the magic in the above line: \r
+ * i^0x3 inverts the lower two bits of the integer i, counting backwards\r
+ * for each 4 byte increment. The generated sequence of (i++)^3 is\r
+ * 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 etc. pp. \r
+ */\r
}\r
+ } else {\r
+ while(FpgaImageLen-->0)\r
+ DownloadFPGA_byte(*FpgaImage++);\r
}\r
\r
+ // continue to clock FPGA until ready signal goes high\r
+ i=100000;\r
+ while ( (i--) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE ) ) ) {\r
+ HIGH(GPIO_FPGA_CCLK);\r
+ LOW(GPIO_FPGA_CCLK);\r
+ }\r
+ // crude error indicator, leave both red LEDs on and return\r
+ if (i==0){\r
+ LED_C_ON();\r
+ LED_D_ON();\r
+ return;\r
+ }\r
LED_D_OFF();\r
}\r
\r
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01\r
* After that the format is 1 byte section type (ASCII character), 2 byte length\r
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes\r
- * length.
+ * length.\r
*/\r
static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};\r
static int bitparse_init(void * start_address, void *end_address)\r
}\r
}\r
\r
-int bitparse_find_section(char section_name, void **section_start, unsigned int *section_length)\r
+int bitparse_find_section(char section_name, char **section_start, unsigned int *section_length)\r
{\r
char *pos = bitparse_headers_start;\r
int result = 0;\r
extern char _binary_fpga_bit_start, _binary_fpga_bit_end;\r
void FpgaDownloadAndGo(void)\r
{\r
- /* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start
+ /* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start\r
*/\r
if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) {\r
/* Successfully initialized the .bit parser. Find the 'e' section and\r
- * send its contents to the FPGA.
+ * send its contents to the FPGA.\r
*/\r
- void *bitstream_start;\r
+ char *bitstream_start;\r
unsigned int bitstream_length;\r
if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) {\r
- DownloadFPGA((DWORD *)bitstream_start, bitstream_length/4, 0);\r
+ DownloadFPGA(bitstream_start, bitstream_length, 0);\r
\r
return; /* All done */\r
}\r
}\r
\r
/* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF\r
- * 0xAA995566 at address 0x2000. This is raw bitstream with a size of 336,768 bits \r
+ * 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits \r
* = 10,524 DWORDs, stored as DWORDS e.g. little-endian in memory, but each DWORD\r
* is still to be transmitted in MSBit first order. Set the invert flag to indicate\r
* that the DownloadFPGA function should invert every 4 byte sequence when doing\r
- * the bytewise download.
+ * the bytewise download.\r
*/\r
- if( *(DWORD*)0x2000 == 0xFFFFFFFF && *(DWORD*)0x2004 == 0xAA995566 )\r
- DownloadFPGA((DWORD *)0x2000, 10524, 1);\r
+ if( *(DWORD*)0x102000 == 0xFFFFFFFF && *(DWORD*)0x102004 == 0xAA995566 )\r
+ DownloadFPGA((char*)0x102000, 10524*4, 1);\r
}\r
\r
void FpgaGatherVersion(char *dst, int len)\r
char *fpga_info; \r
unsigned int fpga_info_len;\r
dst[0] = 0;\r
- if(!bitparse_find_section('e', (void**)&fpga_info, &fpga_info_len)) {\r
+ if(!bitparse_find_section('e', &fpga_info, &fpga_info_len)) {\r
strncat(dst, "FPGA image: legacy image without version information", len-1);\r
} else {\r
strncat(dst, "FPGA image built", len-1);\r
/* USB packets only have 48 bytes data payload, so be terse */\r
#if 0\r
- if(bitparse_find_section('a', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
+ if(bitparse_find_section('a', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
strncat(dst, " from ", len-1);\r
strncat(dst, fpga_info, len-1);\r
}\r
- if(bitparse_find_section('b', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
+ if(bitparse_find_section('b', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
strncat(dst, " for ", len-1);\r
strncat(dst, fpga_info, len-1);\r
}\r
#endif\r
- if(bitparse_find_section('c', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
+ if(bitparse_find_section('c', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
strncat(dst, " on ", len-1);\r
strncat(dst, fpga_info, len-1);\r
}\r
- if(bitparse_find_section('d', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
+ if(bitparse_find_section('d', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
strncat(dst, " at ", len-1);\r
strncat(dst, fpga_info, len-1);\r
}\r
void FpgaSendCommand(WORD cmd, WORD v)\r
{\r
SetupSpi(SPI_FPGA_MODE);\r
- while ((SPI_STATUS & SPI_STATUS_TX_EMPTY) == 0); // wait for the transfer to complete\r
- SPI_TX_DATA = SPI_CONTROL_LAST_TRANSFER | cmd | v; // send the data\r
+ while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete\r
+ AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data\r
}\r
//-----------------------------------------------------------------------------\r
// Write the FPGA setup word (that determines what mode the logic is in, read\r
// closable, but should only close one at a time. Not an FPGA thing, but\r
// the samples from the ADC always flow through the FPGA.\r
//-----------------------------------------------------------------------------\r
-void SetAdcMuxFor(int whichGpio)\r
+void SetAdcMuxFor(DWORD whichGpio)\r
{\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |\r
- (1 << GPIO_MUXSEL_LOPKD) |\r
- (1 << GPIO_MUXSEL_LORAW) |\r
- (1 << GPIO_MUXSEL_HIRAW);\r
-\r
- PIO_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |\r
- (1 << GPIO_MUXSEL_LOPKD) |\r
- (1 << GPIO_MUXSEL_LORAW) |\r
- (1 << GPIO_MUXSEL_HIRAW);\r
+ AT91C_BASE_PIOA->PIO_OER =\r
+ GPIO_MUXSEL_HIPKD |\r
+ GPIO_MUXSEL_LOPKD |\r
+ GPIO_MUXSEL_LORAW |\r
+ GPIO_MUXSEL_HIRAW;\r
+\r
+ AT91C_BASE_PIOA->PIO_PER =\r
+ GPIO_MUXSEL_HIPKD |\r
+ GPIO_MUXSEL_LOPKD |\r
+ GPIO_MUXSEL_LORAW |\r
+ GPIO_MUXSEL_HIRAW;\r
\r
LOW(GPIO_MUXSEL_HIPKD);\r
LOW(GPIO_MUXSEL_HIRAW);\r